ВЛИЯНИЕ КОНФИГУРАЦИИ МАГНИТНОЙ СИСТЕМЫ РОТОРА НА ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ С ПОСТОЯННЫМИ МАГНИТАМИ

В.В. Гребеников¹, докт. техн. наук, **В.С. Попков²**, вед. инж., **В.Н. Богаенко³**, вед. инж., **В.А. Барабаш⁴**, канд. техн. наук, **Р.Р. Гамалея⁵**, асп., **М.В. Прыймак⁶**, инж. I кат. 1, 5, 6 – Институт электродинамики НАН Украины,

пр. Победы, 56, Киев-57, 03680, Украина

2-4 - Институт проблем материаловедения НАН Украины им. И.М. Францевича,

ул. Кржижановского, 6, Киев, 03680, Украина

Изложены результаты расчета и экспериментального исследования характеристик электрогенератора с постоянными магнитами для трех типов конфигурации магнитной системы ротора. Библ. 4, рис. 7. Ключевые слова: постоянные магниты, электрогенератор, магнитное поле, экспериментальные исследования, внешняя характеристика.

Развитие новой техники и технологий выдвигает новые требования к электрическим машинам, которые варьируются в зависимости от области их применения. Среди них можно выделить наиболее важные, а именно: повышение диапазона регулирования скорости; рост динамических показателей; повышение удельного электромагнитного момента; уменьшение электромеханических и электромагнитных постоянных времени; повышения КПД, надёжности, качества и точности управляемого и программируемого движения; снижение шумов и вибраций, создаваемых во время работы электрической машины.

В последнее время повышение удельной мощности и КПД преобразования энергии в электрических машинах стало возможным благодаря применению современных постояных магнитов. Современные постоянные магниты позволяют конструировать магнитные системы возбуждения электрических машин с повышенной величиной магнитной индукции в зазоре B_{δ} , а также создавать такие сложные магнитные системы, состоящие из высокоэнергетических постоянных магнитов с заданной ориентацией векторов намагниченности и ферромагнитных элементов, с помощью которых можно не только достичь высоких B_{δ} , но и получить в зазоре величины, превышающие остаточную магнитную индукцию $B_{\rm r}$ используемых постоянных магнитов.

Для ветро- и гидроэнергетических установок малой мощности используются синхронные электрогенераторы, как правило, на основе редкоземельных постоянных магнитов, однако высокая стоимость постоянных магнитов требует тщательной проработки конструкции магнитопровода и правильного выбора типа ротора. Частота вращения как ветроротора, так и гидроротора зависит от их диаметра, а также от скорости ветра и соответственно течения воды и составляет для мощности P = 1 кВт, как правило, около 100...400 об/мин.

Известно множество конфигураций ротора для электрических машин с возбуждением от постоянных магнитов [1, 2, 4, 5]. Целью данной работы является сравнение расчетных и экспериментальных зависимостей для электрических машин с тремя типами роторов с постоянными магнитами. Для выполнения поставленной цели было изготовлено три типа ротора с постоянными магнитами, при этом статор использовался от асинхронного двигателя АИР 80В8У2 и обмотки не перематывались. Номинальные данные такого двигателя следующие: номиналь-ное напряжение при соединении обмоток статора в «звезду» $U_{\rm H} = 380$ В; номинальный ток $I_{\rm H} = 2,1$ А; номинальная мощность $P_{\rm H} = 0,55$ кВт; номинальная частота вращения n = 690 об/мин; КПД – 65 %; соз $\varphi = 0,6$.

Конфигурация магнитной системы трех роторов показана на рис. 1, на котором постоянные магниты 1 изображены темно-серым цветом, а конструкционная сталь 2 – светлосерым. Ротор_1 имеет восемь постоянных магнитов, векторы намагниченности которых

[©] Гребеников В.В., Попков В.С., Богаенко В.Н., Барабаш В.А., Гамалея Р.Р., Прыймак М.В., 2014

имеют тангенциальное направление. Ротор_2 и Ротор_3 имеют радиальное намагничивание постоянных магнитов, при этом Ротор_2 имеет четыре магнита одинаковой направленности векторов намагниченности, а Ротор_3 – восемь магнитов чередующейся направленности вектров намагниченности.

На рис. 2 представлены картины магнитного поля электрических машин с тремя типами роторов (далее эти модели называются соответственно: **Ротор_1**, **Ротор_2**, **Ротор_3**). Основные размеры исследуемых электрических машин следующие: наружный дитаметр статора $D_a = 130$ мм; внутренний диаметр статора $D_i = 89$ мм; длина пакета статора $l_i = 100$ мм; число пазов статора Z=36. Наружный диаметр модели **Ротор_1** $D_r = 87$ мм; размеры постоянных магнитов $25 \times 10 \times 100$ мм; количество магнитов 8 шт.; масса магнитов 1,5 кг. Наружный диаметр модели **Ротор_2** $D_r = 87$ мм; размеры постоянных магнитов $25 \times 10 \times 100$ мм; количество магнитов 0,75 кг. Наружный диаметр модели **Ротор_3** $D_r = 85$ мм; размеры постоянных магнитов 4 шт.; масса магнитов : наружный диаметр $d_{\text{нар}} = 85$ мм, внутренний диаметр $d_{\text{внут}} = =65$ мм; ширина магнитов 9 основания 23 мм; ширина магнитов 9 вершины 19 мм; количество магнитов 8 шт.; масса магнитов 1,28 кг. Для уменьшения пульсаций электромагнитного момента в моделях **Ротор_1** и **Ротор_2** выполнен скос полюсов на одно зубцовое деление [4].

Расчет магнитного поля производился в программном пакете ELCUT 5.6 при следующих условиях: коэрцитивная сила постоянных магнитов задавалась равной $H_{cB} = 955$ кА/м, остаточная индукция $B_r = 1,25$ Тл, магнитная проницаемость магнитов принята равной $\mu_{\Pi M} = 1,04$ (направления намагниченности ПМ показаны стрелками); магнитопровод статора – сталь CT2211 (с учетом нелинейности кривой намагничивания стали); ферромагнитные концентраторы – конструкционная сталь CT20 (с учетом нелинейности кривой намагничивания стали); ферриала с магнитной проницаемостью $\mu_0 = 1$. Расчеты магнитостатики выполнялись для момента времени, когда ток в фазе A максимальный и условно положительный, а в фазах B и C соответственно $I_{\rm B} = I_{\rm C} = 1,05$ А (номинальный ток для асинхронного двигателя АИР 80В8У2 равен $I_{\rm H} = 2,1$ А).

Величина электромагнитного момента в генераторном режиме определяет мощность электрогенератора, поскольку мощность пропорциональна частоте вращения ротора и величине электромагнитного момента. Зависимость электромагнитного момента (рис. 3), действующего при нагрузке на ротор, от угла поворота ротора для исследуемых моделей вычислялась в диапазоне от оси d (поле соответствующих полюсов ротора направлено согласно полю, создаваемому включенными фазами статора) до оси q (поле соответствующих полюсов ротора направлено встречно к полю, создаваемому включенными фазами статора). Для исследуемых моделей этот диапазон равен 45° (геометрических градусов).

Поскольку моделирование магнитного поля и расчет момента, действующего на ротор исследуемых моделей, осуществлялись в двухмерной постановке в пакете ELCUT 5.6, то для учета скоса полюсов для моделей **Ротор_1** и **Ротор_2** соответствующие расчетные модели были разбиты на пять сечений в аксиальном направлении. В полученных пяти поперечных сечениях выполнены моделирование распределения магнитного поля и расчет зависимости момента от угла поворота ротора (путем нахождения среднего арифметического значения момента в каждом положении ротора). Таким образом, получена зависимость электромагнитного момента от положения ротора.

Анализируя зависимости электромагнитного момента для трех типов роторов от угла поворота ротора М =f(9), следует отметить, что конфигурация магнитной системы существенным образом влияет на моментные характеристики. Однако сделать вывод о преимуществах той или иной магнитной системы нельзя, поскольку много факторов влияют на величину распределения поля (масса постоянных магнитов и их расположение в роторе, насыщение магнитной системы, величина воздушного зазора и т. д.) Цель этих расчетов – получение зависимостей М =

 $f(\vartheta, I), \psi = f(\vartheta, I)$, которые в дальнейшем используются для расчета характеристик холостого хода, а также внешней характеристики исследуемых моделей.

Физика процесса работы электрической машины описывается системой дифференциальных уравнений, включающих для трехфазной обмотки три электрических уравнения, записанные на основании законов Кирхгофа, а также механическое уравнение вращения ротора.

Ha рис. 4 показана компьютерная модель электрической с ПМ, машины реализующая систему дифференциальных уравнений в пакете Matlab Simulink. Магнитная система электрической машины представлена в каждой модели в виде зависимостей потокосцеплений от токов в фазах и угла Зависимости поворота ротора. получены в результате решения серии задач магнитостатики для заданных положений ротора при заданных значениях плотностей

токов в обмотках с помощью пакета ELCUT 5.6.

Зависимости потокосцепления для каждой из фаз от токов в фазах статора и положения ротора $\psi = f(\vartheta, I)$ представлены табличными функциями. Обратными связями в модели электрической машины выступают сигналы мгновенных токов и положения ротора. На выходе данного фрагмента модели – мгновенные значения потокосцеплений каждой из фаз, которые поступают на вход специальных блоков, где производные потокосцеплений преобразуются в напряжение. Полученная таким образом модель трехфазной электрической

Рис. 5

машины подключается к моделируемой электрической цепи, образуя целостную систему, описывающую работу электрической в режиме генератора.

Для описания механических машине процессов В электрической каждая модель содержит таблицу зависимостей электромагнитного момента от положения ротора и фазных токов в обмотках статора M = f(9, I), и данная таблица значений электромагнитного момента используется при решении механического уравнения движения ротора с учетом инерции.

В этой работе проводились экспериментальные исследования

электрической машины в режиме генератора для трех типов роторов. Таким образом, в экспериментальной модели к зажимам обмоток статора подключалась активная нагрузка через выпрямительный диодный мост. Фотографии испытательного стенда и роторов в увеличенном виде по отношению к размерам стенда представлены на рис. 5. Испытательный стенд построен на базе двигателя постоянного тока с независимым возбуждением. Механическая связь между исследуемой электрической машиной и приводным двигателем выполнена посредством шкивоременной передачи.

Рис. 6.

Электрическая машина испытывалась в режиме генератора при работе на активную нагрузку, подключенную через выпрямительный диодный мост. Сравнение результатов моделирования установившихся режимов работы электрической машины в режиме генератора с результатами экспериментальных исследований показано на рис. 6 и 7.

Численные и экспериментальные исследования проводились для различных величин активной нагрузки и различных скоростей вращения ротора. На рис. 6 *а* представлены характеристики холостого хода для трех роторов, полученные экспериментальным путем, а на рис. 6 δ -*г* – сравнение результатов, полученных численным и экспериментальным путем для каждого из роторов. Из рис. 6 *а* видно, что модель **Ротор_1** превосходит остальные рассматриваемые модификации по мощности. Однако следует учитывать, что при этом **Ротор_1** содержит 1,5 кг постоянных магнитов, тогда как **Ротор_2** – 0,75 кг, а **Ротор_3** – 1,28 кг. Наилучшее соотношение генерируемой мощности к массе постоянных магнитов имеет **Ротор_2**, однако у **Ротора_1** наилучшее соотношение генерируемой мощности к

занимаемому объему.

Ha рис. представлены 7 внешние характеристики иследуемых электрических машин моделей В $= f (I_{\rm H}),$ режиме генератора U_ф экспериментальным полученные И численным путем. Для удобства данные представлены для различных скоростей вращения роторов. На этом рисунке экспериментальные зависимости обозначены сплошной линией. а расчетные штрихпунктирной. Расхождение между результатами, полученными экспериментальным И численным путем, не превышает 10 %.

Таким образом, по результатам исследования характеристик холостого хода и внешних характеристик нельзя судить о преимуществах той или иной магнитной системы, однако сравнение расчетных и экспериментальных зависимостей показывает, что разработанная компьютерная модель расчета переходных процесов в электрогенераторе с различной конфигурацией магнитной системы (масса магниов и их расположение в роторе, величина рабочего зазора, насыщение магнитной системы) адекватно описывает электромеханические процесы.

Из изложенного можно сделать следующие выводы:

1. Проведено численное и экспериментальное исследование характеристик электрогенератора с постоянными магнитами для трех типов конфигурации магнитной системы ротора с постоянными магнитами.

2. Среднее отклонение значений между экспериментальными и расчетными характеристиками для трех типов роторов с различной массой постоянных магнитов и их расположением в роторе не превышает 10 %.

- 1. Балагуров В.А., Галтеев Ф.Ф., Ларионов А.Н. Электрические машины с постоянными магнитами. М.– Л.: Энергия, 1964. 480 с.
- 2. *Радимов И.Н., Рымша В.В., Чан Тхи Тху Хыонг.* Сопоставительный анализ конструктивных модификаций вентильных двигателей с постоянными магнитами // Вестник НТУ "ХПИ". 2009. № 7. С. 126–132.
- 3. Гребеников В.В., Прыймак М.В. Исследование влияния конфигурации магнитной системы на моментные характеристики электродвигателей с постоянными магнитами // Электротехника и электроэнергетика. – 2009. – № 2. – С. 57–60.
- 4. Гребеников В.В., Прыймак М.В. Способы уменьшения пульсаций электромагнитного момента в электрических машинах с постоянными магнитами и зубцово-пазовым статором // Пр. Ін-ту електродинаміки

НАН України: Зб. наук. пр. – К.: ІЕД НАНУ, 2010. – Вип. 27. – С. 52–58.

5. Зарицкая Е.И., Прыймак М.В., Олейников А.М. Оценка влияния конфигурации магнитной системы на характеристики тихоходного синхронного генератора с постоянными магнитами // Електротехніка і електромеханіка. – 2012. – № 1. – С. 28–32.

УДК 621.3.01,621.313

В.В. Гребеніков¹, докт. техн. наук, **В.С. Попков**², пров. інж., **В.Н. Богаєнко**³, пров. інж., **В. А. Барабаш**⁴, канд. техн. наук, **Р.Р. Гамалія**⁵, асп., **М.В. Приймак**⁶, інж. І кат.

1, 5, 6 – Ін-т електродинаміки НАН України,

пр. Перемоги, 56, Київ-57, 03680, Україна

2-4 – Ін-т проблем матеріалознавства НАН України, ім. І.М. Францевича,

вул. Кржижанівського, 6, м. Київ, 03680, Україна

Вплив конфігурації магнітної системи ротора на характеристики електричної машини з постійними магнітами

Викладено результати розрахунку та експериментального дослідження характеристик електрогенератора з постійними магнітами для трьох типів конфігурації магнітної системи ротора. Бібл. 4, рис. 7.

Ключові слова: постійні магніти, електрогенератор, магнітне поле, експериментальні дослідження, зовнішня характеристика.

V.V. Grebenikov¹, V.S. Popkov², V.N. Bogaenko³, V.A. Barabash⁴, R.R. Gamaliya⁵, M.V. Pryimak⁶

1, 5, 6 – Institute of Electrosynamics National Acadamy of Science of Ukraine,

Peremohy, 56, Kyiv-57, 03680, Ukraine

2-4 - Institute of problems of materials science National Acadamy of Science of Ukraine,

Krzgizganivskogo, 6, Kyiv, 03680, Ukraine

Magnetic system configuration influence to characteristics of electrical engine with permanent magnets

The results of the calculation and experimental research of the characteristics for the power generator with permanent magnets for three types of magnetic rotor system configuration are presented. References 4, figures 7.

Key words: permanent magnets, electrical generator, magnetic field, experimental research, external characteristic.

Надійшла 05.02.2014 Received 05.02.2014