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НАПРУЖЕНО-ДЕФОРМОВАНИЙ ТА ГРАНИЧНИЙ СТАНИ 
ПОПЕРЕДНЬО НАПРУЖЕНОГО ТІЛА  

ІЗ ЗАЛІКОВАНОЮ ТРІЩИНОЮ 

В. П. СИЛОВАНЮК, Н. А. ІВАНТИШИН, А. І. ДІДУХ 

Фізико-механічний інститут ім. Г. В. Карпенка НАН України, Львів 

У межах механіки крихкого руйнування матеріалів з початковими напруженнями 
розглянуто проблему заліковування плоскої тріщини за допомогою ін’єкційних тех-
нологій. За використання інтегральних перетворень Фур’є отримано сингулярні ін-
тегральні рівняння щодо функцій стрибка переміщень на поверхнях заповненої трі-
щини. Одержано точний розв’язок відповідного рівняння за еліптичної тріщини в 
площині нормального відриву. Залишкову міцність тіла із залікованою тріщиною 
розраховували за критерієм Ірвіна. Встановлено параметри, від яких залежить ефек-
тивність відновлення міцності попередньо напруженого тіла з тріщиною. 

Ключові слова: ізотропне тіло, попередньо напружене тіло, заліковування трі-
щин, міцність матеріалу. 

The problem of healing a plane crack using injection technology is considered within the 
framework of brittle fracture mechanics of materials with initial stresses. With the use of 
integral Fourier transforms, singular integral equations are obtained with respect to the 
functions of displacements jump on the surfaces of the filled crack. The exact solution of 
the corresponding equation in the case of an elliptical crack in the normal opening 
displacement plane is obtained. The residual strength of the body with a healed crack is 
calculated according to the Irwin criterion. The parameters on which the effectiveness of 
restoring the strength of a prestressed body with a crack depends, were established. 

Keywords: isotropic body, prestressed body, crack healing, material strength. 

Вступ. Ідея заліковування тріщин у твердих тілах знайшла практичне вті-
лення під час відновлення пошкоджених бетонних і залізобетонних споруд три-
валої експлуатації [1, 2], виробів із полімерів та композитів на їх основі. Її суть 
полягає у нагнітанні у зони пошкоджень об’єктів рідинних матеріалів, здатних 
тверднути після полімеризації чи кристалізації. В результаті заповнення дефектів 
елемент конструкції зміцнюється і внаслідок цього відновлюється його здатність 
нести експлуатаційні навантаження. 

Для надійної експлуатації відновлених об’єктів, встановлення їх залишково-
го ресурсу на основі концепцій механіки руйнування будують розрахункові мо-
делі заліковування [2, 3]. Такі дослідження виконані для ізотропних [2] та анізо-
тропних [3] матеріалів. 

Нижче в межах лінеаризованої теорії пружності тіл із початковими напру-
женнями [4–6] розглянемо особливості заліковування тріщин за дії додаткових 
зусиль розтягу-стиску високої інтенсивності вздовж дефектів. 

Основні співвідношення лінеаризованої теорії пружності тіл з початко-
вими напруженнями [4]. За відсутності об’ємних сил загальний розв’язок рів-
нянь рівноваги лінеаризованої теорії пружності тіл з початковими напруженнями 
виражаємо через дві функції Ψ і χ, які задовольняють рівняння 
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Величини 2 2 2
1 2 3, ,ξ ξ ξ  є коренями відповідного характеристичного рівняння і 

залежать від модулів пружності та параметрів попередньої деформації тіла. Ви-

користовуватимемо позначення, введені у праці [4]. Для рівних ( )2 2
2 3ξ = ξ  і нерів-

них коренів ( )2 2
2 3ξ ≠ ξ  можливі подання загального розв’язку через три гармоніч-

ні функції φ1, φ2, φ3. Для нерівних коренів вводимо заміну 
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Компоненти векторів переміщень uj і напружень 3 jQɶ  через функції φj вира-

жаємо у вигляді 
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Функції φ1, φ2, φ3, як бачимо зі співвідношень (1), (2), гармонічні в різних систе-
мах координат, тобто 
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j

j
z
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 ∂ 

. (4) 

Коефіцієнти mj, C44, lj визначають окремо для стисливих і нестисливих тіл. 
Вони залежать від модулів пружності і параметрів початкового напружено-дефор-
мованого стану і наведені раніше [4]. 

Для рівних коренів 2 3( )ξ = ξ  вводять заміни 
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що дає змогу отримати компоненти векторів переміщень і напружень у вигляді 
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Наведені подання загального розв’язку рівнянь рівноваги у вигляді (3), (6) 
служать основою для розв’язку крайових задач лінеаризованої теорії пружності 
для тіл з початковими напруженнями. 

Формулювання задачі. Розгля-
немо необмежене пружне ізотропне 
тіло з пружним потенціалом довільної 
форми. Початковий напружений стан 
у тілі вважаємо однорідним і таким, 
що виражається компонентами симет-
ричного тензора напружень 

11 22 33
0 0 00, 0S S S= ≠ =  або коефіцієн-

тами видовження 1 2 3λ = λ ≠ λ  вздовж 

осей ( 1,2,3)jOy j =  декартової систе-

ми координат, введеної в початково-
му напруженому стані. Припускати-
мемо, що в площині у3 = 0 пружного 
середовища є тріщина, яка займає 
плоску область Ω. Для відновлення ресурсу міцності тріщину заповнено рідким 
ін’єкційним матеріалом, який через певний час полімеризується чи кристалізу-
ється, склеюючи її береги. Внаслідок незначного розкриття тріщини важко на 
практиці заповнити весь її об’єм, тому приймаємо, що частина тріщини (Ω–Ωі) 
залишається незаповненою (рис. 1). До тіла прикладені додаткові зовнішні зусил-
ля, які за відсутності тріщини викликали б в однорідному тілі в площині у3 = 0 
компоненти напружень 3 jQɶ . 

 
Рис. 1. Плоска тріщина у попередньо 

напруженому тілі. 

Fig. 1. A plane crack in a prestressed body. 
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Взаємодію поверхонь тріщини з ін’єкційним матеріалом у зоні склеювання 
подамо відповідно до гіпотези про пружну основу типу Вінклера 

 * * * 31 2
31 32 33

[ ][ ] [ ]
, ,

2 2 2

uu u
E

h h h
σ = µ σ = µ σ = . (7) 

Тут µ, Е – модулі зсуву і Юнга матеріалу наповнювача після тверднення; [uj] – 
стрибки компонент вектора переміщень на поверхнях тріщини; 2h – початкове 
розкриття тріщини до прикладання навантаження. 

Інтегральні рівняння задачі. За принципом суперпозиції напружений стан 
у тілі подамо як суму напружених станів тіла без тріщини (вважаємо його відо-
мим) і з тріщиною, до поверхонь якої прикладені зусилля 

 ( )* 0
3 3 3 1 2,j j j iQ Q y y± = σ − ∀ ∈Ωɶ ɶ , 

 ( )0
3 3 1 2, ,j j iQ Q y y± = − ∀ ∈Ω − Ωɶ ɶ . (8) 

Знаки (+) і (–) вказують на верхню (у3 ˃ 0) і нижню (у3 < 0) поверхні 
тріщини, відповідно. 

Оскільки функції φj гармонічні в різних системах координат, тобто задоволь-
няють рівняння Лапласа  
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то, застосовуючи інтегральне перетворення Фур’є до співвідношення (9), вирази-
мо функції φj у вигляді інтегрального подання Фур’є 
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де Аj(x1, x2) – невідомі функції. 
Для їх встановлення використаємо умови неперервності переміщень u

�
 поза 

тріщиною у площині у3 = 0 та їх стрибок [ ]u
�

 в області Ω. На основі оберненого 
перетворення Фур’є отримуємо залежності для знаходження Аj через стрибки пе-
реміщень [ ]u

�
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де 

( ) ( )( )1 1 2 2 1 22

1
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j jF u u i y x y x dy dy
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   = − +   π ∫∫ . 

На основі крайових умов (8) та співвідношень (3), (6), (10)–(12) одержуємо 
інтегральні рівняння для визначення стрибків функції переміщень [uj]: 
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Тут введено позначення  
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Таким чином, задачу про пружну рівновагу попередньо напруженого тіла із 
залікованою тріщиною звели до знаходження розв’язку системи інтегральних 
рівнянь (13). Гранично-рівноважний стан тіла можна встановити, наприклад, за 
силовим критерієм Ірвіна, розрахувавши коефіцієнти інтенсивності напружень 
(КІН). Ці коефіцієнти можна обчислити безпосередньо через стрибки переміщень 
берегів тріщини 

 I 3 3
0

lim [ ]
8n

K B u
n→−

π= − ,        II 1
0

lim [ ]
8 n

n
K B u

n→−

π= − ,  

 III 2
0

lim [ ]
8 t

n
K B u

n→−

π= − , (15) 

де n, t – зовнішня нормаль і дотична до контуру тріщини, відповідно (див. рис. 1). 
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Еліпсоїдальний тріщиноподібний дефект. Нехай еліптична в плані тріщи-
на міститься в площині у3 = 0 попередньо напруженого тіла. За одновісного роз-
тягу зусиллями інтенсивності σ∞ перпендикулярно до площини тріщини, коефі-
цієнт інтенсивності напружень, як зазначено у праці [4], збігається з КІН для тіла 
без початкових напружень [7] 

 2 2 2 2 1/ 4
I ( sin cos )

( )

b
K a b

aE k

∞π σ
= ϕ + ϕ . (16) 

Тут a, b – півосі еліпса 2 2 2 2
1 2/ / 1y a y b+ = ; E(k) – повний еліптичний інтеграл 

другого роду; 2 2 2( ) /k a b a= − ; φ – кут, що визначає параметричні координати 

точки на контурі тріщини (рис. 2). 

 

 

Рис. 2. Системи координат контуру 
еліптичної тріщини. 

Fig. 2. Elliptical crack contour coordinate 
systems. 

 
Згідно зі силовим критерієм Ірвіна, міцність такого тіла 
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b
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π
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Зазначимо, що параметр тріщиностійкості матеріалу KІС може відрізнятися 
від випадку, коли початкові напруження відсутні. 

Для тріщини, заповненої у всьому об’ємі, систему інтегральних рівнянь (13) 
зводимо до одного рівняння 

 
2 2

3 1 2 3
3 2 2

1 2

[ ] [ ]
4

2

u dy dy u E
B

R hy y
∞

Ω

  ′ ′∂ ∂  + = π −σ +    ∂ ∂   
∫∫ . (18) 

Його розв’язок має вигляд 
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β +

. (19) 

Тут с – мала піввісь еліпсоїда 2 2 2 2 2 2
1 2 3/ / / 1y a y b y c+ + = , с<<а, b. 

Звідси на основі першого зі співвідношень (15) отримуємо формулу для об-
числення КІН на контурі залікованої тріщини 

 
( ) ( )1/ 44 2 2 2 2

I
4

sin cos
( )

b B
K a b

a E B E k

∞π σ
= ϕ + ϕ

β +
.  (20) 

За критерієм Ірвіна міцність попередньо напруженого тіла із залікованою 
еліптичною тріщиною 
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( )
1

( )
i C
c

K E k E

B E kb

 βσ = + 
π  

.  (21) 

З отриманої залежності та формули (17) видно, що початкові напруження 
можуть суттєво впливати на ефективність заліковування тріщини, що відображе-
но параметром B3. Розтяг у площині тріщини сприятиме зміцненню тіла, і навпа-
ки, стиск послаблюватиме. Краще заліковуються дефекти з меншим розкриттям 
(більшим параметром β). Ін’єкційний матеріал з більшою жорсткістю після тверд-
нення сприяє ліпшому заліковуванню тіла. 

ВИСНОВКИ 
У межах механіки крихкого руйнування матеріалів з початковими напру-

женнями розглянуто проблему заліковування плоскої тріщини за технологією 
ін’єктування. За використання інтегральних перетворень Фур’є отримано сингу-
лярні інтегральні рівняння щодо функцій стрибків переміщень на поверхнях за-
повненої тріщини. За еліптичної в плані тріщини нормального відриву одержано 
точний розв’язок відповідного рівняння. За критерієм Ірвіна розрахована залиш-
кова міцність тіла із залікованою тріщиною. Встановлені параметри, від яких за-
лежить ефективність відновлення міцності попередньо напруженого тіла з трі-
щиною. 
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