УДК 532.73:[669.296:621.785.532]

КІНЕТИЧНІ ОСОБЛИВОСТІ АЗОТУВАННЯ СПЛАВУ Zr-1% Nb

В. С. ТРУШ¹, І. М. ПОГРЕЛЮК¹, Т. М. КРАВЧИШИН¹, О. Г. ЛУК'ЯНЕНКО¹, П. І. СТОЄВ², В. М. ФЕДІРКО¹, І. В. КОВАЛЬЧУК¹

¹ Фізико-механічний інститут ім. Г. В. Карпенка НАН України, Львів;
² Інститут фізики твердого тіла, матеріалознавства та технологій ННЦ "ХФТІ" НАН України, Харків

Досліджено кінетику азотування ($P_{N_2} = 10^5$ Pa) тонколистових зразків (~ 1 mm) зі сплаву Zr–1% Nb у широкому температурному (T = 550; 650; 750; 850 і 950°С) та часовому ($\tau = 1$; 5 і 10 h) діапазонах. Виявлено, що азотування відбувається за законом, наближеним до параболічного ($n \approx 2$). Встановлено, що енергія активації азотування сплаву в інтервалі 550...950°С становить 131,8 kJ/mol. Оцінено мікроструктуру приповерхневого шару сплаву після азотування, а також розподіл його приповерхневої твердості. Побудовано діаграму інтенсивності рефлексів фаз α -Zr і ZrN на поверхні сплаву після азотування.

Ключові слова: сплав Zr–1%Nb, азотування, приповерхневий шар, мікроструктура, кінетика зміни маси, мікротвердість, параметри кристалічної гратки.

The kinetic characteristics of thin-sheet (~ 1 mm) samples from the Zr-1% Nb alloy after treatment in a nitrogen medium ($P_{N_2} = 10^5$ Pa) in a wide temperature (T = 550; 650; 750; 850 and 950°C) and time ($\tau = 1$; 5 and 10 h) ranges are investigated. It is determined that the nitriding of the alloy under study occurs according to a rule close to parabolic ($n \approx 2$). It has been established that the activation energy of nitriding of the alloy in the temperature range of 550...950°C is 131.8 kJ/mol. The microstructure of the near-surface layer of the alloy after nitriding is given. The distribution of near-surface microhardness on the Zr-1% Nb alloy is proposed. The diagram of the phases reflexes intensity of α -Zr and ZrN on the surface of the alloy after treatment in a nitrogen gaseous medium is presented.

Keywords: *Zr*–1% *Nb* alloy, nitriding, surface layer, microstructure, mass change kinetics, *microhardness, crystal lattice parameters.*

Вступ. Цирконієві сплави з різними легувальними додатками володіють поліпшеними механічними та міцнісними властивостями, підвищеною корозійною тривкістю під час експлуатації у воді високих параметрів за інтенсивного нейтронного опромінення [1–3]. Їх використовуватимуть і в нових типах реакторів за пілвишених температур експлуатації тепловилільних елементів, шоб збільшити ступінь вигоряння ядерного палива і тривалість експлуатації цирконієвих оболонок [4, 5]. Водночас на можливості їх застосування суттєво впливають елементи проникнення – азот та кисень [6–10]. Однак у деяких випадках дозоване об'ємне легування елементами проникнення [11-15] неможливо застосувати до готових виробів. Поліпшити їх експлуатаційні властивості можна, формуючи різними методами модифіковані шари [16, 17]. Адже структурно-фазовий стан приповерхневого шару значно впливає на функціональні характеристики цирконієвих виробів, особливо виготовлених з тонкостінного матеріалу (до ~ 3 mm). Елементи проникнення (азот та кисень) перебувають у твердому розчині в сплавах цирконію і титану та посилюють опір термічній та радіаційній повзучості, підвищують втомну довговічність, границі міцності та жаротривкості [18–23]. Перспективне для ке-

Контактна особа: В. С. ТРУШ, e-mail: trushvasyl@gmail.com

рування структурно-фазовим станом приповерхневого шару дифузійне насичення з контрольованого газового середовища. Тому сьогодні інтенсивно розробляють способи хіміко-термічної обробки (ХТО) сплаву Zr–1% Nb, щоб забезпечити високі експлуатаційні характеристики виробів.

Мета дослідження – встановити кінетику азотування сплаву Zr–1% Nb у газоподібному азоті ($P_{N_2} = 10^5$ Pa) за температур 550; 650; 750; 850 і 950°С упродовж 1; 5 і 10 h та його вплив на властивості поверхні та приповерхневого шару металу.

Матеріал та методика. Випробовували зразки, вирізані механічно з тонкого листа (~ 1 mm) сплаву (98,97 mass% Zr; 1,03 Nb) українського виробництва (TV 001.257-85) після XTO в азоті. Приріст маси визначали, зважуючи зразки на вагах OHAUS Voyager V 10640, які забезпечують похибку вимірювання $\pm 0,0001$ g. Мікротвердість та її розподіл по перетину зразків встановлювали приладом ПМТ-3М за навантаження 0,49 N. Мікроструктуру приповерхневого шару досліджували на "скісних" шліфах, використовуючи мікроскоп "Еріquant" зі системою візуалізації зображення. Для виявлення структури після різних режимів XTO сплав травили реактивом: 1 vol. part HF (флуоридна кислота) + 1 vol. part HNO₃ (нітратна кислота) + 3 vol. part C₃H₅(OH)₃ (гліцерин). Перетравлені шліфи висвітлювали реактивом: 5 ml HF (флуоридна кислота) + 95 ml HNO₃ (нітратна кислота). Шорсткість поверхні вимірювали профілометром 176021, який відповідає типу II (ступінь точності 2 за ГОСТ 19300-86).

Параметри гратки та фазовий склад поверхневих шарів металу визначали на рентгенівському дифрактометрі ДРОН-3.0 у монохроматичному CuK_{α} -випромінюванні з фокусуванням трубки за схемою Брегґа–Брентано. Напруга на аноді рентгенівської трубки 30 kV за струму 20 mA. Сканували з кроком 0,05°. Використовували пакети програмного забезпечення FullProfSuite, за допомогою яких виконували Фур'є-обробку дифрактограм, фіксували місця дифракційних максимумів відбиття та періоди ґраток, ідентифікованих за даними картотеки JCPDS–ASTM фаз.

Результати та їх обговорення. Після термооброблення сплаву в азоті питомий приріст маси прямо пропорційно залежить як від часу, так і від температур насичення (табл. 1; рис. 1).

		$(\Delta M/S) + \sigma \mu g/mm^2$					
Τ.	<i>Т</i> , К	$(\Delta M / S) \pm 0, \mu g/\min$					
°C		τ, min показник	0	60	300	600	
550	823	$\Delta M / S$	0	0,165609	0,289720	0,421404	
		±σ	0	0,117655	0,429319	0,334230	
650	923	$\Delta M / S$	0	0,350778	0,799802	1,361710	
050		±σ	0	0,162143	0,256462	0,321199	
750	1023	$\Delta M / S$	0	0,518433	0,955161	2,029953	
		±σ	0	0,115207	0,389932	0,538308	
850	1123	$\Delta M / S$	0	1,882173	3,698168	5,951948	
850		±σ	0	0,492178	0,562390	0,771349	
950	1223	$\Delta M / S$	0	3,863226	7,193399	10,546580	
		±σ	0	0,417977	0,572849	0,729334	

Таблиця 1. Питомий приріст маси ($\Delta M / S$, µg/mm²) зразків зі сплаву Zr–1% Nb залежно від температури та тривалості азотування за тиску $P_{N_2} = 10^5$ Pa

Fig. 1. Kinetic curves and approximation equations of specific weight gain changes of Zr–1% Nb alloy samples at a nitrogen pressure of 10⁵ Pa depending on temperature: $\begin{aligned} I &= 1.50^{\circ}\text{C}, \ \Delta M/S &= 0.0322 \cdot \tau^{0.3954}, \ R^2 &= 0.9875; \ 2 - 650^{\circ}\text{C}, \ \Delta M/S &= 0.0325 \cdot \tau^{0.5755}, \ R^2 &= 0.9896; \\ 3 &= 750^{\circ}\text{C}, \ \Delta M/S &= 0.05 \cdot \tau^{0.5553}, \ R^2 &= 0.9203; \ 4 - 850^{\circ}\text{C}, \ \Delta M/S &= 0.6613 \cdot \tau^{0.4247}, \ R^2 &= 0.9842; \\ 5 &= 950^{\circ}\text{C}, \ \Delta M/S &= 0.6613 \cdot \tau^{0.4247}, \ R^2 &= 0.9842; \end{aligned}$

За формулою $(\Delta M/S)^n = k \times t \rightarrow \Delta M / S = (k \times t)^{1/n}$ розрахували степеневий показник закону азотування (*n*) сплаву за відповідної температури, а за кінетичними залежностями (рис. 1) - його ступінь (табл. 2).

Вважали (табл. 2), що азотування сплаву відбувається за законом, наближеним до параболічного $(n \approx 2)$ (рис. 2). Після аналітичних розрахунків отримали значення константи параболічної швидкості процесу залежно від температури (табл. 3).

За законом Appeniyca $k_p = A \times \exp(-E/RT)$ визначили енергію активації азотування сплаву за зміною константи параболічної швидкості від оберненої температури (рис. 3).

2

400 500 τ, min

1

залежно від температури

<i>T</i> , °C	1/ <i>n</i>	n	
550	0,3954	2,53	
650	0,5753	1,74	
750	0,5553	1,80	
850	0,4858	2,06	
950	0,4274	2,34	

Рис. 2. Криві та рівняння апроксимації квадратичної залежності зміни питомого приросту маси зразками сплаву Zr-1% Nb внаслідок азотування за тиску газоподібного азоту 10° Ра від температури (*a*: $1 - 550^{\circ}$ C, $(\Delta M/S)^2 = 0,0003 \cdot \tau, R^2 = 0,9938;$

2 - 650°C, $(\Delta M/S)^2 = 0,0029 \cdot \tau, R^2 = 0,9681; b: 3 - 750°C, (\Delta M/S)^2 = 0,0061 \cdot \tau, R^2 = 0,9020; 4 - 850°C, (\Delta M/S)^2 = 0,0564 \cdot \tau, R^2 = 0,9829; 5 - 950°C, (\Delta M/S)^2 = 0,1833 \cdot \tau, R^2 = 0,9963).$

Fig. 2. Curves and approximation equations of squared dependence of the change in the specific weight gain of the Zr-1% Nb alloy samples as a result of nitriding at a nitrogen gas pressure of 10⁵ Pa depending on temperature (a: $1 - 550^{\circ}$ C, $(\Delta M/S)^{2} = 0.0003 \cdot \tau$, $R^{2} = 0.9938$; $2 - 650^{\circ}\text{C}, (\Delta M/S)^{2} = 0.0029 \cdot \tau, R^{2} = 0.9681; b: 3 - 750^{\circ}\text{C}, (\Delta M/S)^{2} = 0.0061 \cdot \tau, R^{2} = 0.9020;$ $4 - 850^{\circ}\text{C}, (\Delta M/S)^{2} = 0.0564 \cdot \tau, R^{2} = 0.9829; 5 - 950^{\circ}\text{C}, (\Delta M/S)^{2} = 0.1833 \cdot \tau, R^{2} = 0.9963).$

Отже, енергія активації азотування сплаву за тиску азоту 10° Ра в інтервалі 550...950°С становить 131,8 kJ/mol. Через розчинення азоту у приповерхневому

21-1 / то залежно від температури			
<i>T</i> , °C	<i>Т</i> , К	1000 / <i>RT</i>	k_p
550	823	0,146142	0,0003
650	923	0,130308	0,0029
750	1023	0,117571	0,0061
850	1123	0,107101	0,0281
950	1223	0,098344	0,1833

Таблиця 3. Зміна константи параболічної швидкості (k_p) азотування сплаву Zr–1% Nb залежно від температури

шарі змінюється структура металу (рис. 4). Дюрометричним та профілометричним методами встановили твердість і шорсткість поверхні та приповерхневого шару сплаву після азотування (табл. 4; рис. 5). Згідно з отриманими результатами зі зростанням температури та тривалістю витримки в азоті твердість і шорсткість поверхні, а також розмір зміцненого шару збільшуються, що ко-

релює з кінетичними залежностями зміни маси (див. рис. 1). Це пояснюють тим, що з підвищенням температури в сплаві зростають реакційна активність та дифузійна рухливість азоту.

Рис. 3. Визначення енергії активації азотування сплаву Zr–1% Nb за зміною константи параболічної швидкості (k_p) азотування від оберненої температури: $k_p = 64671 \times e^{(-131800/RT)}, R^2 = 0,9766.$

Fig. 3. Determination of the activation energy of the Zr-1% Nb alloy nitriding according to the change in the parabolic rate constant (k_p) of nitriding on the inverse temperature: $k_p = 64671 \times e^{(-131800/RT)}, R^2 = 0.9766.$

Таблиця 4. Характеристики поверхні (HV _{0,49} , R _a) та розмір зміцненого шару (l)
зразків зі сплаву Zr–1% Nb залежно від температури азотування

Τ,	Твердість HV _{0,49} , шорсткість поверхні	Тривалість оброблення, h			
°C	R_a та розмір зміцненого шару l	1	5	10	
	HV _{0,49}	215 ± 10	220 ± 10	245 ± 25	
550	<i>R_a</i> , μm	0,061	0,047	0,044	
	<i>l</i> , μm	02	46	1013	
	$HV_{0,49}$	250 ± 10	350 ± 15	435 ± 15	
650	<i>R_a</i> , μm	0,049	0,080	0,125	
	<i>l</i> , μm	46	лість обробл 5 220 \pm 10 0,047 46 350 \pm 15 0,080 711 720 \pm 70 0,535 3842 1155 \pm 60 0,603 6267 1743 \pm 80 0,483 550570	1620	
	$HV_{0,49}$	450 ± 45	720 ± 70	970 ± 50	
750	<i>R_a</i> , μm	0,327	0,535	0,582	
	<i>l</i> , μm	1317	3842	5358	
850	$HV_{0,49}$	1015 ± 60	1155 ± 60	1300 ± 670	
	<i>R_a</i> , μm	0,595	0,603	0,656	
	<i>l</i> , μm	4753	6267	100110	
550 650 750 850 950	$HV_{0,49}$	1670 ± 100	1743 ± 80	1635 ± 100	
	<i>R_a</i> , μm	0,387	0,483	0,745	
	<i>l</i> , μm	210220	550570	630660	

За даними про розмір зміцненого шару обчислювали ефективний коефіцієнт дифузії азоту $D_{\text{ef.}}$ (m²/s) в сплаві у діапазоні 550...950°C: $D_{\text{ef.}} = D_0 \times \exp(-E/RT)$, де $D_0 = (0,000126 \pm 0,000046) \text{ m}^2/\text{s}$, $E = (164,815 \pm 4,320) \text{ kJ/mol}$.

Рис. 4. Структура приповерхневого шару сплаву Zr-1% Nb після оброблення в азоті за тиску $P_{N_2} = 10^5$ Ра при 550°С (*a*-*c*); 650 (*d*-*f*); 750 (*g*-*i*); 850 (*j*-*l*); 950 (*m*-*o*) за витримки 1 h (*a*, *d*, *g*, *j*, *m*); 5 (*b*, *e*, *h*, *k*, *n*) і 10 (*c*, *f*, *i*, *l*, *o*).

Fig. 4. Structure of the near-surface layer of Zr–1% Nb alloy after treatment in the nitrogen environment at a pressure of $P_{N_2} = 10^5$ Pa at 550°C (*a*–*c*); 650 (*d*–*f*); 750 (*g*–*i*); 850 (*j*–*l*); 950 (*m*–*o*) under exposure 1 h (*a*, *d*, *g*, *j*, *m*); 5 (*b*, *e*, *h*, *k*, *n*) and 10 (*c*, *f*, *i*, *l*, *o*).

Дифрактограми, зняті з поверхні азотованих зразків, свідчать, що з підвищенням температури та з тривалістю насичення в азоті, з одного боку, зменшується інтенсивність рефлексів фази α -Zr, а з іншого – зростає інтенсивність рефлексів фаз ZrN та Zr₂N (рис. 5). Це пов'язано зі збільшенням товщини шару нітридів ZrN і Zr₂N, через що зростає їх екранувальний ефект для підшару α -Zr.

650°C, 1h 650°C, 5h 650°C, 10h 750°C. 1h 750°C, 10h 750°C, 5h Рис. 5. Температурна залежність інтен-

ZrN

550°C, 10h

сивності рефлексів фаз α -Zr (a), ZrN (b) i Zr₂N (c) з поверхні сплаву Zr-1% Nb після азотування.

Fig. 5. Temperature dependence of the reflections intensity phases of α -Zr (a), ZrN (b) and $Zr_2N(c)$ from the surface of the Zr-1% Nb alloy after nitriding.

Згідно з результатами рентгенофазових досліджень, рефлекси фаз ZrN та Zr₂N на поверхні сплаву після азотування фіксують, починаючи з оброблення при 650°С упродовж 5 h. Тому можна припустити, що за нижчої температури нітриди цирконію (ZrN, Zr₂N) значної товщини не формуються.

висновки

Досліджено кінетику азотування зразків сплаву Zr-1% Nb, вирізаних з тонколистового матеріалу (~ 1 mm), після дифузійного насичення в газоподібному азоті (P_{N_2} = 10⁵ Pa) за 550; 650; 750; 850 і 950°С упродовж 1; 5 і 10 h. Встановлено, що азотування відбувається за законом, наближеним до параболічного. Енергія активації процесу в досліджуваному температурному інтервалі становить 131,8 kJ/mol. Виявлено відмінності мікроструктури приповерхневого шару сплаву після азотування залежно від температури та тривалості процесу. Визначено ефективний коефіцієнт дифузії азоту в сплаві у діапазоні 550...950°С: $D_{ef.} = (0,000126 \pm 10,000126)$ \pm 0,000046) × exp (-(164815±4320) / RT) m²/s. З ростом температури та зі збільшенням тривалості витримки в азоті товщина нітридного шару, твердість, шорсткість поверхні та розмір зміцненого дифузійного шару підвищуються. За температури, нижчої від 650°С, товстий шар нітридів цирконію (ZrN, Zr_2N) не виникає.

- 1. Cahn R. W., Haasen P., and Kramer E. J. Zirconium alloys in nuclear applications // Mat. Sci. and Techn. - 2006. 10.1002/9783527603978. DOI:10.1002/9783527603978.mst0111
- 2. Lemaignan C. and Motta A. T. Zirconium alloys in nuclear applications // Mat. Sci. and Techn. - 2006. - P. 2-51. DOI:10.1002/9783527603978.mst0111
- 3. Motta A. T., Couet A., and Comstock R. J. Corrosion of zirconium alloys used for nuclear fuel cladding // Annual Rev. of Mat. Res. - 2015. - 45. - P. 311-343.
- 4. Features of the mechanical behavior of fuel elements tubes of Zr-1%Nb under conditions simulating breakdown of cooling / O. M. Ivasishin, V. N. Voevodin, A. I. Dekhtyar, P. E. Markovsky, M. M. Pylypenko, S. D. Lavrinenko, and R. G. Gontareva // Problems of Atomic Sci. and Techn. - 2015. - № 5 (99). - P. 53-60.
- 5. Banerjee S. and Banerjee M. K. Nuclear applications: zirconium alloys // Reference Module in Mat. Sci. and Mat. Eng. - 2016. - P. 1-15. DOI:10.1016/B978-0-12-803581-8.02576-5
- 6. Creep flow and fracture behavior of the oxygen-enriched alpha phase in zirconium alloys / R. Chos-son, A. F. Gourgues-Lorenzon, V. Vandenberghe, J. C. Brachet, and J. Crépin // Scripta Mat. - 2016. - 117. - P. 20-23.

- 7. Черняева Т. П., Стукалов А. И., Грицина В. М. Влияние кислорода на механические свойства циркония // Вопросы атомной науки и техники. Сер.: Вакуум, чистые материалы, сверхпроводники. 2002. № 1 (12). С. 96–102.
- Вахрушева В. С., Коленкова О. А., Сухомлин Г. Д. Влияние содержания кислорода на пластичность, повреждаемость и параметры акустической эмиссии металла труб из сплава Zr-1%Nb // Вопросы атомной науки и техники. Сер.: Физика радиационных повреждений и радиационное материаловедение. – 2005. – № 5 (88). – С. 104–109.
- Tang Z. Z. Effect of nitrogen concentration to the structural, chemical and electrical properties of tantalum zirconium nitride films // Ceramics Int. 2012. № 38 (4). P. 2997–3000. DOI:10.1016/j.ceramint.2011.11.07
- Effect of nitrogen flow rate on structural and mechanical properties of zirconium tungsten nitride (Zr–W–N) coatings deposited by magnetron sputtering / P. Dubey, V. Arya, S. Srivastava, D. Singh, and R. Chandra // Surf. and Coat. Techn. – 2013. – 236. – P. 182–187. DOI:10.1016/j.surfcoat.2013.09.04
- 11. Займовский А. С., Никулина А. В., Решетников Н. Г. Циркониевые сплавы в ядерной энергетике. М.: Энергоатомиздат, 1994. 252 с.
- 12. *Ядерная* энергетика: уч. пос. / Н. А. Азаренков, Л. А. Булавин, И. И. Залюбовский, В. Г. Кириченко, И. М. Неклюдов, Б. А. Шиляев. – Харьков: ХНУ им. В.Н. Каразина, 2012. – 536 с.
- Машиностроение. Энциклопедия. Том IV-25: Машиностроение ядерной техники. В
 2-х кн. Кн. 1. / Е. О. Адамов, Ю. Г. Драгунов, В. В. Орлов и др. / Под общ. ред. Е. О. Адамова. М.: Машиностроение, 2005. 960 с.
- 14. Gribaudo L., Arias D., and Abriata J. The N–Zr (Nitrogen–Zirconium) system // J. of Phase Equilibria. 1994. 15, № 4. P. 441–449.
- Novel compounds in the Zr–O system, their crystal structures and mechanical properties / J. Zhang, A. R. Oganov, X. Li, H. Dong, and Q. Zeng // Phys. Chem. Chem. Phys. – 2015. – № 17 (26). – P. 17301–17310. DOI:10.1039/c5cp02252e
- 16. Исследование влияния ионно-плазменной обработки на механические характеристики циркониевого сплава Zr1Nb / B. A. Белоус, П. Н. Вьюгов, А. С. Куприн, С. А. Леонов, Г. И. Носов, В. Д. Овчаренко, Л. С. Ожигов, А. Г. Руденко, В. И. Савченко, Г. Н. Толмачева, В. М. Хороших // Физ. инженерия поверхности. – 2013. – 11, № 1. – С. 97–102.
- Влияние покрытий Сг, Сг–N и Сг–O_x на удержание и проникновение дейтерия в сплавы циркония Zr–1Nb / И. Е. Копанец, Г. Д. Толстолуцкая, А. В. Никитин, В. А. Белоус, А. С. Куприн, В. Д. Овчаренко, Р. Л. Василенко // Вопросы атомной науки и техники. Сер.: Физика радиационных повреждений и радиационное материаловедение. – 2015. – № 5 (99). – С. 81–86.
- 18. Trush V. S., Lukianenko O. H., Stoev P. I. Influence of modification of the surface layer by penetrating impurities on the long-term strength of Zr-1% Nb alloy // Materials Science. 2020. 55, № 4. P. 585–589. DOI:10.1007/s11003-020-00342-z
- 19. Fedirko V. N., Luk'yanenko A. G., and Trush V. S. Solid-solution hardening of the surface layer of titanium alloys. Part 2. Effect on metallophysical properties // Metal Sci. and Heat Treatment. 2015. 56, № 11. P. 661–664. DOI: 10.1007/s11041-015-9818-1
- Influence of thermochemical treatment on properties of tubes from Zr–1Nb alloy / V. S. Trush, V. N. Fedirko, A. G. Luk'yanenko, M. A. Tikhonovsky, and P. I. Stoev // Problems of Atomic Sci. and Techn. – 2018. – № 114 (2). – P. 70–75.
- Topography, hardness, elastic modulus and wear resistance of nitride on titanium / I. M. Pohrelyuk, J. Padgurskas, S. M. Lavrys, A. G. Luk'yanenko, V. S. Trush, and R. Kreivaitis // Proc. of BALTTRIB'2017 / Ed. by prof. J. Padgurskas. – P. 41–46. DOI:10.15544/balttrib.2017.09
- Influence of thermochemical treatment on the oxidation of fuel cladding tubes made of Zr-1%Nb alloy / V. M. Voyevodin, V. M. Fedirko, V. S. Trush, O. H. Luk'yanenko, P. I. Stoev, V. A. Panov, M. A. Tykhonovsky // Materials Science. – 2021. – 56, № 4. – P. 509–515. DOI:10.1007/s11003-021-00457-x
- 23. Effect of thermochemical treatment in regulated gas media on the thermal resistance of Zr-1%Nb alloy / V. M. Fedirko, O. H. Luk'yanenko, V. S. Trush, P. I. Stoev, M. A. Tykhonovs'kyi // Materials Science. 2016. 52, № 2. P. 209-215. DOI: 10.1007/s11003-016-9945-x

Одержано 27.01.2022