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Ч. 1: АЛГОРИТМИ НЕКОНТРОЛЬОВАНОГО  
ТА КОНТРОЛЬОВАНОГО МАШИННОГО НАВЧАННЯ 
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За результатами аналізу найновіших досліджень оцінено можливості використання 
алгоритмів неконтрольованого та контрольованого машинного навчання для авто-
матичного опрацювання сигналів акустичної емісії, щоб ідентифікувати та локалізу-
вати їх джерела. Порівняно точність результатів для різних підходів та окреслено 
напрямки її підвищення. Підтверджено важливість подальших досліджень для адап-
тації та оптимізації новітніх методик для різних матеріалів та структур. 

Ключові слова: акустична емісія, машинне неконтрольоване та контрольоване 
навчання, ідентифікація дефектів. 

Based on the analysis of the latest studies, the possibilities of using unsupervised and 
supervised machine learning algorithms for automating the processing of acoustic emis-
sion signals to identify and localize their sources are considered. The accuracy of the re-
sults for different approaches is compared and directions for its improvement are descri-
bed. The importance of further research regarding the adaptation and optimization of the 
latest techniques for various materials and structures is confirmed. 

Keywords: acoustic emission, machine unsupervised and supervised learning, identifica-
tion of defects. 

Вступ. Невід’ємним елементом технічної діагностики (ТД) виробів та еле-
ментів конструкцій є їх неруйнівний контроль (НК) як під час виготовлення, так і 
експлуатації. За результатами НК оцінюють дефектність об’єкта контролю і 
визначають його залишковий ресурс та приймають рішення про можливість 
подальшої безпечної експлуатації. 

Тут слід виділити метод акустичної емісії (АЕ), який ґрунтується на явищі 
випромінювання пружних хвиль внаслідок локальної структурної перебудови 
матеріалу під дією механічних, фізичних, хімічних та інших чинників [1]. Він дає 
змогу виявляти зародження руйнування в матеріалі ще задовго до настання його 
критичної стадії за параметрами сигналів АЕ, які реєструють відповідними вимі-
рювальними системами.  

Найчастіше закономірності між параметрами дефектів та пружних хвиль, які 
генеруються під час їх підростання, встановлюють аналітико-числовим та ком-
п’ютерним моделюванням [2]. Однак під час розв’язання рівнянь часто виника-
ють труднощі з обчисленнями, а комп’ютерне моделювання може ускладнювати-
ся, наприклад, через непросту геометрію об’єктів чи особливі граничні умови. 

Останнім часом для опрацювання діагностичної інформації та прийняття 
важливих рішень дослідники застосовують методології, засновані на штучному 
інтелекті, зокрема машинному навчанні (МН) [3]. МН під час НК особливо важ-
ливе для розв’язання оберненої задачі, яка полягає в тому, щоб за характеристи- 
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ками зареєстрованого сигналу визначити параметри дефекту, його форму, місце 
та глибину розташування чи встановити тип руйнування в матеріалі об’єкта кон-
тролю. За алгоритмами МН вдається знайти приховані закономірності між ре-
зультатами контролю, що відкриває додаткові можливості для підвищення ефек-
тивності НК та врешті-решт для точності прогнозування залишкового ресурсу 
об’єктів контролю.  

Мета досліджень – аналіз та порівняння методик неконтрольованого та кон-
трольованого МН для ідентифікування джерел АЕ під час діагностування мате-
ріалів і конструкцій. 

Основи акустичної емісії. Джерела АЕ збуджують різні механізми [1]. 
Зокрема, у гомогенних матеріалах розглядають: дислокаційні процеси пластичної 
деформації, фазові зміни, руйнування частинок вторинної фази, магнетні ефекти, 
поверхневі явища, утворення пустот та тріщин, водневе окрихчення, корозію 
тощо. У гетерогенних, окрім вказаних, джерелами АЕ слугують інші процеси. 
Наприклад, у волоконних композитах – це руйнування матриці, розшарування, 
витягування та розрив волокон.  

Раптове утворення джерела АЕ генерує пружні хвилі, які, поширюючись у 
структурі матеріалу, досягають встановлених на поверхні об’єкта контролю пер-
винних перетворювачів (ПАЕ). Вимірювальна система реєструє коливання у ви-
гляді електричних сигналів. Розповсюджуючись від джерела до поверхні зразка, 
сигнали АЕ суттєво спотворюються внаслідок дисперсії швидкості звуку, транс-
формації типу та форми хвилі під час відбиття, заникання хвиль, шуму від дже-
рел, які не залежать від можливого структурного дефекту. Суттєво на результати 
вимірювань впливають характеристики ПАЕ. Додаткові труднощі в прийнятті 
рішень за результатами опрацювання діагностичної інформації виникають через 
обмеження повторюваності експериментів. Адже навіть для одного і того ж мате-
ріалу, тих самих розмірів зразків та ідентичних умов випроб діагностична інфор-
мація може відрізнятись для кожного екземпляра.  

Згідно зі стандартом [4], основними параметрами, які характеризують подію 
АЕ, є амплітуда, тривалість, підсумковий рахунок, швидкість рахунку, час нарос-
тання, активність, енергія сигналу. Водночас багато досліджень спрямовано для 
пошуку додаткових дескрипторів, які дають змогу класифікувати події АЕ, щоб 
ефективно ідентифікувати їх джерела [5, 6]. За результатами АЕ діагностування 
можна визначити місце зародження руйнування в матеріалі; місце розташування 
тріщини та механізми її поширення; ділянки підвищених напружень; деякі влас-
тивості матеріалу тощо [7–9]. 

Враховуючи певні труднощі та обмеження методу АЕ, поліпшити результа-
ти ідентифікації структурних пошкоджень можна, активно впроваджуючи мето-
дики, засновані на штучному інтелекті [10–12]. 

Методології МН для АЕ діагностування. МН (machine learning) – це галузь 
інформатики, яка ґрунтується на створенні алгоритмів для виявлення шаблонів у 
наборах даних і прийняття відповідних рішень. Особливість цих алгоритмів – 
постійне підвищення продуктивності без додаткового втручання людини. Вони 
дають змогу прогнозувати результати, визначати закономірності та поліпшувати 
вибір [13].  

Вхідною інформацією для алгоритмів МН є набори числових значень інфор-
мативних параметрів подій АЕ. Залежно від типу алгоритму оптимальна кіль-
кість цих параметрів та наборів їх значень може бути різна. Побудовано (див. 
рисунок) схему функціонування системи з МН. Насамперед сигнали, отримані за 
результатами АЕ контролю, слід очистити від шуму. Для цього найчастіше вико-
ристовують вейвлет-перетворення. Далі дані передають у систему виділення оз-
нак, мета якої – зменшити їх розмірність без втрати інформації та визначити від-
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повідні характеристики. Для вибору репрезентативних параметрів застосовують 
метод головних компонент (principal component analysis – PCA). Зменшені в об’є-
мі дані придатні в моделях кластеризації та автоматичної класифікації типів по-
шкоджень у матеріалах. Далі сформовані їх набори слугують вхідною інформа-
цією для моделей МН. Результат роботи системи – класифікація та розпізнавання 
джерел АЕ, а також виявлення місця їх знаходження. 

Серед загальної класифікації алго-
ритмів МН для опрацювання АЕ інфор-
мації виділяють такі найпоширеніші: 
алгоритми неконтрольованого (unsuper-
vised learning) та контрольованого (su-
pervised learning) навчання, штучні ней-
ронні мережі (artificial neural network) та 
методи глибокого навчання (deep-lear-
ning methods). Останнім часом поєдну-
ють різні методики, що дає змогу, підси-
люючи їхні переваги, підвищувати ефек-
тивність НК та оптимізувати прийняття 
рішень за його результатами. 

Методика алгоритмів неконтрольо-
ваного навчання полягає у вивченні де-
кількох функцій (залежностей) із набору 
даних. Після введення нового набору 
алгоритм використовує вивчені функції 
для розпізнавання класу даних. Такі ал-
горитми застосовують для кластеризації 
та зменшення кількості функцій. До них 
відносять кластеризацію k-середніх  
(k-means) та нечітку логіку або C-серед-
ніх (fuzzy C-means), генетичні алгорит-
ми (genetic algorithms), ієрархічну клас-
теризацію (hierarchical clustering).  

За алгоритмами контрольованого 
навчання прогнозують та класифікують результати. Їх суть ось у чому. За заданим 
тестовим набором даних система аналізує навчальний набір, який використовува-
тимуть для ідентифікації з найбільшою можливою точністю. До таких алгоритмів 
належать, наприклад, регресійний аналіз (linear and logistic regression), дерево рі-
шень (decision tree), випадковий ліс (random forest), метод опорних векторів (sup-
port vector machine), байєсівська класифікація (naive Bayes), лінійний дискримі-
нантний аналіз (linear discriminant analysis), k-найближчих сусідів (k-nearest neighbor). 

Неконтрольоване навчання, коли система вчиться розпізнавати подібності  
в даних, сприяє виявленню пошкоджень через кластеризацію результатів контро-
лю, а контрольоване, за якого системи отримують вхідні та очікувані результати, 
можна вживати для встановлення типів пошкоджень.  

Проаналізуємо використання вказаних алгоритмів МН у технології АЕ діаг-
ностування. 

Алгоритми неконтрольованого навчання. Вони є основою методик клас-
теризації даних, які полягають у порівнянні елементів їх набору за вибраними 
критеріями [14]. Подібні елементи утворюють один кластер або групу, в іншому 
випадку – формують різні кластери. За допомогою кластеризації можна віднайти 
шаблони та виявити зв’язки між даними, а отже, зменшити розмір набору для 
навчання, вибравши репрезентативні для кожного кластера.  

 
Схема основних етапів функціонування 

автоматизованої системи  
ідентифікування джерела АЕ. 

Scheme of the main stages  
of the functioning of the automated system  

of AE source identification. 
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Мета передових методів для аналізу сигналів АЕ – полегшити ідентифікацію 
механізмів руйнування в матеріалах різного типу та вчасно попереджати аварійні 
ситуації. Насамперед важливо сформувати комплексну основу відбору та порів-
няння характеристичних параметрів сигналу АЕ як індикаторів запобігання роз-
витку найнебезпечнішого дефекту – тріщини. Недоліком відомих методів пост-
опрацювання сигналів є вибір параметрів вручну, що призводить до накладання 
їх числових діапазонів та ускладнення ідентифікування. Для вирішення цієї про-
блеми використовують алгоритми МН. 

Серед інших першим найактивніше почали запроваджувати для автоматиза-
ції аналізу АЕ інформації метод кластеризації k-середніх. Наприклад, простий, 
але ефективний неітераційний алгоритм кластеризації адаптивних послідовних  
k-середніх для виявлення пластичної деформації, зародження тріщини та корозій-
ного розтріскування запропонували автори праці [15]. Його особливістю є те, що 
кількість кластерів вказувати непотрібно, бо вони автоматично формуються з 
вхідних даних. Водночас за властивостями фонового шуму алгоритм контролює 
виникнення нових кластерів. Підхід виявився ефективним для групування сигна-
лів АЕ, які генерують різні джерела. Точність ідентифікування становила 91…93%. 
Методом АЕ досліджували руйнування литої сталі G20Mn5QT під час розриву та 
розтягу [16]. Для вибору характеристичних параметрів АЕ та визначення типів її 
пошкодження використали метод головних компонент та k-середніх. За результа-
тами кластеризації встановили, що за часом наростання/амплітудою (RA), кіль-
кістю подій/тривалістю (AF) та енергією (E) можна ефективно диференціювати 
різні типи сигналів та прогнозувати критичну стадію руйнування. Запропоновано 
[17] нову методику онлайн-моніторингу розвитку тріщин у маловуглецевій сталі 
Q325, яка поєднує методи мультифрактальної розмірності та кластеризації k-се-
редніх. Досліджували зразки без зварних з’єднань та з ними. Методом мульти-
фрактальної розмірності сигналу АЕ вдалось позбутися залежності традиційного 
частотно-часового аналізу від налаштування порога дискримінації сигналу AE. 
Побудовано мультифрактальний спектр сигналів АЕ від тріщини на різних ста-
діях її розвитку. Новий спосіб мультифрактальної просторової кластеризації 
зашумлених компонент на основі густини (Multifractal Density-based Spatial Clus-
tering of Application with Noise – MF-DBSCAN) поєднує мультифрактальну харак-
теристику з розпізнаванням образів, а також дає змогу оптимізувати основні па-
раметри в режимі реального часу за допомогою алгоритму Парето. 

У багатьох публікаціях поєднано метод АЕ та кластеризацію k-середніх для 
вивчення руйнування композитних матеріалів [18–25]. Наприклад, результати 
дослідження впливу циклу заморожування/розморожування на класифікацію ме-
ханізмів руйнування бетону на основі аналізу параметрів АЕ подано у праці [18]. 
Розвиток деформацій на бетонній поверхні, зародження та поширення внутріш-
ніх тріщин контролювали в режимі реального часу методом АЕ та цифровою ко-
реляцією зображень. За параметрами АЕ, густиною ядра (b-value) та кластериза-
цією k-середніх класифікували типи макроскопічних тріщин у бетонних зразках 
під час різного циклу заморожування/розморожування. 

У праці [19] вивчали сигнали АЕ в армованому сталевою фіброю бетоні вна-
слідок його руйнування за розтягу. Для виділення характеристик форми сигналу 
реалізували пакетне вейвлет-перетворення. Методом кластеризації k-середніх 
ідентифікували сигнали від розтріскування цементної матриці та витягування 
сталевого волокна. Також встановили, що зі зменшенням об’ємної частки волок-
на спадає кількість АЕ подій, які відповідають його витягуванню. Автори статті 
[20] зв’язок між поширенням тріщини та характеристиками сигналу АЕ дослі-
джували під час чотириточкового згину залізобетонної балки, зміцненої листами 
армованого базальтом полімеру. Для кластеризації сигналів методом k-середніх 
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вибрали час наростання, середньоквадратичне відхилення сигналу та абсолютну 
енергію. Механізми пошкодження балок оцінювали за результатами комплексно-
го аналізу зародження та поширення пошкоджень, а також типами руйнування. 
Виявили, що листи армованого базальтом полімеру значно підвищили тримку 
здатність балок. 

Поєднуючи метод k-середніх кластеризації подій АЕ на основі максимальної 
частоти й амплітуди та цифрової кореляції зображень, автори праці [21] ідентифі-
кували механізми руйнування композитних ламінатів. АЕ та інфрачервоне тепло-
ве зображення використали для вивчення механізмів руйнування склоепоксидних 
композитів з бульбашками та дефектами розшарування у публікації [22]. Метода-
ми k-середніх та головних компонент визначили характерний частотний діапазон 
для кожного виду пошкодження композиту. Запропонували [23] двоетапну клас-
теризацію для ідентифікування розвитку пошкодження в сендвічі-композиті зі 
скловолоконного полімеру та бальзи. Встановили, що амплітуда, максимальна 
частота та тривалість сигналу АЕ є індикаторами для виявлення зародження та 
розвитку пошкоджень і забезпечують ефективне застосування методу k-середніх 
для ідентифікування механізмів руйнування такого композиту. Виокремили між-
фазне розшарування та мікротріщини в бальзовому ядрі; розшарування на межі 
між композитною оболонкою та серцевиною з бальзи; у композитній оболонці – 
розтріскування матриці, розшарування на межі волокно–матриця, розшарування 
та розрив волокон. Також запропонували кореляції між цими механізмами по-
шкодження та характеристиками обраних трьох параметрів АЕ. Нові методології 
застосування методу АЕ для характеристики пошкоджень в армованому вуглеце-
вим волокном композиті описано в праці [24]. Для вибору репрезентативних оз-
нак АЕ використали оцінки Лапласа та дисперсію даних. Виявили, що найефек-
тивніші для опису типів пошкоджень кумулятивна амплітуда, частота рахунку 
(C-Freq), частота повторення певного типу сигналу (R-Freq) та ентропія його фор-
ми. Розроблено комплексну характеристику типів пошкоджень на кожному етапі 
навантаження та остаточного руйнування. У праці [25] досліджували зароджен-
ня, поширення та кінцеве руйнування армованого карбованим волокном поліме-
ру під дією комбінованого навантаження. Зважену пікову частоту та амплітуду 
сигналів АЕ використали для кластеризації k-середніх та ідентифікації типів по-
шкодження за різних комбінованих умов навантаження. Результати ідентифікації 
підтверджено методом цифрової кореляції зображень. Поведінку під час згину та 
механізми пошкодження багатошарових полімерних композитів, армованих 
скловолокном, з різними наночастинками вивчали у праці [26]. Для кількісного 
визначення механізмів пошкодження застосували пакетне вейвлет-перетворення 
та швидке перетворення Фур’є. За вейвлет-перетворенням сигналів АЕ встано-
вили, що розтріскування матриці – домінуючий механізм руйнування у всіх ти-
пах полімерів. Групували дані методами ієрархічної кластеризації та k-середніх, 
виявили вищу точність першого з них. Розвиток пошкоджень у зразках армова-
ного скловолокном поліефірного композиту за допомогою різних підходів МН 
оцінено у праці [27]. Для прогнозування пошкоджень і вибору ключових характе-
ристик AE вибрали методи XGboost, LightGBM і CatBoost, а за алгоритмом k-се-
редніх класифікували тип пошкодження. Точність цих підходів підтверджує на-
дійність МН для прогнозування втомної довговічності композиційних матеріалів 
за допомогою АЕ. 

Сигнали АЕ аналізували також за алгоритмами нечіткої логіки (fuzzy C-means). 
Зокрема, в праці [28] досліджували стандартні ламіновані композити під час роз-
тягу. Для розпізнавання механізмів їх пошкодження за дескриптор сигналів АЕ 
вибрали їх вейвлет-перетворення та методику нечітких С-середніх. Із точністю 
85…89% виявили три типи пошкодження: розтріскування матриці, відшарування 
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волокна від матриці та його розрив. Підтверджували результати методом скін-
ченних елементів (МСЕ) та порівнюючи зображення сканівного електронного 
мікроскопа. За такою ж методикою [29] визначали діапазони частот різних меха-
нізмів руйнування ламінованого карбонепоксидного композиту: розтріскування 
матриці (100…250 kHz), розрив волокна (420…500 kHz), його висмикування 
(250…320 kHz) і відшарування від матриці (320…380 kHz), а також розшаруван-
ня ламінату (380…420 kHz). Кореляцію між механізмами руйнування та повзу-
чістю у вологому окиснювальному середовищі композиту 2D-C/SiC на основі 
розпізнавання структур сигналів АЕ досліджували у праці [30]. За результатами 
факторного аналізу та кластеризації методом нечітких С-середніх ідентифікува-
ли: розтріскування матриці, пошкодження поверхні, розрив волокна та пучка во-
локон. За цими ж методиками встановили [31] характеристики сигналів АЕ меха-
нічних пошкоджень літій-іонних акумуляторів. У праці [32] подано результати 
ідентифікування механізмів руйнування у скловолоконному композиті залежно 
від способу переплетення волокон. Для цього скористались вейвлет-перетворен-
ням і кластеризацією нечітких C-середніх. Ефективність такої ідентифікації пере-
вірили МСЕ. Механізм внутрішньої втоми та розвиток пошкодження неперерв-
них сталебетонних композитних балок досліджували у публікації [33]. Кластери-
зували сигнали АЕ за алгоритмом нечітких С-середніх. Запропонували новий ме-
тод визначення місця втомного пошкодження бетонної конструкції. Встановили 
залежності між характеристиками поширення втомної тріщини і законом зміни 
швидкості хвилі AE в бетоні. Довговічність балки прогнозували за кумулятив-
ною моделлю пошкодження від втоми на основі енергії AE. У праці [34] за допо-
могою різних методів кластеризації оцінювали швидкість витоку клапана в тру-
бопроводі природного газу. Щоб зменшити кількість надлишкової інформації та 
вибрати оптимальні характеристики кластеризації, застосували факторний аналіз. 
Порівнювали продуктивність трьох методів: нечітких С-середніх, k-середніх та  
k-медоїдів (k-medoids). Останній, на відміну від інших, розбиває набір даних на 
заздалегідь відому кількість кластерів. Модель, заснована на факторному аналізі 
та кластеризації k-медоїдів, виявилась надзвичайно ефективною для розв’язання 
задач такого типу. Її точність становить 95,8…96,3%. Розвиток пошкодження та 
механізмів руйнування корозійних бетонних балок, зміцнених вуглепластиком, 
досліджували у статті [35]. Використовуючи модель суміші Гауса для кластери-
зації сигналів АЕ, автори зауважили, що пошкодження бетонної матриці супро-
воджували високочастотні та низькоенергетичні сигнали АЕ; під час відшаруван-
ня волокна від матриці виявили проміжні значення для всіх параметрів сигналів; 
розрив волокна супроводжували сигнали більшої тривалості, низької частоти та 
високої енергії. Водночас на кумулятивну енергію АЕ суттєво впливала корозія. 
За незначної сигнали АЕ володіли вищою кумулятивною енергією під час пошко-
дження бетонної матриці та відшарування волокна. 

Алгоритми контрольованого навчання. Їх використовували у різноманіт-
них прикладних задачах для автоматизації аналізу сигналів АЕ. Зокрема, автома-
тизовану систему виявлення дефектів клапана поршневого компресора методом 
опорних векторів (support vector machine – SVM) за параметрами AE описано у 
праці [36]. Виявили, що точність прогнозування запропонованої моделі стано-
вить 99,4%. Для моніторингу аномалій оброблення та прогнозування шорсткості 
поверхні під час одноточкового алмазного точіння побудували [37] модель, що 
використовує метод регресії опорних векторів (support vector regression – SVR). 
Середньоквадратична похибка прогнозування шорсткості поверхні становить 
1,76 nm, а середня частота похибок ідентифікування дефектів процесу – 14,8%. 
Автори публікації [38] розробили підхід для ідентифікації та локалізації витоку в 
трубопроводах за параметрами сигналів АЕ (швидкістю рахунку, кумулятивною 
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енергією та потужністю сигналу) та двома алгоритмами МН: методом опорних 
векторів і розпізнаванням шаблонів (relevance vector machine – RVM). На точ-
ність та ефективність виявлення витоку впливає вибір функції ядра. У праці [39] 
запропонували концепцію системи виявлення тріщин у виробах, виготовлених 
лазерним сплавленням порошку, за сигналами АЕ та різними алгоритмами кон-
трольованого навчання (логістичною регресією, класифікатором опорних векто-
рів з лінійними та квадратичними експонентними ядрами, класифікаторами ви-
падкового лісу та гауссівських процесів). Встановили, що у просторі хвильових 
відображень сигналів класифікатор гауссівських процесів має найвищу точність 
ідентифікування серед усіх моделей (99±1%), досягаючи найкращої продуктив-
ності для 13 ознак, а в спектрі головних компонент найточніший алгоритм логіс-
тичної регресії (99±1%) – для 18 ознак. МН та метод АЕ виявились ефективними 
і для розроблення онлайн-системи моніторингу зношування коліс шліфувальної 
машини [40]. Вивчали також вплив на характеристики сигналів АЕ довжини 
вікон аналізу сигналів, типів ПАЕ та смуги їх пропускання. Вибрані з часової, 
частотної та частотно-часової областей характеристики сигналів АЕ уточнили, 
щоб зменшити надмірність ознак за алгоритмом послідовного плаваючого прямо-
го вибору (sequential floating forward selection – SFFS). Підготовлені дані слугува-
ли вхідними параметрами методу опорних векторів для класифікації шаблонів 
сигналів АЕ. Такий підхід забезпечив стовідсоткову точність класифікації. 

Відомі також застосування для аналізу сигналів АЕ логістичної регресії [41], 
лінійного дискримінантного аналізу [42] та k-найближчих сусідів [43]. 

Порівняння методів МН для аналізу сигналів АЕ. Важливе завдання ТД та 
НК матеріалів та конструкцій – виявити дефект, встановити його тип та локалізува-
ти місце знаходження. Безумовно, точність отриманих за допомогою алгоритмів 
МН результатів залежить, насамперед, від якості вхідних даних, на що суттєво 
впливають умови експерименту, зокрема зовнішні та внутрішні завади (шуми), 
налаштування вимірювальної системи (поріг дискримінації сигналу), вибір типу 
ПАЕ та місця його розташування до гіпотетичного дефекту, структурні особли-
вості конструкційного матеріалу, геометрія об’єкта контролю тощо [44]. Ці чин-
ники суттєво впливають на базові параметри сигналів АЕ – амплітуду, час наро-
стання сигналу, енергію тощо, а відтак, і на прийняття релевантних рішень за ре-
зультатами ТД. Водночас високу точність ідентифікування джерел АЕ забезпечу-
ють методики, які серед інших використовують часово-частотні характеристики 
сигналу АЕ за його вейвлет-перетворенням (див. таблицю). Застосовуючи МН 
для опрацювання великих обсягів даних, можна поглибити пошук кореляції між 
механізмами пошкодження конструкційних матеріалів та параметрами АЕ, а отже, 
підвищити точність результатів діагностування відповідальних об’єктів та виробів. 

Як видно з таблиці, точність різних алгоритмів МН для ідентифікування та 
локалізації дефектів порівняльна, тому неможливо, опираючись на відомі резуль-
тати, дати рекомендації про переваги того чи іншого алгоритму у конкретному 
випадку. Усе залежить від даних, якими оперує автоматизована система, та 
швидкості адаптації до них.  

Як свідчить аналіз літературних джерел, алгоритми неконтрольованого на-
вчання, зокрема кластеризації, переважно використовують для ідентифікування 
джерел АЕ у матеріалах зі складною структурою (різні композити, зварні з’єд-
нання). Недоліком цих методів є відносно висока похибка та упереджені резуль-
тати, хоча їх досить легко реалізувати з мінімальними обчислювальними затрата-
ми, що пояснює їх широке впровадження. Алгоритми контрольованого навчання 
застосовують для виявлення дефектів у різних об’єктах контролю під час склад-
них виробничих процесів та експлуатації. Точність отриманих результатів поде-
куди досягала максимально можливого значення.  
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Точність алгоритмів МН (за результатами публікацій) 

Точність, % 
Метод МН Джерело 

min max 

Алгоритми неконтрольованого навчання 

k-середніх (k-means)  [15] 91 93 

C-середніх (C-means) [28] 85 89 

k-медоїди (k-medoids) [34] 95,8 96,3 

Алгоритми контрольованого навчання 

Метод опорних векторів (Support Vector Machine) [36, 40] 99,4 100 

Регресія опорних векторів (Support Vector Regression) [37] – 85,2 

Класифікатор гауссівських процесів  
(Gaussian Process Classifier) 

[39] 98 100 

Логістична регресія (Logistic Regression) [39] 98 100 

Лінійного дискримінантного аналізу 
(Linear Discriminant Analysis) 

[42] – 85 

k-найближчих сусідів (k-nearest neighbor) [43] – 97 

ВИСНОВКИ 
Надійна ідентифікація та локалізація дефектів у структурі конструкційних 

матеріалів спрямовані на реалізацію безпечного та стійкого використання відпо-
відальних інженерних систем. Найкращі результати отримані інтегруванням 
передових методів НК, зокрема методу АЕ та сучасних алгоритмів, для вдоскона-
лення постопрацювання сигналів. Аналіз найновіших літературних джерел свід-
чить, що досягти поставленої мети можна, впроваджуючи в автоматизовані сис-
теми опрацювання сигналів АЕ моделі неконтрольованого та контрольованого 
МН, які довели свою незаперечну ефективність для виявлення дефектів та їх кла-
сифікації. Водночас для забезпечення високої точності результатів важлива якість 
вхідних даних, особливо через зростання їх обсягів. Для цього потрібна ретельна 
підготовка до експериментальних досліджень із урахуванням як умов їх виконан-
ня, так і апаратурних засобів. У другій частині огляду проаналізуємо найновіші 
дослідження методик використання штучних нейронних мереж та алгоритмів 
глибокого навчання для розв’язання різноманітних задач АЕ діагностування. 
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