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За зміною енергії Гіббса визначено термодинамічну ймовірність утворення простих 
сполук (оксидів, нітридів, карбідів) зі складників порошкових дротів під час напи-
лювання відновних покриттів електродуговим методом. Оцінено можливі втрати ле-
гувальних елементів внаслідок випаровування у чистому вигляді та у складі простих 
сполук. 
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The thermodynamic probability of the formation of simple compounds (oxides, nitrides, 
carbides) from the components of cored wires during deposition of restorative coatings by 
the arc sprayed method was considered based on the change in Gibbs energy. The possible 
loss of doping elements due to evaporation in their pure form and in the composition of 
simple compounds was estimated. 
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Вступ. Для поверхневого зміцнення виробів часто використовують гальва-
нічне хромування [1], електродугове напилювання [2–4], плазмово-електролітне 
оксидування [5–8], тверде анодування [9–11], наноструктурування інтенсивним 
пластичним деформуванням [12–17], які ефективні за втоми чи контактної втоми, 
в умовах тертя чи в корозивних середовищах. Проте за тривалої експлуатації 
зміцнені шари зношуються і деталь слід відновити. Серед багатьох газотермічних 
способів найефективнішим для цього вважають електродугове напилювання 
(ЕДН) покриттів – найекономічніший і найпростіший метод, що не потребує до-
рогого обладнання [18–20]. З його допомогою можна відновлювати близько 60% 
зношених деталей, зберігаючи їхню зносотривкість на рівні нових [21–23]. Попри 
низьку собівартість (в 1,4–1,8 рази нижча, ніж за наплавлення), він технологічно 
гнучкий, використовує відносно просте обладнання, не потребує висококваліфі-
кованого персоналу, дає можливість наносити покриття значної товщини (0,1... 
10 mm), не спричиняючи значного нагрівання деталей. Устаткування для ЕДН 
порівняно легке і його можна досить швидко переміщати і застосовувати в склад-
них для доступу місцях [24–26]. Використовуючи для ЕДН спеціальні порошкові 
дроти (ПД), вдалося напилювати покриття, які характеризуються високою мікро-
твердістю, зносо- та корозійною тривкістю, причому і за кімнатних, і за підвище-
них температур [27–29]. Під час ЕДН торці ПД розплавляються в дузі, формуючи 
ванну з його розплавленої оболонки та шихтових матеріалів. Повітряний струмінь 
диспергує цей розплав на краплини та транспортує їх до напилюваної поверхні. 
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Розплавлені компоненти шихти та оболонки ПД взаємодіють між собою та кис-
нем, утворюючи різні сполуки, які і формують покриття та визначають його фі-
зико-механічні властивості. 

Мета дослідження – на основі термодинамічного аналізу реакцій, які можли-
ві між компонентами шихти ПД та повітряного струменя під час польоту крап-
лин розплаву ПД до підкладки, оцінити можливість виникнення у покритті окси-
дів, карбідів та нітридів та втрати легувальних елементів через випаровування 
під час напилювання. 

Методика ЕДН. Електродугові покриття (ЕДП) завтовшки 1 mm наносили 
металізатором ФМІ, використовуючи ПД діаметром 1,8 mm. За шихтові матеріа-
ли для ПД використали порошки феросплавів (ферохром, ферокремній, феромар-
ганець, феротитан та карбід бору) та чистих металів (хром та алюміній). Оболон-
ку ПД виготовляли зі стрічки шириною 10 і товщиною 0,4 mm зі сталі 08кп. Кое-
фіцієнт заповнення ПД шихтою становив 25%. Режим нанесення ЕДП такий: 
струм 150 A, напруга горіння дуги 32…34 V. Розпилювали ПД струменем стис-
нутого повітря під тиском 0,8 MPa з дистанції 120 mm. 

Експериментальні результати. Встановили, що під час ЕДН температура 
краплин розплавленого ПД, що транспортувалися повітряним струменем до на-
пилюваної деталі, досягає 2000...2200°С. На дистанції напилювання ЕДП компо-
ненти шихти ПД, його сталева оболонка та кисень з повітряного струменя взає-
модіяли у кілька етапів (рис. 1): у зоні І температура шихти ПД ще перед потрап-

лянням до зони горіння дуги досягала 
1100...1500°С, легкоплавкі компоненти 
шихти ПД плавилися ще всередині обо-
лонки, тоді як тугоплавкі та сталева обо-
лонка лише окиснювалися; в зоні ІІ тем-
пература на торцях ПД досягала 2200°С, 
оболонка та шихтові матеріали плавились 
в дузі з протіканням алюмотермічних ре-
акцій відновлення оксидів заліза та хрому 
розплавленим алюмінієм з утворенням їх 
карбідів та боридів. Ці реакції екзотерміч-
ні та додатково підвищували температуру 
розплаву; в зоні ІІІ формувалися крапли-
ни розплавленого металу, які диспергува-
лись та транспортувались повітряним 
струменем до напилюваної поверхні, що 
супроводжувалося інтенсивним вигорян-
ням наявного в їх складі вуглецю. Водно-

час відбувалося часткове окиснення всіх легувальних елементів ПД та їх віднов-
лення алюмінієм з утворенням карбідів та боридів (зокрема, за взаємодії хрому та 
заліза із карбідом бору B4С). 

Термодинамічний аналіз можливих реакцій між компонентами ПД під 
час напилювання ЕДП. До шихти ПД, використаних для ЕДН, у вигляді порош-
ків додавали ферохром (FeCr), хром, феромарганець (FeMn), феротитан (FeTi), 
ферокремній (FeSi), карбід бору (B4C) у різних пропорціях. Щоб проаналізувати 
можливі реакції та встановити хімічні сполуки, що могли формуватися внаслідок 
взаємодії компонентів шихти з оболонкою ПД у розплавленому стані та компо-
нентами повітря, визначили енергію Гіббса, яка описує імовірність утворення 
різних хімічних сполук внаслідок реакції простих елементів із компонентами по-
вітря (киснем та азотом) у діапазоні температур 25...3000°С. Можливі втрати 

 
Рис. 1. Зони з різною температурою 
розплаву порошкового дроту під час 

напилювання електродугових покриттів. 

Fig. 1. Zones with different temperatures  
of molten cored wire during application  

of arc sprayed coatings. 
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компонентів ПД у результаті хімічних реакцій прогнозували за тиском насиченої 
пари хімічних елементів та їх сполук зі складниками повітря. 

Визначення термодинамічних показників формування хімічних сполук із 
компонентів ПД. Утворення оксидів, нітридів та карбідів Fe, Al, Cr, Mn, Ti, Si, 
B, C за тиску повітря 105 Pa (1 bar) в інтервалі 25...3000°С оцінювали за довідни-
ковими даними про термодинамічні показники (див. таблицю) [30–39]. 

Ентальпія ∆∆∆∆H0
298 та ентропія ∆∆∆∆S0

298 реакцій утворення оксидів, нітридів, карбідів 
основних елементів, присутніх у ПД 

Реакція  
утворення 

0
298H∆ , 

kJ/mol 

0
298S∆ , 

J/(mol ⋅ K) 

Реакція  
утворення 

0
298H∆ , 

kJ/mol 

0
298S∆ , 

J/(mol ⋅ K) 

Оксидів Нітридів 

2Al + 1/2O2 = Al2O 140,0 259,58 Al + 1/2N2 = AlN 320,29 20,93 

2Al + 3/2O2 = Al2O3 1676,8 50,95 В + 1/2N2 = BN 254,14 15,37 

2B + 3/2O2 = B2O3 1264,4 54,05 Cr + 1/2N2 = CrN 118,07 33,49 

С + 1/2O2 = СО 110,598 198,04 4Fe + 1/2N2 = Fe4N 10,89 156,17 

С + O2 = СO2 393,777 213,78 2Fe + l/2N2 = Fe2N 3,77 101,32 

2Cr + 3/2O2 = Cr2O3 1130,4 81,2 5Мn + 1/2N2 = Mn5N 130,63 – 

Fe + 1/2O2 = FeO 266,7 54,0 3Мn + N2 = Мn3N2 201,80 192,17 

3Fe + 2O2 = Fе3O4 1122,0 146,6 Тi + 1/2 N2 = TiN 336,62 30,31 

2Fe + 3/2O2 = Fе2О3 822,7 90,0 Карбідів 

Mn + 1/2O2 = MnO 385,2 59,75 4Al + 3C = Al4C3 150,3 131,1 

3Мn + 2O2 = Мn3O4 1387,5 148,6 4В + C = В4С 51,1 27,08 

2Мn + 3/2O2 = Мn2О3 971,8 110,5 4Cr + С = Cr4C 68,65 105,91 

Мn + O2 = МnO2 548,0 60,7 3Cr + 2С = Cr3С2 87,9 20,4 

Si + O2 = SiO2 880,1 42,12 7Cr + 3С = Cr7С3 177,9 200,93 

Ti + 1/2 O2 = ТiO 518,7 34,79 3Fe + С = Fе3С –22,6 101,3 

2Тi + 3/2 O2 = Ti2O3 1519,4 78,84 3Мn + C = Мn3С 15,07 98,8 

3Тi + 5/2 O2 = Тi3O5 2456,4 129,46 Si + С = SiC 51,91 16,54 

Ti + O2 = ТiO2 944,1 50,28 Ti + C = ТiC 190,46 24,28 

З аналізу залежності енергії Гіббса від температури (2000...3000°С) очевидно, 
що під час напилювання, найімовірніше, протікатиме реакція з утворенням оксиду 
вуглецю за часткової його втрати внаслідок вигоряння (рис. 2a). Далі (згідно з роз-
рахованою енергією Гіббса для їх утворення) формуватимуться оксиди Al, Ті, Si, B, 
Mn, Cr та Fe. Оксиди вуглецю можуть відновлюватися до чистого вуглецю. За тем-
ператури нижче від 2000°С їх відновником може бути алюміній і титан, нижче від 
1500°С – бор та кремній, нижче від 1000°С – марганець, а нижче від 500°С – залізо. 

Згідно з розрахунком (див. таблицю і рис. 2b), за жодної з температур не бу-
ло термодинамічних передумов для виникнення нітриду заліза, а ймовірність ут-
ворення нітриду титану була найбільша і зменшувалася в порядку від бору до 
марганцю та хрому. Крім того, розрахунки виявили, що енерговитрати на форму-
вання нітридів більші, ніж оксидів відповідних елементів, а отже, ймовірність 
процесів окиснення вища, ніж нітрування. 

Аналізуючи термодинамічно визначені імовірності реакцій (див таблицю і 
рис. 2c), встановили таку послідовність виникнення карбідів: від найочікуванішо-
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го карбіду титану до карбідів хрому і бору та до найменш ймовірного карбіду 
марганцю. Оскільки на формування карбідів витрачається більше енергії, ніж на 
утворення оксидів та нітридів, то незалежно від температури процеси окиснення 
та нітрування переважатимуть над карбідоутворенням. 

  

 

Рис. 2. Температурні залежності зміни 
вільної енергії Гіббса, яка вивільняється 
під час утворення оксидів (a: 1 – MnO2;  
2 – Fe2O3; 3 – FeO3; 4 – Mn2O3; 5 – FeO;  
6 – Mn3O4; 7 – CrO; 8 – CO2; 9 – MnO;  

10 – BO; 11 – SiO2; 12 – Ti2O3; 13 – Al2O3; 
14 – TiO; 15 – Al2O; 16 – CO), нітридів 

(b: 1 – Fe4N; 2 – Fe2N; 3 – CrN; 4 – Mn3N2;  
5 – Mn5N; 6 – AlN; 7 – BN; 8 – TiN) та 
карбідів (c: 1 – CrC3; 2 – Mn3C; 3 – B4C;  

4 – Cr23C6; 5 – CrC; 6 – SiC; 7 – CO;  
8 – CrC2; 9 – Cr3C2; 10 – Al4C3; 11 – Cr7C3; 

12 – Fe3C; 13 – TiC; 14 – CO) простих 
елементів (Al, B, Mn, C, Fe, Cr, Si, Ti). 

Fig. 2. Temperature dependences of he changes in Gibbs free energy released during the formation of 
oxides (a: 1 – MnO2; 2 – Fe2O3; 3 – FeO3; 4 – Mn2O3; 5 – FeO; 6 – Mn3O4; 7 – CrO; 8 – CO2;  

9 – MnO; 10 – BO; 11 – SiO2; 12 – Ti2O3; 13 – Al2O3; 14 – TiO; 15 – Al2O; 16 – CO),  
nitrides (b: 1 – Fe4N; 2 – Fe2N; 3 – CrN; 4 – Mn3N2; 5 – Mn5N; 6 – AlN; 7 – BN; 8 – TiN) and 

carbides (c: 1 – CrC3; 2 – Mn3C; 3 – B4C; 4 – Cr23C6; 5 – CrC; 6 – SiC; 7 – CO; 8 – CrC2;  
9 – Cr3C2; 10 – Al4C3; 11 – Cr7C3; 12 – Fe3C; 13 – TiC; 14 – CO)  

of simple elements (Al, B, Mn, C, Fe, Cr, Si, Ti). 

За енергією Гіббса визначили таку черговість найімовірніших реакцій з ут-
воренням оксидів, нітридів та карбідів основних елементів, наявних у складі ПД 
(рис. 3): оксиди, нітриди та карбіди B, Si, C (рис. 3a); оксиди Fe, тоді як термоди-
намічних передумов для утворення його карбідів чи нітридів немає, оскільки їх 
енергія Гіббса додатна (рис. 3b); оксид та карбіди Cr, тоді як його нітрид може 
формуватися лише до температури 1300°С (рис. 3c); оксиди та нітриди Mn, тоді 
як його карбід може утворитись лише за температури нижче від 1100°С (рис. 3d); 
оксиди, нітрид та карбід Ti (рис. 3e) та Al (рис. 3f). 

Тиск насиченої пари чистих елементів, оксидів, нітридів та карбідів. Не-
обхідною передумовою випаровування чистих елементів та їх сполук вважали 
перевищення тиску їх насиченої пари проти атмосферного (105 Pa). Проаналізу-
вавши умови досягнення насиченої пари чистих елементів (рис. 4a) та їх сполук – 
оксидів (рис. 4b), нітридів (рис. 4c) та карбідів (рис. 4d), встановили, що їх випа-
ровування можливе за певних температур. 
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Рис. 3. Зміна вільної енергії Гіббса під час утворення оксидів, нітридів та карбідів, 
відповідно, для B, Si, C (a: 1 – B4C; 2 – BC; 3 – BN; 4 – CO2; 5 – SiO2; 6 – BO; 7 – CO),  

Fe (b: 1 – Fe4N; 2 – Fe2N; 3 – Fe3C; 4 – Fe2O3; 5 – Fe3O4; 6 – FeO), Cr (c: 1 – CrC3; 2 – CrN;  
3 – Cr23C6; 4 – Cr3C2; 5 – Cr7C3; 6 – CrC; 7 – CrO; 8 – Cr3O4; 9 – Cr2O3), Mn (d: 1 – Mn3N2;  
2 – Mn3C; 3 – Mn5N; 4 – MnO2; 5 – Mn2O3; 6 – Mn3O4; 7 – MnO), Ti (e: 1 – TiN; 2 – TiC;  

3 – TiO2; 4 – Ti3O5; 5 – Ti2O3; 6 – TiO), Al (f: 1 – AlN; 2 – Al4C3; 3 – Al2O; 4 – Al2O3). 

Fig. 3. Gibbs free energy change during the formation of oxides, nitrides, and carbides, res-
pectively, for elements B, Si, C (a: 1 – B4C; 2 – BC; 3 – BN; 4 – CO2; 5 – SiO2; 6 – BO; 7 – CO), 
Fe (b: 1 – Fe4N; 2 – Fe2N; 3 – Fe3C; 4 – Fe2O3; 5 – Fe3O4; 6 – FeO), Cr (c: 1 – CrC3; 2 – CrN;  
3 – Cr23C6; 4 – Cr3C2; 5 – Cr7C3; 6 – CrC; 7 – CrO; 8 – Cr3O4; 9 – Cr2O3), Mn (d: 1 – Mn3N2;  
2 – Mn3C; 3 – Mn5N; 4 – MnO2; 5 – Mn2O3; 6 – Mn3O4; 7 – MnO), Ti (e: 1 – TiN; 2 – TiC;  

3 – TiO2; 4 – Ti3O5; 5 – Ti2O3; 6 – TiO) Al (f: 1 – AlN; 2 – Al4C3; 3 – Al2O; 4 – Al2O3). 

Зокрема, температура випаровування марганцю перевищує 1750°С, алюмі-
нію – 2250°С, хрому – 2400°С; оксидів: B2O3 – досягатиме понад 1750°С, Al2O3 – 
2200°С, CrO – 2700°С, Fe3O4 – 2700°С, SiO2 – 2800°С; нітридів: MnN – переви-
щуватиме 2050°С, CrN – 2700°С, FeN – 2800°С (хоча за термодинамічними роз-
рахунками сполуки FeN (рис. 4b), CrN (рис. 4c) та MnN (рис. 4d) взагалі не мали 
би утворитися за цих температур); карбідів: Mn7C3 – досягатиме понад 2050°С, 
AlC – 2500°С, Cr23C6 – 2750°С (хоча за розрахунками сполука Mn7C3 за цих тем-
ператур взагалі не повинна б виникати). 

Експериментальна верифікація виконаних термодинамічних розрахунків 
підтвердила, що під час ЕДН покриттів із ПД системи легування Fe–Cr–Mn–Ti–
Si–B–C у напилених покриттях утворювалися леговані хромом бориди заліза 
FeCr2B, оксиди на основі заліза, марганцю та алюмінію. При цьому в оксидну 
фазу переходило до 10% алюмінію та до 40% титану, що містився у складі ПД. 
Внаслідок випаровування втрати вуглецю досягали 50%. Отже, і термодинамічні 
розрахунки імовірностей утворення різних сполук, і експериментальні оцінки 
елементного складу ЕДП узгоджуються між собою і довели правомірність вико-
ристання наведених термодинамічних розрахунків для обґрунтування вмісту еле-
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ментів у шихті ПД для досягнення необхідного складу покриттів, отриманих 
методом ЕДН. 

 

Рис. 4. Температурні залежності зміни тиску насиченої пари чистих елементів (a: 1 – Mn;  
2 – Al;  3 – Cr; 4 – Fe; 5 – Si; 6 – Ti; 7 – B; 8 – C), оксидів (b: 1 – Al 2O; 2 – B2O3; 3 – Al 2O3;  
4 – CrO; 5 – Fe3O4; 6 – MnO; 7 – FeO; 8 – SiO2; 9 – TiO; 10 – Cr2O3; 11 – Ti2O3; 12 – TiO2), 
нітридів (c: 1 – MnN; 2 – CrN; 3 – FeN; 4 – SiN; 5 – TiN; 6 – BN; 7 – AlN) та карбідів  

(d: 1 – Mn7C3; 2 – AlC; 3 – Cr23C6; 4 – Cr7C3; 5 – SiC; 6 – Cr3C2; 7 – BC; 8 – B2C; 9 – TiC). 

Fig. 4. Temperature dependences of the change in saturated vapor pressure of pure elements  
(a: 1 – Mn; 2 – Al;  3 – Cr; 4 – Fe; 5 – Si; 6 – Ti; 7 – B; 8 – C), oxides (b: 1 – Al 2O; 2 – B2O3;  
3 – Al 2O3; 4 – CrO; 5 – Fe3O4; 6 – MnO; 7 – FeO; 8 – SiO2; 9 – TiO; 10 – Cr2O3; 11 – Ti2O3;  

12 – TiO2), nitrides (c: 1 – MnN; 2 – CrN; 3 – FeN; 4 – SiN; 5 – TiN; 6 – BN; 7 – AlN) and carbides 
(d: 1 – Mn7C3; 2 – AlC; 3 – Cr23C6; 4 – Cr7C3; 5 – SiC; 6 – Cr3C2; 7 – BC; 8 – B2C; 9 – TiC). 

ВИСНОВКИ 
Під час електродугового напилювання покриттів оболонка та шихтові мате-

ріали плавляться, в розплаві відбуваються алюмотермічні реакції відновлення 
оксидів заліза та хрому розплавленим алюмінієм з утворенням їх карбідів та бо-
ридів. Ці реакції екзотермічні та підвищують температуру розплаву до 2000... 
2200°С. Термодинамічними розрахунками визначено імовірність протікання ре-
акцій з виникненням хімічних сполук (оксидів, нітридів та карбідів) з компонен-
тів шихти порошкового дроту (Fe, Al, Cr, Mn, Ti, Si, B та C) під час електродуго-
вого напилювання покриттів. Виявлено, що за температури нижче 2200°С внаслі-
док взаємодії складників порошкового дроту з компонентами повітряного розпи-
лювального струменя (кисню та азоту), найімовірніше, формуватимуться оксиди 
металів та вуглецю, а нітридів та карбідів металів – малоймовірно. Через безпосе-
реднє випаровування елементів чи їх оксидів (CO, B2O3, Fe2O3, CrO, Fe3O4, SiO2), 
чи карбідів (AlC, Cr23C6) можна очікувати зменшення вмісту Mn, Al, Cr, B та C у 
напиленому покритті проти їх кількості в порошковому дроті. 

Робота виконана за фінансової підтримки Національного фонду досліджень 
України в межах проєкту № 2022.01/0005 “Концепція відновлення та подовження 
експлуатаційного ресурсу обладнання найважливіших галузей народного госпо-
дарства України”. 
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