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FINITE LIPSCHITZ MAPPINGS ON FINSLER MANIFOLDS

We consider ring @-homeomorphisms with respect to p-modulus on Finsler manifolds, n — 1 <
p < n, and establish sufficient conditions for these mappings to be finitely Lipschitzian.
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1. Introduction.

In this article we continue our study of mappings on Finsler manifolds (M", ®)
started in [1]. For historical remarks and needed definitions, we refer to [1]. The main
tools involve the method of moduli applied to ring Q-homeomorphisms and the method
of p-capacities recently developed for Finsler manifolds. For the latter see [2]-[4].

Recall that a mapping f : D — D’ between Finsler manifolds (M"™, ®) and (M?, ®,.),
n > 2, is called Lipschitz if there is a finite constant C' > 0 such that the inequality
dy(f(x), f(y)) < C-do(x,y) holds for all z,y € M", cf. [5]. We say that a continuous
mapping f: D — D’ is finitely Lipschitzian on the domain D if

Lo ) — timsp U@L TW)

y—z do(z,y)
for all z € D, cf. [6].
The main result of the paper is the following statement.

Theorem 1. Let D and D' be domains in (M", <AIS) and (M2, 5*), n > 2, respectively.
Assume that @ : D — [0, oo] is a locally integrable function such that

1
limsup ———
0 0g(B(z0,€))

/ Q(z) dog () < oo (1)
B(zo,e)

and f : D — D’ is a ring Q-homeomorphism with respect to a p-modulus at any xo € D,
n—1<p<n. Then f is finitely Lipschitzian on D.

The similar results for homeomorphisms and mappings with branching were earlier
obtained in R"™, n > 2, see [7]. The Lipschitzian continuity for mappings in R", n > 2,
with a uniformly bounded function @ has been established by Gehring [8]. The same
condition for Riemannian manifolds was proved in [9].

2. Definitions and preliminary results.

Recall some needed definitions. By domain in a topological space T' we mean an open
linearly connected set. The domain D is called locally connected at a point xg € 0D, if
for any neighborhood U of zg there is a neighborhood V' C U of xg such that VN D is
connected, cf. [10, c¢. 232]. Similarly, we say that a domain D is locally linearly connected
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at a point xg € 0D, if for any neighborhood U of x( there exists a neighborhood V' C U
of xg such that V N D is linearly connected. Recall that the n-dimensional topological
manifold M™ is a Hausdorff topological space with a countable base such that every
point has a neighborhood homeomorphic to R™. The manifold of the class C" with
r > 1 is called smooth.

Let further D denote a domain in the Finsler space (M", ®), n > 2, and TM" =
U T,M"™ be a tangent bundle of (M, ®) for all x € M". By a Finsler manifold (M", ®),
n > 2, we mean a smooth manifold of class C* with defined Finsler structure ®(z,¢),
where ®(z,£) : TM"™ — R™ is a function satisfying the following conditions:

1) ® € C(TM" \ {0});

2) ®(x,af) = a®(x,§) holds for all @ > 0 and ®(z, &) > 0 holds for £ # 0;

252
3) the n x n Hessian matrix g;;(x,§) = %8 ;2_ (g?g) is positive defined at every point
108

of TM™ \ {0}, cf. [4].

By the geodesic distance dg(x,y) we mean the infimum of lengths of piecewise-
smooth curves joining  and y in (M", ®), n > 2. It is well-known that for such metric
only two axioms of metric spaces hold, namely identity and triangle inequality axioms.
Therefore, the Finsler manifold provides a quasimetric space for which symmetry axiom
fails (see, e.g. [11]).

Remark 1. Consider a Finsler structure of the type
~ 1

In this case we obtain a Finsler manifold (M", ®) with symmetrized (reversible) function
3. Clearly, if D is reversible, then the induced distance function dg is reversible, i.e.,
dg(z,y) = dg(y, ), for all pairs of points x,y € M". It is also known that the reversible
Finsler metric coincides with the Riemannian one, see, e.g., [11]. Therefore, in our
further discussion we can rely on the results of [12].

Let vy : [a,b] — M" be a piecewise-smooth curve and z(t) be its parametrization. An

element of length in (M"™, ®), n > 2, we define as a differential of path for infinitesimal
n
measured part of a curve v € D by ds% = > gij(x,&)dnidny; see, e.g. [13]. So, the
ij=1
distance dsg in the Finsler space, as in the case of a Riemannian space, is determined
by a metric tensor. Using the quadratic form dsg, we determine the length of v C D
ta __
by sg(v) = [dsz = [ ®(x,dz)dt, see, e.g. [11]. The invariance of this integral requires
vy t1

the restrictions 2)-3), given above, on the Lagrangian ®(z,dx).

In the Finsler geometry there are various definitions for the volume: by Holmes-
Thompson, Loewner, Busemann and others. In this paper we agree with the volume
definition by Busemann (Busemann-Hausdorff). Following [14], an element of volume

= }g:l dz!...dz™, where | B™| denotes the

Euclidean volume of the unit n-ball, whereas |B| is the Euclidean volume of the set

on the Finsler manifold is defined by dog(z)
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B! = {(51, n) ER": @ (x,i(fi,ei(x))> < 1} with an arbitrary basis {e;(z)}!
T

in R™ depending on z. It is known that the volume in the Finsler space coincides with

its Hausdorff measure induced by metric dg(z,y), if ®(z,£) is an invertible function,

see, e.g. [14]. In view of Remark 1, we have dog(x) = \/det gij(x,€) da'...dz™, cf. [15].
Let I' be a family of curves in a domain D. By the family of curves I' we mean a

fixed set of curves v, and for arbitrary mapping f : M" — M?, f(T") :={fo~|y € T'}.
The p-modulus of the family T", p € (1, 00), is defined by

M,(T") = inf / PP (x)dog (), (3)
Mn

where the infimum is taken over all nonnegative Borel functions p such that the

condition [ p®(z,dx) = [ pdsz > 1 holds for any curve v € T. The functions p,
v v
satisfying this condition, are called admissible for T', cf. [4].

The quantity (3) can be interpreted as an outer measure in the space of curves.

For sets A, B and C from (M”,%), n > 2, by A(A, B;C) we denote a set of all
curves 7 : [a,b] = M", which join A and B in C, i.e. y(a) € A, v(b) € B and v(t) € C
for all ¢t € (a,b).

Remark 2. One can apply the following well-known facts: Proposition 1 and
Remark 1 in [12] (due to Remark 1), and thus assume that the geodesic spheres S(zg, ),
geodesic balls B(zg, r) and geodesic rings A = A(xg, 71, r2) lie in a normal neighborhood
of a point xg.

Let D and D’ be domains in (M",:IS) and (MZ},&J*), n > 2, respectively, and
Q : M" — (0,00) be a measurable function, p € (1,00), z9 € D. We say that a
homeomorphism f : D — D’ is a ring Q-homeomorphism with respect to a p-modulus
at the point z if the inequality

M, (A(f(S2), £(S): D)) < / Q(x) - 1P (dg (2, 20)) dorg () (4)
A

holds for every geodesic ring A = A(zg,e,80), 0 < ¢ < g9 < dy = dist(zg,0D),
€0

and for every measurable function 7 : (g,69) — [0, 00], such that [ n(r)dr > 1. Here
€

Se = S(zo,¢€),S:, = S(z0,e0). We also say that f is a ring Q-homeomorphism with
respect to a p-modulus in the domain D if f is a ring Q-homeomorphism at every point
xo € D.

Let us recall that the idea to introduce the ring @Q-homeomorphisms goes back to
Gehring’s ring definition of quasiconformality in R™, n = 3, see [16]. These homeo-
morphisms first appeared in the plane for study of the Beltrami equations (see, e.g.
[17]), and later in R™, n > 2, cf. [18]. Further, the notion of ring homeomorphisms was
extended to boundary points of domains in the plane [19] and then in the space [20]. It
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is well known that the theory of boundary behavior is one of the difficult and interesting
parts of the mapping theory; see the monographs [19, 6] and references therein. Note
also that the ring Q-homeomorphisms have rich applications in the theory of boundary
behavior of Sobolev and Orlic-Sobolev classes of mappings on Riemannian manifolds;
see [21]. The notion of ring @-homeomorphisms at boundary points with respect to
p-modulus for p = 2 was introduced and applied for study the Beltrami equations
with a degenerate condition of strong ellipticity in [22]. Later a criterium for arbitrary
homeomorphisms to be ring Q-homeomorphisms with respect to p-modulus, p # n, at
interior points of domains in the n-dimensional Euclidean space R™ was established in

23].

3. p-capacities and Finsler manifolds.

By a condenser we mean a pair € = (A, G), where A C M" is open and G C M" is
a non-empty compact set contained in A. We shall say that £ is a ringlike condenser if
B = A\G is a geodesic ring, i.e. B is a domain whose complement D\ B has exactly two
components. We shall say that £ is a bounded condenser if A is bounded. A condenser
€ =(A,G) lies in a domain D if A C D.

Each condenser has p-capacity (where p > 1) defined by the equality

cap, & = cap, (4, G) = in}f / |Vul? dog (), (5)
Aa

where the infimum is taken over all Lipschitz functions v with compact support in A.

In the local coordinates, the gradient at a point € M™ is defined by (Vf)! = g% %,

1 < i < n, where the matrix g*/ is the inverse matrix of the matrix g;;; see [24].
Recall that in R®,n > 2, for 1 < p < n,

P — p—1 n—p
cap, € > nQ; (Z_f) m(G)] = , (6)

see, e.g. (8.9) in [25]. Finally, for n — 1 < p < n in R", the following lower bound

(cap, €)' 29— BN )

where d(G) is the diameter of the compact set G and y is a positive constant depending
only on n and p (see Proposition 6 in [26]) holds.

4. Proof of Theorem 1.

It suffices to show the following. Let @ : D — [0, 0o] be a locally integrable function
and f : D — D’ be a ring Q-homeomorphism with respect to a p-modulus (n — 1 <
p < n) at an arbitrary point xg € D satisfying

1
Qo = limsup —————
0 es0 0g5(B(xo,¢))

/ Q(z)dog(x) < co.
B(xo,a)
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We show that 0= (F (o). £(2))
L(f(xo), f(z 1
L(zg, f) = limsup o <Ap@Qy 7,

T—T0 d&;(ﬂ?o, l‘)

where A, ;, is a positive constant depending only on n and p.

Consider a geodesic ring A = A(xg,e1,62) C D with 0 < g1 < &9 such that
A(x,e1,e2) lies in a normal neighborhood at z¢ (see Remark 2). Of course, if f: D —
D' is open and & = (A,G) is a condenser in D, then f(&) = (f(A4), f(GQ)) is also
condenser in D', see Lemma A.1 in [6] and [27]. Then (f(B (x0,€2)), f(B (:zo,al))> is

the ringlike condenser in D', in view of Remark 1. Follow the Theorem 2 in [4] we have

cap, (f(B(zo,€2)), f(B(zo,€1))) = Mp(A(Of (B(wo,€2)), 0f (B(zo, €1); f(A))).

This equality is invariant with respect to change of the local coordinates. Since f is a
homeomorphism, then

A (Of(B (w0,22)), 0f (B (x0,€1)); f(A)) = f((A (9B(x0,€2)), 0B (x0,1); A)) -

Letting

1 te (51 62)
t) = €o—e1 ) 9 )
n(t) { 0, teR\ (e1,9),

and applying the definition of ring @)-homeomorphisms with respect to p-module, we
obtain

- 1
cap, (f(B(xo,£2)), F(Blwo,en))) < Gar, / | Q) dog(z).  (8)
Choose €1 = 2¢ and g9 = 4¢, then
capy (F(Blan.42)). (B0 2) < o [ Qu)dog(o). )
B(z,4¢)

Due to Remark 1 (see also proposition 5.11 (d) [28]), inequality (6) holds in sufficiently
small neighborhoods of the point xg with respect to the normal coordinates, i.e.

n-p

cap, (f(B(x0,4¢)), f(B(xo,22))) = Cup [05(f B(wo, 2))] ™, (10)

where C,, ;, is a positive constant depending only on n and p. Combining (9) and (10)
and taking into account the local n-regularity of measures (see Lemma 2.1 in [1]), we
obtain

n

1 7-p
05 (B(xo,4¢)) /B(zo,45) Q) d%(gﬁ)] ’ 1

where ¢, ;, is a positive constant depending only on n and p.

o5 (f(B(zo,2¢))) -
03 (B(xo,2) —
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Now choosing in (8), £1 = € and €9 = 2¢, we have
1
cap, (£(Blao,22)), (BN < 5 [ Qla)dog(a). (12)
B(:Eo,?&)
Arguing similar to above, one gets from (7) the following lower bound

_ \n—1 ~ d]i(f(B(:L‘o,é‘)))
ca B(xg,2¢)), f(B(xo, > Chp ,T(Lb
( pp (f(B(zo,2¢)), f(B(xo 5)))) : 0(15 (£(B(x0,20)))

, (1)

where én,p is a positive constant that depends only on n and p. Combining (12) and
(13) and taking again into account the Lemma 2.1 in [1], we obtain

dz (f(B(zo, €))) o5 (F(B(xo,20)\ » )
€ S%’p< o3 (B(z0,2¢)) )

n—1

1 P
X m / Q(z)dog(z) ’ (14)
B(xzo,2¢)

where 7, ,, is a positive constant depending only on n and p. The estimates (11) and
(14) imply

n(l—n+p)
dx(f(B(zo,¢))) 1 rinn)
o <A / Q(x)doz(x) X
€ =P\ 03 (B(20,4€)) JB(ag ) ( &
n—1
o [ @)
_— x)doz(x
O'%(B(.To,Q&)) B(xo,2¢) ®
Letting € — 0, we obtain the desired estimate
di(f(xo), f(z d< (f(B(xg, e 1
L(zo, f) = limsup q)( (), f()) < lim sup ‘1)( (Blzo,2) <Ap Q7
T—x0 d&) (3307 -T) e—0 €

with a positive constant A, , depending on n and p.
Since zo was chosen arbitrary, the proof of Theorem 1 is completed.

Corollary 1. Let D and D' be domains in (M", 5) and (M2, 5*), n > 2, respectively,
and f : D — D’ be a ring Q-homeomorphism with respect to a p-modulus, n—1 < p < n.
Assume that Q(z) is bounded almost everywhere (a.e.) in D by a positive constant K.
Then f is locally Lipschitzian and, moreover,

L(xo, f) < An,pKniipa
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where A\ p is a constant depending only on n and p.

Remark 4. Condition (1) in Theorem 1 is sufficient. However, it cannot be omitted.

Here we refer to an example of homeomorphism in R™ [7] which does not satisfy (1)
and fails to be finitely Lipschizian.

Remark 5. Finitely Lipschitz mappings possess the property of the absolute con-

tinuity on surfaces of any dimension (see, e.g. [6]).
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Koneuno JINTIIIINIIEBBI OTO6pa)KeHI/I$[ Ha d)I/IHCJ'IepOBbIX MHOI‘OO6paBI/I$lX.

PaccmarpuBarorcst KosbiteBbie (Q-TroMeOMOP(MU3MBI OTHOCUTEIBHO P-MOIY/IsT Ha (PUHCIEPOBBIX MHOTO-
obpasusax, n — 1 < p < n, yCTAHABJIUBAIOTCS JIOCTATOYHBIE YCJIOBUSI KOHEYHOM JIUIIIUAIIEBOCTH ITUX

0TOOparKeHHIA.
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