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Запропоновано розрахункову модель для визначення залишкової довговічності скла-
деної біметалевої пластини з півнескінченних пластин зі сталей 15Х2МФА і 321  
з прямолінійною тріщиною, яка статично розтягується за високої температури і дії 
воденьвмісного середовища рівномірно розподіленими зусиллями перпендикулярно 
до лінії її розташування. В основі моделі – енергетичний підхід про баланс роботи 
зовнішніх сил і викликаних при цьому внутрішніх енергій. Модель реалізовано 
числово. Побудовано залежності залишкової довговічності пластини від розміру 
початкової тріщини, а також впливу воденьвмісного середовища. 

Ключові слова: складена біметалева пластина, воденьвмісне середовище, високо-
температурна повзучість, енергетичний підхід, коефіцієнт інтенсивності напружень, 
зона передруйнування, період докритичного росту воднево-механічної тріщини.  

A computational model is proposed to determine the residual life of a composite bimetal-
lic plate made of semi-infinite plates of 15X2MФA and 321 steels with a rectilinear crack. 
The plate is statically tensioned at a high temperature and under the influence of a hydrogen-
containing environment by uniformly distributed forces perpendicular to the line of its 
placement. The model is based on the energy approach about the balance of external for-
ces and the resulting internal energies. This model is implemented numerically. Graphical 
dependences of the change in the residual service life of a plate on the size of the initial 
crack and the influence of a hydrogen-containing environment were constructed. 

Keywords: composite bimetallic plate, hydrogen-containing environment, high-tempera-
ture creep, energy approach, stress intensity factor, prefracture zone, period of subcritical 
growth of a hydrogen-mechanical crack. 

Вступ. Особливістю розрахунків інженерних металевих конструкцій з пози-
цій механіки руйнування є можливість врахувати в матеріалі як вихідні дефекти, 
так і ті, що виникли під час експлуатації. Тоді вони ґрунтуються на результатах 
досліджень, наприклад, кінетики розвитку тріщин до досягнення ними критич-
них розмірів. За результатами визначення періоду докритичного росту тріщини 
прогнозують залишкову довговічність конструкції. Як свідчить практика, в еле-
ментах конструкцій залежно від експлуатаційних умов період розвитку тріщини 
може складати від 10 до 90% від загальної їх довговічності [1]. Тому важливо 
розраховувати залишкову довговічність конструкцій. 

Відомі в літературі моделі локального руйнування елементів конструкцій 
справедливі переважно для однорідних матеріалів [1–4]. Однак в інженерній 
практиці часто застосовують неоднорідні за механічними характеристиками та 
тріщиностійкістю матеріали. Тому прогнозувати довговічність елементів конст- 
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рукцій з них з допомогою існуючих математичних моделей проблематично. Осо-
бливо за сумісної дії довготривалого статичного навантаження і агресивних сере-
довищ, зокрема корозивно-наводнювальних та високих температур. Водночас 
теоретично поширення тріщин високотемпературної повзучості в неоднорідних 
матеріалах вивчено недостатньо, зокрема за впливу воденьвмісного середовища.  

Нижче на основі енергетичного підходу запропоновано розрахункову мо-
дель дослідження кінетики і визначення періоду докритичного росту воднево-
механічних тріщин у біметалевій пластині за довготривалого розтягу в умовах 
високої температури.  

Формулювання моделі. Розглянемо 
біметалеву пластину, складену із півпло-
щин 1 і 2 з близькими модулями пружно-
сті ( 1 2E E E≈ = ) і різними механічними 
характеристиками матеріалу та тріщино-
стійкістю. Вважаємо, що пластина по-
слаблена прямолінійною тріщиною по-
чаткової довжини 02l , розтягується зов-
нішніми статичними тривалими зусилля-
ми інтенсивності p , які напрямлені пер-
пендикулярно до лінії її розташування 
(рис. 1). Водночас вона знаходиться під 
дією постійного високотемпературного 
поля і воденьвмісного середовища. Необ-
хідно визначити період докритичного 
росту тріщини t t∗= , тобто час, за який 
вона досягне критичного розміру 

1 2l l l ∗+ =  ( il  – довжини тріщини, відпо-

відно, в півплощинах 1, 2; 1, 2i = ). Вва-

жаємо, що з досягненням часу t∗  пластина зруйнується. 
Розв’язок задачі реалізуємо з допомогою відомого [5, 6] енергетичного під-

ходу. Наближено приймаємо, що концентрація водню біля вершин тріщини в 
обох півплощинах приблизно однакова. В результаті зводимо задачу до такої сис-
теми диференціальних рівнянь для невідомих функцій 1 2( ), ( )l t l t , що визначають 
кінетику поширення довжин тріщини, відповідно, в півплощинах 1 і 2: 
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Тут 0С  – концентрація водню біля вершин тріщини; iA , im  – характеристики 

повзучості матеріалу; itδ  – розкриття у вершині тріщини; iCδ  – критичне значен-

ня величини itδ ; iα  – константа, яку визначають із експерименту; iβ , iγ  – ха-

рактеристики наводнювання матеріалу; індекси 1, 2i =  відповідають матеріалам 
півплощин 1 і 2, з яких складена пластина.  

Система рівнянь (1) описує ріст тріщини в пластині. Щоб визначити період 
її докритичного росту, додамо такі початкові і кінцеві умови:  

 1 0 2 0 1 20, (0) , (0) ; , ( ) ( )t l l l l t t l t l t l∗ ∗ ∗ ∗= = = = + = . (2) 

Співвідношення (1), (2) становлять математичну модель для розрахунку 
залишкової довговічності досліджуваної пластини.  

 

Рис. 1. Схема навантаження складеної 
біметалевої пластини. 

Fig. 1. Loading mode of a composite 
bimetallic plate. 
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Якщо тріщина макроскопічна, за виконання співвідношень  
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модель (1), (2) набуде вигляду 
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 1 0 2 0 1 20, (0) , (0) ; , ( ) ( )t l l l l t t l t l t l∗ ∗ ∗ ∗= = = = + = . (4) 

Для обчислення критичного розміру l∗  тріщини застосуємо силовий підхід 
механіки руйнування – критерій Ірвіна [7]:  

 I I( ) mini i CK l K∗ = . (5) 

Оскільки пружні характеристики матеріалів півплощин 1 і 2 однакові, то і 
коефіцієнти інтенсивності напружень у вершинах тріщини однакові 1I 2 IK K= . 

Задачу про розтяг пластини з тріщиною можна розглядати як аналог задачі 
Ґріффітса за дії високої температури і водню. Звідси коефіцієнти інтенсивності 
напружень [8] 

 I 1 20,5 ( )iK p l l= π +    ( 1, 2i = ). (6) 

Систему диференціальних рівнянь розв’язуємо так. Додамо перше рівняння 
системи (3) до другого. В результаті отримаємо: 
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Аналізуючи рівняння (7) з урахуванням виразу (6), можна припустити, що 
період докритичного росту воднево-механічної тріщини в умовах високотемпе-
ратурної повзучості загалом залежить не стільки від розміру її частин 1l , 2l , як 

від їх сумарної довжини l  і найменшого значення критичної тріщиностійкості 
матеріалів пластини (див. залежність (5)). 

З урахуванням виразу (7) математична модель (3), (4) набуде вигляду 

  
1 22 22 2 2 2

1 I 2 I 2 I 1II I 2
I 1 22 2 2 2

I 1I I 2 I

( )(1 ( ) ) ( )(1 ( ) )
( )( )

(1 ( ) )(1 ( ) )

m m
C C

C C

B K l K l K B K l K l Kdl
K l D D

dt K l K K l K

− −

− −

− + −
= + +

− −
, (8) 

 0 * * * I I0, (0) ; , ( ) ; ( ) min i Ct l l t t l t l K l K∗= = = = = , (9) 

де 121
1 1 1I( ) m

CB A K−= , 221
2 2 2 I( ) m

CB A K−= ,  1 1 1 0 2 2 2 0
1 2

1 2

6 6
,

t t

C C
D D

E E

α β γ α β γ
= =

σ σ
. 

Для апробації моделі (8), (9) розглянемо конкретний випадок, коли біметалева 
пластина складається зі сталей 15Х2МФА і 321. Механічні характеристики сталі 
15Х2МФА, її тріщиностійкість і параметри наводнювання на основі результатів 
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праці [9] подамо так: 3
1 3,56 10A −= ⋅  m/h, 1I 210 MPa mCK = , 0 0,9 ppm,C =  

3
1 5 10−α = ⋅ , 1 2,13m = , 51,69 10 MPa,E = ⋅  1 1670 MPa,tσ =  1

1 2,22 ppm−β = , 

1 0,48 1 / hγ = . А для сталі 321 приймемо [10]: 2I 100 MPa mCK = , 

2 450tσ =  MPa, 51,69 10E ≈ ⋅  MPa, 5
2 1,25 10A −= ⋅  m/h, 2 1,24α = , 2 0,85m = , 

1
2 2,22 ppm−β ≈ , 2 0,48 1 / hγ ≈ , 0 0,9 ppmC = . 
Через брак експериментальних результатів характеристики наводнювання 

для сталі 321 вважали такими ж, як і для сталі 15Х2МФА.  
Оскільки пластина розтягується зусиллями 235p =  MPa, то з критерію (5) і 

кінцевої умови (9) знайшли критичний розмір тріщини 0,115l∗ =  m.  
 

       
Рис. 2. Fig. 2.                                                    Рис. 3. Fig. 3. 

Рис. 2. Залежність t*–l0 для складеної (крива 1) і однорідної пластин  
зі сталей 15Х2МФА (крива 2) та 321 (крива 3). 

Fig. 2. Dependence t*–l0 for a composite plate (curve 1), and homogeneous plate  
made of 15X2MFA (curve 2) and 321 (curve 3) steels. 

Рис. 3. Залежність залишкової довговічності складеної пластини  
з урахуванням дії водню (крива 1) і без (крива 2). 

Fig. 3. Dependence of residual life of a composite plate  
taking into account hydrogen effect (curve 1) and without it (curve 2). 

З використанням наведених геометричних, силових і механічних характе-
ристик математичну задачу (8), (9) розв’язали числово. Побудували залежності 
залишкової довговічності складеної пластини від розміру початкового дефекту  
(рис. 2, крива 1), а також для однорідної пластини, виготовленої зі сталей 
15Х2МФА (крива 2) або 321 (крива 3). Криві підтверджують правильність запро-
понованого підходу визначення довговічності складеної пластини за системою 
рівнянь (3). Як свідчить математична модель (8), (9), водень зменшує її залишко-
ву довговічність в умовах високотемпературного поля (рис. 3).  

ВИСНОВКИ  
На основі енергетичного підходу сформульовано розрахункову модель для 

дослідження кінетики і періоду докритичного росту воднево-механічної тріщини 
в умовах високотемпературної повзучості в біметалевих пластинах і визначено 
залишкову довговічність двокомпонентної біметалевої пластини з наскрізною трі-
щиною. Встановлено, що вона суттєво залежить від початкового розміру тріщини 
і не стільки від кінетики розвитку кожної її вершини, скільки від загальної дов-
жини. Виявлено негативний вплив водню на залишкову довговічність пластини.  
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