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COLLECTIVES OF AUTOMATA ON INFINITE GRID GRAPH WITH
DETERMINISTIC VERTEX LABELING

Automata walking on graphs are a mathematical formalization of autonomous mobile agents with
limited memory operating in discrete environments. Under this model broad area of studies of the
behaviour of automata in finite and infinite labyrinths (a labyrinth is an embedded directed graph
of special form) arose and intensively developing. Research in this regard received a wide range of
applications, for example, in the problems of image analysis and navigation of mobile robots. Automata
operating in labyrinths can distinguish directions, that is, they have a compass. This paper examines
vertex labellings of infinite square grid graph thanks to these labellings a finite automaton without a
compass can walk along graph in any arbitrary direction. The automaton looking over neighbourhood
of the current vertex and may move to some neighbouring vertex selected by its label. We propose a
minimal deterministic traversable vertex labelling that satisfies the required property. A labelling is
said to be deterministic if all vertices in closed neighbourhood of every vertex have different labels.
It is shown that minimal deterministic traversable vertex labelling of square grid graph uses labels
of five different types. Minimal deterministic traversable labelling of subgraphs of infinite square grid
graph whose degrees are less than four are developed. The key problem for automata and labyrinths
is the problem of constructing a finite automaton that traverse a given class of labyrinths. We say
that automaton traverse infinite graph if it visits any randomly selected vertex of this graph in a finite
time. It is proved that a collective of one automaton and three pebbles can traverse infinite square grid
graph with deterministic labelling and any collective with fewer pebbles cannot. We consider pebbles as
automata of the simplest form, whose positions are completely determined by the remaining automata
of the collective. The results regarding to exploration of an infinite deterministic square grid graph
coincide with the results of A.V. Andzhan (Andzans) regarding to traversal of an infinite mosaic
labyrinth without holes. It follows from above that infinite grid graph after constructing a minimal
traversable deterministic labelling on it and fixing two pairs of opposite directions on it becomes an
analogue of an infinite mosaic labyrinth without holes.
MSC: 68R10, 05C85, 68Q45, 68T40.
Keywords: square grid graph, graph-walking automaton, vertex labelling, collective of automata.

Introduction

Automata walking on graphs are a mathematical formalization of autonomous mobile
agents with limited memory operating in discrete environments. Under this model broad
area of studies of the behaviour of automata in finite and infinite labyrinths (a labyrinth
is an embedded directed graph of special form) arose and intensively developing [1,
2]. Research in this regard received a wide range of applications, for example, in the
problems of image analysis and navigation of mobile robots [3]. The results for automata
and labyrinths are based on the important assumption that automata operating in
labyrinths can distinguish directions, that is, they have a compass [4, 5]. This paper
discusses automata without compass, that is, they do not distinguish between the
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directions and relative positions of the vertices. Such restriction of capabilities makes
the behaviour of automata on the graph much more complicated. For example, the
problem of preserving the movement direction on the graph is trivial for an automaton
with a compass, but for an automaton without a compass it requires using additional
equipments and development of methods for their usage [6]. This poses the problem
of enrichment of the graph model (by adding some preferably minimal properties) to
ensure that the automaton could move along graph in any arbitrarily chosen direction.
The most natural enhancement of a graph is to label its structural elements: vertices,
edges, incidentors, etc. The automaton gets an opportunity to read labels in a local
neighbourhood of the current vertex and use them for movement. This article deals
with the vertex-labelled graphs.

1. Problem formulation.
This paper sets out to consider two related problems.
1) Let some labels (colours) be assigned to the vertices of the square grid graph,

and let an automaton be able to receive at the input the label of the current vertex and
the labels of all vertices from its neighbourhood. The automaton can move between
adjacent vertices by selecting a target vertex by its label. Does there exists a vertex
labelling such that using it an automaton can move along a graph in any arbitrarily
chosen direction?

2) If the first is possible, then does there exists an automaton that traverse such
labelled graph, having the only ability to read the vertex labels from a closed neigh-
bourhood of the current vertex?

In addition to the question of labelling existence, there is the question of minimizing
the amount of label types that is also worth studying.

2. Basic definitions.
Let Z denote the set of integers, and let N denote the set of natural numbers. We

will use the symbol Zn to denote the set {0, 1, ..., n− 1} for any n ∈ N.
We will use standard terminology for graphs (we refer the reader to [7]).
The path graph Pn is a tree with two nodes of vertex degree 1, and the other

n − 2 nodes of vertex degree 2. A 1-way infinite path graph (or a ray) P+∞ is a
graph which isomorphic to the graph with vertex set {vi : i = 1, 2, . . . } and edge set
{(vi, vi+1) : i = 1, 2, . . . }. A 2-way infinite path graph (or a double ray) P∞ is a graph
which isomorphic to the graph with vertex set {vi : i = . . . ,−2,−1, 0, 1, 2, . . . } and edge
set {(vi, vi+1) : i = . . . ,−2,−1, 0, 1, 2, . . . }. An infinite two-dimensional grid graph G∞

is the graph cartesian square of 2-way infinite path graph. A 2-way infinite ladder graph
G(∞,2) is the graph cartesian product of P∞ and P2. A rectangle graph G(n,m) is the
graph cartesian product of Pn and Pm.

We will use the embedded square grid graph, which vertices corresponds to the
distinct points of the integer lattice Z2 and two vertices are connected by an edge if
and only if the corresponding points are at distance 1. Suppose that the name of the
vertex of the embedded graph is the coordinates of the corresponding point on the
plane. A half-grid graph is the subgraph of the embedded graph G∞ induced by the set
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of vertices lying on one side from an infinite straight line including vertices that are on
the line. The line is called the half-grid boundary. An angle graph is the subgraph of
the embedded graph G∞ induced by the set of vertices that are between two different
half-lines sharing a common starting vertex including vertices that are on half lines.
Half-lines are called the sides of the angle, and their common vertex is called the vertex
of the angle. The value of the angle is the value of the geometric angle between its
sides. A stripe graph is the subgraph of the embedded graph G∞ induced by the set
of vertices that are between two parallel lines including vertices that are on lines. The
lines are called the borders of the stripe, their direction is called the direction of the
stripe, and the distance between them is called the width of the stripe. A half-stripe
graph is the subgraph of a stripe graph induced by the part of the stripe vertices that
are on one side from a straight line crossing the stripe borders. A segment of this line,
enclosed between the borders of the stripe, is called the end of the half-stripe.

A labelled graph is a simple connected vertex-labelled graph G = (V,E,M, µ),
where V is a set of vertices, E is a set of edges, M is a set of labels, µ : V → M is
a surjective labelling function. The open neighbourhood Ov of a vertex v ∈ V is the
set of all vertices adjacent to v. A neighbourhood in which v itself is included, called
the closed neighbourhood and denoted by O(v). A multiset of labels of all vertex from
O(v) is called the labelling of vertex v neighbourhood and denote by µ (Ov). A walk in
graph G is a series of vertices p = v1 . . . vk such that (vi, vi+1) ∈ E, i = 1, . . . , k − 1.
The positive integer k (the number of vertices) is the length of p. The label µ(p) of the
walk p is a word w = µ (v1) . . . µ (vk) in label alphabet M . We say that the word w is
defined by the vertex v1.

A graph-walking automaton on labelled graphG is a sextupleA = (S,X, Y, s0, φ, ψ),
where S is a finite set of internal states, X = {(a0, {a1, . . . , ak}) | ai ∈M, 0 6 i 6 k} is
a finite input alphabet (a0 is a current vertex label, {a1, . . . , ak} is a set (or multiset)
of labels of all vertices on the current neighbourhood, k is a degree of the current
vertex), Y = M is a finite output alphabet (y = a means that the automaton moves
from the current vertex to an adjacent vertex with the label a), s0 ∈ S is the initial
state, φ : S ×X → S is a transition function, ψ : S ×X → Y is an output function.
Automaton operates as follows: observes the labelling of current vertex neighbourhood,
chooses some label, and moves to the vertex with this label. The automaton does not
have a compass, that is, it does not distinguish directions and relative position of
vertices. Therefore, it does not distinguish vertices with the same labels. It is shown
in [6] that automaton without additional resources cannot maintain movement direction
on the graph all whose vertices are unlabelled or, equivalently, are labelled with the
same label. Let an automaton A at a moment of time t be at a vertex v(t) of the
embedded graph G∞. The automaton movement is called uniform and directional if
there exists natural period T such that v(t+T )− v(t) = v(t+2T )− v(t+T ) holds for
any moment of time t.

We will consider a collective of interacting automata A = (A1, . . . , Am). In addition
to information about labelling each automaton Ai also receives information about
presence of other automata from collective in the closed neighbourhood of current

172



Collectives of automata on deterministic infinite grid graph

vertex. We call A the collective of automata without a compass if any component of A
is an automaton without a compass. Further we will consider only such collectives.

Let J ⊂ {1, . . . ,m}. A subsystem (Aj)j∈J of the collective A of interacting automata
is called the pebbles in collective A if for all j ∈ J the following conditions hold: (1)
Aj has a single inner state; (2) Aj can only move if there is an automaton Ai (i ̸∈ J)
on the same vertex, and Aj can only move to the same vertex as Ai. For non-pebble
automata pebbles play the role of external memory.

We will provide more precise definitions. Here P(S) denotes the set of all subsets
of an arbitrary set S. Let I be a set of indices, and let {Si|i ∈ I} be a family of sets.
We will denote by T ({Si|i ∈ I}) the set of all partial transversal of this family and
by definition partial transversal contains no more than one element from each Si. Note
that the empty set is also a partial transversal.

The collective A = (A0, A1, . . . , Am) consisting of one automaton A0 and m pebbles
A1, ..., Am is called the collective of interacting automata of type (1,m).
Let I = {0, 1, . . . ,m}. Each automaton Ai from collective A is a sextuple
Ai =

(
Si, Xi, Yi, s

i
0, φi, ψi

)
, where Si is a finite set of internal states,Xi = {(α0, {α1, . . . ,

αk}) |α0, α1, . . . , αk ∈M × T ({Sj |j ∈ I \ {i})} is a finite input alphabet (here α0

denotes the label of the current vertex (pr1 (α0)) and automata placed on it (pr2 (α0)),
and multiset {α1, . . . αk} denotes the labels of vertices from neighbourhood of current
vertex and automata placed on them); Yi = M × P (I \ {i}) ∪ {h} is a finite output
alphabet (here y = h means ”stay at the current vertex”, y ∈ Yi \ {h} means ”move
to the vertex with label pr1 (y), on which there are automata from the list pr2 (y) and
only they”, pr2(y) = ∅ means that there are no other automata in the target vertex);
si0 ∈ Si is an initial state; φi : Si ×Xi → Si is a transition function; ψi : Si ×Xi → Yi
is an output function. For any pebble Aj , 1 6 j 6 m the following conditions are true:
(1) Sj =

{
sj0

}
; (2) for any x = (α0, {α1, . . . , αk}) ∈ Xj either ψj

(
sj0, x

)
= h, or if

ψj

(
sj0, x

)
= y ̸= h, then there exists s ∈ S0 such that s ∈ pr2 (α0) and ψ0 (s, x

′) = y,

where x′ =
((
pr1 (α0) , (pr2 (α0) \ {s}) ∪

{
sj0

})
, {α1, . . . , αk}

)
.

The behaviour of collective A = (A0, A1, . . . , Am+1) of type (1,m) on graph G
is the sequence π (A, G): (x⃗0, s⃗0, y⃗0), ..., (x⃗t, s⃗t, y⃗t), (x⃗t+1, s⃗t+1, y⃗t+1), ..., where x⃗t =(
x1t , . . . , x

m+1
t

)
, xjt =

(
αj
0t
,
{
αj
1t
, . . . αj

tk

})
∈ Xj , s⃗t =

(
s1t , . . . , s

m+1
t

)
, sjt ∈ Sj y⃗t =(

y1t , . . . , y
m+1
t

)
, yjt ∈ Yj (0 6 j 6 m) such that sjt+1 = φj

(
sjt , x

j
t

)
, yjt+1 = ψj

(
sjt , x

j
t

)
.

Suppose that all automata from the collective A are placed on the same vertex of
the graph G at the initial moment of time.

3. Vertex labelling sufficient for directional movement.
Consider an embedding of graph G∞ on the plane Z2. Let’s choose two pairs of

opposite directions on graph G∞ corresponding to the abscissas and ordinates axes
of the plane Z2. We call these directions basic. It easy to check that the movement
of the automaton in any fixed direction different from the basic can be represented
as a combination of moves in the basic ones by increasing the number of states of
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the automaton. Hence we can restrict ourselves to considering automata moving only
in the basic directions. A labelling is said to be periodic in direction (q, r) ∈ Z2 if
µ(i+ q, j + r) = µ(i, j) for all i, j ∈ Z. We call a labelling traversable if by using it an
automaton can move along graph in any directions. A vertex labelling that minimize
the number of labels needed for a given graph G is called a minimum vertex labelling
of G.

We call a labelling function µ deterministic (or D-labelling) if all vertices in closed
neighbourhood of any vertex have different labels. A labelling graph with deterministic
labelling function is said to be deterministic (or D-graph). In [8] it is proved that
following properties follow from the D-graph definition: (1) for any graph vertex any
word in alphabet M defines no more than one path from this vertex; (2) the distance
between two vertices with the same labels greater than or equal to 4. These properties
enable targeted movement of a graph-walking automaton along D-graph. For example,
if we know labels of the paths connecting the vertices of the graph with each other,
then we can construct an automaton which can move along these paths.

Theorem 1. For a minimal traversable deterministic labelling of G∞ it is necessary
and sufficient to have five types of labels.

Proof. Consider an embedding of graph G∞ on the plane Z2. For any vertex v
of graph G∞ the equality

∣∣O(v)

∣∣ = 5 holds. Therefore five types of labels needed for
D-labelling of closed neighbourhood of this vertex. Let M = {a, b, c, d, e}. We will
choose an arbitrary vertex (i, j) of embedded graph G∞ and define the labelling of
neighbourhood of this vertex as follows: µ ((i, j)) = a, µ ((i+ 1, j)) = b, µ ((i, j + 1)) =
c, µ ((i− 1, j)) = d, µ ((i, j − 1)) = e (consult Fig. 1(a) for illustration). By definition
of the D-labelling it follows that vertex (i+1, j +1) must be labelled with either label
d or label e. Let µ ((i+ 1, j + 1)) = e. Then, by definition of D-labelling, it follows
that ((i− 1, j + 1)) = b, µ ((i− 1, j − 1)) = c, and µ ((i+ 1, j − 1)) = d. We continue
labelling in this fashion obtaining µ ((i+ 2, j)) = c, µ ((i, j + 2)) = d, µ ((i− 2, j)) = c,
µ ((i, j − 2)) = b (consult Fig. 1(b) for illustration).

Note that after performing these steps for each label from M there exists a vertex
labelled by this label such that all vertices from its neighbourhood are already labelled.
For the label a it is the vertex (i, j), for the label b, the vertex (i+ 1, j), for the label
c , the vertex (i, j + 1), for the label d, the vertex (i − 1, j), and for the label e, the
vertex (i, j−1). Using labelling of the neighbourhoods of these vertices as the patterns
for further labelling, we obtain a deterministic subgraph of the graph G∞, shown in
Fig. 1(c).

For labelling of neighbourhood of vertex (i + 2, j + 2), µ ((i+ 2, j + 2)) = b, we
will use corresponding pattern i.e. the labelling of the neighbourhood of the vertex
(i+ 1, j), µ ((i+ 1, j)) = µ ((i+ 2, j + 2)). Vertex (i+ 3, j + 2) will labelled by label c
as a result. Note that µ ((i+ 3, j + 2)) = µ ((i− 2, j + 2)). We will continue labelling by
using corresponding patterns and obtain that µ ((i+ 3, j + 1)) = µ ((i− 2, j + 1)) =
a, µ ((i+ 3, j)) = µ ((i− 2, j)) = e, µ ((i+ 3, j − 1)) = µ ((i− 2, j − 1)) = b, and
µ ((i+ 3, j − 2)) = µ ((i− 2, j − 2)) = d. It is easy to check that µ ((i, j)) = µ ((i+ 5k, j))
holds for all i, j, k ∈ Z provided that corresponding labelling patterns are used. Similarly
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Fig. 1. A minimal D-labelling of graph G∞.

we obtain that µ ((i, j)) = µ ((i, j + 5l)) holds for all i, j, l ∈ Z provided that corres-
ponding labelling patterns are used. It follows from above that we can construct D-
labelling of graph G∞ provided that corresponding labelling patterns are used. Thus,
it is necessary and sufficient to have labels of five different types to construct a minimal
D-labelling of the graph G∞.
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Fig. 2. A minimal traversable D-labelling of graph G∞.

We next prove that the minimal D-labelling described above is traversable. Without
loss of generality we can assume that a = 0, b = 1, c = 2, d = 4, c = 3. We will define
labelling of neighbourhood of any vertex (i, j) of embedded graph G∞ by the following
condition: if µ ((i, j)) = x, x ∈M , then µ ((i+ 1, j)) = x⊕51, µ ((i− 1, j)) = x⊕5(−1),
µ ((i, j + 1))x ⊕5 2, µ ((i, j − 1)) = x ⊕5 (−2), where ⊕5 denote modulo 5 addition
(consult Fig. 2 for illustration). Let graph G∞ labelled in accordance with the above
rule. Since the automaton ”sees” only vertex labels and not their names, it follows that
we must set the directions on the D-graph G∞ in the language ”understandable” to the
automaton. Let the automaton is on the vertex (i, j) with label a ∈ M . We will say
that the vertex with label a ⊕5 1 (i.e. the vertex (i + 1, j)) is in the ”east”, the vertex
with label a ⊕5 (−1) (i.e. the vertex (i − 1, j)) is in the ”west”, the vertex with label
a⊕52 (i.e. the vertex (i, j+1)) is in the ”north”, and the vertex with label a⊕5 (−2) (i.e.
the vertex (i, j − 1)) is in the ”south”. Then ”east” denotes the direction (1, 0), ”west”,
the direction (−1, 0), ”north”, the direction (0, 1), and ”south”, the direction (0,−1).
Moving eastward the automaton every times moves to a vertex whose label is equal
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to the sum modulo 5 label of the current vertex and 1. The movements to the ”west”,
”north” and ”south” are determine similarly.

If the automaton only moves in one of four basic directions (”east”, ”west”, ”north”
or ”south”) then the equality v(t + T ) − v(t) = v(t + 2T ) − v(t + T ) holds for T = 1
for any time moment t. This means that directional movement of the automaton is
uniform.

This finished the proof. �
Corollary 1.1. For a minimal traversable deterministic labelling of any subgraph

of G∞ with maximum degree 4 it is necessary and sufficient to have five types of labels.
Consider minimal traversable D-labellings of subgraphs of the graph G∞, whose

degrees are less than 4.
Theorem 2. For a minimal traversable deterministic labelling of G(∞,2) it is ne-

cessary and sufficient to have five types of labels.
Proof. Consider an embedding of graph G∞,2 on the grid Z× Z2. For any vertex v

of graph G∞,2 the equality
∣∣O(v)

∣∣ = 4 holds. Therefore four types of labels needed for
D-labelling of closed neighbourhood of this vertex.
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Fig. 3. A minimal D-labelling of graph G(∞,2).

Let M = {a, b, c, d}. We will choose an arbitrary vertex (i, 0) of embedded graph
G∞,2 and define labelling of neighbourhood of this vertex as follows: µ ((i, 0)) = a,
µ ((i+ 1, 0)) = b, µ ((i, 1)) = c, µ ((i− 1, 0)) = d (consult Fig. 3(a) for illustration). By
definition of D-labelling, the vertex (i+ 1, 1) should be labelled by label d, the vertex
(i−1, 1), by label b. After that, the vertices (i−2, 0) and (i+2, 0) should be labelled by
label c, the vertices (i−2, 1) and (i+2, 1), by label a (consult Fig. 3(b) for illustration).
We continue labelling in this fashion and obtain D-labelling of graph G∞,2 with four
type of labels.

Let us check if this labelling is traversable. For the subgraph shown in Fig. 3(b),
the equality µ ((i, 0)) = µ ((i+ 2, 1)) = a holds. Regardless of which vertex (i, 0) or
(i+2, 1) the automaton is on, its movement to a vertex with label b is the movement in
the direction (1, 0), and its movement to a vertex with label d is the movement in the
direction (−1, 0). But in the case of the vertex (i, 0), the automaton movement to the
vertex with label c is a movement in the direction (0, 1), and in the case of the vertex
(i+ 2, 1), the movement in the direction (0,−1). Therefore, four different labels is not
enough for a minimal traversable D-labelling of the graph G∞,2.

A traversable D-labelling of the graph G with five types of labels exists due to the
fact that G(∞,2) is a subgraph of the graph G∞. This finished the proof. �
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Theorem 3. For a minimal traversable deterministic labelling of P∞ it is necessary
and sufficient to have three types of labels.

Proof. Consider an embedding of graph P∞ on the one-dimensional grid Z × Z1.
For any vertex v of graph P∞ the equality

∣∣O(v)

∣∣ = 3 holds. Therefore three types of
labels needed for D-labelling of closed neighbourhood of this vertex. We will choose an
arbitrary vertex v of the graph P∞. Let O(v) = {v, r, t}, µ(r) = a, µ(v) = b, µ(t) = c,
{a, b, c} ⊆ M . Next let h ∈ O(r) and q ∈ O(t), then vertex h is at a distance of 4 from
vertex t and can be labelled by label c. Similarly vertex q is at a distance of 4 from
vertex r and can be labelled by label a. We continue labelling in this fashion and obtain
D-labelling of graph P∞ with three type of labels. Therefore, such labelling is minimal.

Let (i, 0) ∈ Z×Z1 be an arbitrary vertex of embedded graph P∞ with minimal D-
labelling. By definition of D-graph it follows that µ ((i, 0)) ̸= µ ((i+ 1, 0)), µ ((i, 0)) ̸=
µ ((i+ 2, 0)) and µ ((i+ 1, 0)) ̸= µ ((i+ 2, 0)). As shown above µ ((i, 0)) = µ ((i+ 3, 0)).
Since the vertex (i, 0) is chosen arbitrarily, it follows from the last equality that the
minimal D-labelling of the graph P∞ is periodic in the direction 3.

Next we prove that the minimal D-labelling of graph P∞ is traversable. Without loss
od generality we can assumeM = {0, 1, 2}. In this case if µ(v) = a, a ∈M , then vertices
adjacent to v have labels b = a ⊕3 1 and c = a ⊕3 (−1), where ⊕3 denotes addition
modulo 3. Using this labelling, an automaton can move in two opposite directions,
which we will nominally call ”east” and ”west”. Let the automaton is on a vertex with
label a. Moving eastward the automaton every time moves to a vertex with label b, and
moving westward, to a vertex with label c.

Let the automaton only moves eastward (or only westward), then the equality v(t+
T ) − v(t) = v(t + 2T ) − v(t+ T ) holds for T = 1 for any time moment t. This means
that directional movement of the automaton is uniform. This finished the proof. �

4. Capabilities of a single automaton upon traversing G∞.
The infinite grid graph after constructing a minimal traversable deterministic la-

belling on it and fixing two pairs of opposite directions on it becomes an analogue of
an infinite mosaic labyrinth without holes [1, 2]. The key problem for automata and
labyrinths is the problem of constructing a finite automaton that traverse a given class
of labyrinths, that is, an automaton in the initial state is placed at any vertex of any
labyrinth from this class, and must visit all vertices of this labyrinth up to some moment
of time [9]. We say that automaton traverse infinite graph G∞ if it visits any randomly
selected vertex of the graph in a finite time. In his paper [10], Andzhan prove that
a collective of one automaton and three pebbles can traverse infinite mosaic labyrinth
without holes and any collective with fewer pebbles cannot. We will show that methods
and algorithms proposed in this work can be used to traverse infinite grid D-graph after
modification associated with a changed concept of direction.

Theorem 4. Any single automaton cannot explore D-graph G∞.
Proof. Let automaton A infinitely moves along D-graph G∞. We first prove that

there are at least two labels such that the automaton visits the vertices labelled with
these labels infinitely many times whatever its trajectory. Without loss of generality we
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can assume M = {a, b, c, d, e} and graph G∞ is marked as shown in Fig.4(a). Assume to
the contrary that there is an infinite trajectory of automaton such that the number of
entries in corresponding word is finite for any label. Let the automaton no longer visits
vertices with label e from moment of time t1 but visits vertices with labels a, b, c, and
d (consult Fig. 4(b) for illustration). Next, let the automaton no longer visit vertices
with label d from moment of time t2 but visits vertices with labels a, b, and c (consult
Fig. 4(c) for illustration). Finally, let the automaton no longer visit vertices with label
c from moment of time t3 but visits vertices with labels a and b (consult Fig. 4(d) for
illustration). Since the automaton moves infinitely, we have that it will endlessly move
between two adjacent vertices with labels a and b from moment of time t3. No further
number of labels reduction possible. We have arrived at a contradiction. Hence the
automaton visits the vertices with the same label infinitely many times when moving
along the graph. Among them there exists vertices vi and vj on which the automaton
A are in the same internal state. Since the behaviour of A depends only on internal
state it follows that A will move from vertex v(j) in the same direction as from vertex
v(i) i.e. µ (v(j + 1)) = µ (v(i+ 1)). Then v(j + 1) − v(i + 1) = v(j) − v(i). From the
obvious equality v (i+ (j − i)) = v(i) + (v(j)− v(i)) it follows that v (t+ (j − i)) =
v(t) + (v(j)− v(i)) holds for all t > i.
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Fig. 4. Reduction of the number of labels using in automaton movement. (A) no reduction, (b) after
the ban on use ”e”, (c) after the ban on use ”d” and ”e”, (d) after the ban on use ”c”, ”d”, and ”e”.

We next prove that periodic trajectory of the automaton is inside some half-stripe.
Let us draw a line l passing through the vertices vi and vj mentioned above. It follows
from above that this line will passing through infinite amount of vertices belonging
to the trajectory of the automaton A. Line l divides graph D∞ into two half-grid
subgraphs. Let us choose any of these subgraphs and find on it a vertex that belongs to
the trajectory of the automaton and is the most distant from line l. We will draw a line
passing through this vertex and parallel to the line l. This line is the first bound of the
desired half-stripe. Since the trajectory of automaton is periodic, it follows that there
are infinitely many vertices belong to both first bound and trajectory of automaton.
The bound of the second half-stripe is drawn on the other subgraph in a similar way.
Finally let us draw a line perpendicular to the bounds and passing through initial
vertex of the trajectory of automaton. The set of vertices bounded by these lines forms
desired half-stripe. From the obvious fact that any half-stripe don’t cover graph 1, it
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follows that the statement of the theorem is true. This finished the proof. �
Corollary 4.1. Any single automaton cannot explore D-graphs G(+∞,∞) and G(∞,n).
5. Capabilities of automaton with one pebble upon traversing G∞.
The impossibility to explore D-graph G∞ by a single automaton poses the problem

of possible enrichment of the automaton model which is able to solve exploration
problem. Several enrichments are suggested. One of the most natural approaches is
to give the automaton an ability to place additional labels on the vertices of the graph
(or paint the vertices in some colours) [9]. In essence, the ability to colour vertices means
that the automaton possesses an unbounded external memory, which greatly increases
its possibilities. Another enhancement of a single automaton is a system of interacting
automata referred to as a collective. In contrast to a single automaton a collective
analyses a graph with regard for positions of its members there. If some members
of the collective are automata of the simplest form whose positions are completely
determined by the remaining automata of the collective then these simplest automata
are called pebbles.

Theorem 5. Any collective of one automaton and one pebble cannot explore D-
graph G∞.

Proof. Consider a collective of one automaton A0 and one pebble A1. The proof is
by case analysis. There are two cases:

1. A0 and A1 move together all the time.
2. A0 can move away from A1.
Case 1: Suppose that automaton A0 and pebble A0 move together all the time.

Then collective (A0, A1) operates like single automaton and cannot explore D-graph
G∞ by Theorem 4.

Case 2: Suppose that automaton A0 can move away from pebble A1. This case splits
into two subcases:

Case 2.1: A0 and A1 are together at the same vertex infinitely many times.
Case 2.2: A0 and A1 are together at the same vertex only a finite number of times.
Case 2.1: Suppose that automaton A0 and pebble A1 are together at the same vertex

infinitely many times. Consider the infinite sequence of vertices on which A0 and A1

meet each other. In this sequence there is an infinite subsequence consisting of vertices
with the same label. Among these vertices there are vertices v(i) and v(j), i < j, on
which the automaton was in the same internal state. Since the behaviour of collective
(A0, A1) depends only on the state of automaton A0 it follows that collective (A0, A1)
will move from vertex v(j) in the same direction as from vertex v(i). As in the proof of
Theorem 4 we obtain that trajectory of collective (A0, A1) is periodic. Therefore this
collective cannot explore D-graph G∞.

Case 2.2: Suppose that automaton A0 and pebble A1 are together at the same
vertex only a finite number of times. Let v(k) be the last vertex on which A0 and A1

were together. Then there exists two moments of time t′ and t′′, k < t′ < t′′, such that
automaton A0 is in the same internal state on the vertices v (t′) and v (t′′), µ (v (t′)) =
µ (v (t′′)). As in the proof of Theorem 4 we obtain that trajectory of automaton A0 is
periodic. Therefore collective (A0, A1) cannot explore D-graph G∞.
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This finished the proof. �
Corollary 5.1. Any collective of one automaton and one pebble cannot explore any

deterministic stripe graph.
6. Capabilities of automaton with two pebbles upon traversing G∞.
Theorem 6. Any collective of one automaton and two pebble cannot explore D-

graph G∞.
Proof. The idea of the proof is similar to that of Theorem 3 in [10]. Let automaton

A0 and pebbles A1, A2 are placed on the vertex v(0) at the initial moment of time
t = 0. Let predicate R0,1(t) denote that A0 and A1 are on the same vertex at the
moment of time t, and predicate R0,2(t) denote the similar statement for A0 and A2.
We will denote by s(t) the inner state of automaton A0 at the moment of time t. By
D1,2(t) denote the distance between A1 and A2 at the moment of time t.

If R0,1(t) holds only for a finite amount of natural t then after last rendezvous with
A2 the automaton A0 and the pebble A2 operate like a collective of one automaton and
one pebble. Therefore this collective cannot explore D-graph G∞ by Theorem 5 and
the statement of the theorem is satisfied. The same reasoning applies to the case where
R0,2(t) holds only for a finite amount of natural t. Further, we assume that R0,1(t) and
R0,2(t) hold for an infinite amount of natural t.

Suppose the distance between A1 and A2 does not exceed a certain constant C
while the collective (A0, A1, A2) operates on the graph G∞, i.e. there exists an infinite
amount of moments of time ti, i = 1, 2, . . . , such that D1,2 (ti) < C. Let v1 (ti) and
v2 (ti) denote the vertices where the pebbles A1 and A2 are placed at the moment of
time ti. Consider the pairs (v2 (ti)− v1 (ti) , s (ti)). Since v2 (ti)−v1 (ti) is an integer pair
and |v2 (ti)− v1 (ti)| = D1,2 (ti), it follows that amount of different pairs v2 (ti)−v1 (ti)
is finite. Hence the amount of different pairs (v2 (ti)− v1 (ti) , s (ti)) is finite too and
there exists two equal pairs in the infinite sequence of such pairs. This means that the
trajectory of the collective (A0, A1, A2) is periodic (the proof is similar to the proofs of
Theorem 4 and 5). Therefore this collective cannot explore D-graph G∞ in this case.

Suppose the distance between pebbles increases unlimitedly with increasing t. Con-
sider the behaviour of automaton A0 in very moment t > T0 when D1,2(t) is greater
than the number of internal states of A0. From the above it follows that automaton A0

moves from the pebble A1 to the pebble A2 and returns back. Let R0,1(t1) and R0,2(t2)
holds, t1 < t2, automaton A0 moves from A1 to A2 and does not meet the pebbles in
the time interval between t1 and t2. Hence in the time interval from t1 to t2 automaton
operates without pebbles. By Theorem 4 in this time interval trajectory of A0 is inside
some half-stripe. This half-stripe is said to be the transition half-stripe. The direction
of transition half-stripe depends only on s (ti). Since the amount of inner states of A0 is
finite, we have the amount of transition half-stripes different in directions is finite too.
The width of the half-stripes can be bounded by some constant C. The same conclusion
can be drawn for the transition half-stripes from A2 to A1.

Let R0,1 (t3) holds and A0 does not meet A1 in time interval between t2 and t3 i.e.
R0,1 (t3) is the first rendezvous A0 and A1 after R0,1 (t1). We shall show that during
the time interval from t1 to t3 the pebble A2 will move a distance no more than the
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amount n of inner states of A0. In fact, A2 can only move with A0. If A2 has moved
a distance greater than n, then A0 has moved with A2 more than n times. Then at
least twice A0 has transited to the same inner state during the movements with A2.
Therefore, by Theorem 5, the trajectory of the collective (A0, A2) is periodic and A0

does not depart from A2 further than the distance n. Hence at the moment of time t3
(for which R0,1 (t3) holds) the pebbles A1 and A2 are at a distance less or equal to n
from each other, which is impossible by assumption.

Let us prove that there exists T1 >

α

v t( )2v t( )1 B

Fig. 5. A rational angle α between directions of
half-stripes.

T0 such that the directions of all arising
transition half-stripes coincide with an ac-
curacy of 180◦ for all t > T1. Suppose the
contrary, the directions of two consecutive
transition half-stripes are not opposite. Let
B denote the half-stripe arising from mo-
vement of A0 from A1 to A2. Assume A1

stays on the vertex v (t1) and A0 meets
with A2 on the vertex v (t2) for the first time after t1, t1 < t2. From the above it
follows that automaton A0 can move the pebble A2 at a distance of no more than n
from its current vertex v (t2). Consider all vertices at a distance of no more than n
from v (t2). One of these vertices belongs to the second of the considered transition
half-stripes. Since the width of all transition half-stripes is bounded by constant C, we
have that trajectory of A0 back to A1 is entirely inside a half-stripe with a width at
most 2C + 2n and a direction not opposite to that of the half-strip B. It is clear that
this half-stripe include the vertex v (t1) iff D1,2 (t1) does not exceed an upper bound
which depends only on a rational angle α between directions of half-stripes (consult
Fig. 5 for illustration). Since automaton A0 is finite, we have that amount of half-stripes
different in direction is finite too. Hence the amount of different angles α is also finite.
It follows that automaton A0 will not return to A1 with a sufficiently large D1,2 (ti).
The resulting contradiction proves that directions of all transition half-stripes coincide
with an accuracy of 180◦ from some moment of time.

Further, we will consider the behaviour of the collective (A0, A1, A2) only for t > T1.
The only direction of the transition half-stripes at this time is called the main direction.

Let R0,1 (t1), R0,2 (t2), R0,1 (t3), R0,2 (t4) hold, t1 < t2 < t3 < t4, and during time
intervals (t1, t2), (t2, t3) and (t3, t4) the automaton A0 does not meet the pebbles A1

and A2. Assume that s (t1) = s (t3). The automaton A0 leaves the pebble A1 on its
current vertex and moves along periodic trajectory to the pebble A2. A rendezvous of
A0 and A2 can occur generally anywhere in the period of trajectory. Hence the states
of the automaton can differ at time moments t2 and t4. It follows that interaction of A0

and A2 and return to A1 can differ too. The same departure leads to the same arrival
iff the automaton trajectory differs only by an integer number of periods in both cases.
Here we say that period is the automaton A0 displacement vector and denote by f⃗ .
This vector is parallel to the main direction. Let F⃗ be a vector which connects current
vertices of the pebbles A1 and A2. We will subtract f⃗ from F⃗ until we get a vector
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with minimal projection on the main direction. This vector we will call the remainder
of vector F⃗ from dividing by vector f⃗ and denote by rest(t). Since the beginning and
the end of vector f⃗ have integer coordinates, we have that the amount of remainders is
finite. From the foregoing it follows that state s (t2) is completely determined by state
s (t1) and the remainder of vector F⃗ from dividing by vector f⃗ .

We will build a normal h to the main direction. Let us fix on h positive direction,
starting point and scale coinciding with the scale on the coordinate axes. By r(t) denote
the difference between the numerical values of the projections of the vertices v1(t) and
v2(t) on the axis h. Since for t > T1 the direction of the half-stripe transition is constant,
their width is bounded, the main direction forms with the coordinate axes an angle with
a rational tangent, automaton A0 moves the pebble at a distance of less than n for one
approach, we have that r(t) can take only a finite amount of different values.

Consider the moments of time t1 < t2 < t3 . . . at which R0,1 (t1), R0,1 (t2) , . . . hold.
Let P (i) = (s (ti) , r (ti) , rest (ti)), i = 1, 2, . . . . From the above it follows that P (i+1)
is completely determined by P (i). Since every component of triple P (i) takes only a
finite amount of values, we have that there are a finite amount of such triples. Hence
there exists two equal triples among them.

Let P (k) = P (l), k < l, and v0(t) denote the vertex where the automaton A0 is at
moment of time t. The following two cases are possible.

Case 1: the projections of the vertices v0 (tk) and

h

l
1

l2

Fig. 6. An angle that automaton
with two pebbles never exit.

Circles indicate the vertices v1 (tq)

and v1 (tu). Squares indicate the
vertices v2 (tq) and v2 (tu)

v0 (t) on the axis h are coincide with each other. Let
us project the trajectory of automaton A0 in the time
interval from tk to tl on the axis h. It is clear that the
trajectory will fit inside some finite segment. Let us
draw lines through the ends of this segment parallel to
the main direction. Since the automaton A1 at moment
of time tl + 1 will move in the same direction as at
moment of time tk + 1, at moment of time tl + 2 – in
the same direction as at moment of time tk + 2 etc.,
we have that afterwards automaton A0 will not move
outside the stripe bounded by these lines.

Case 2: the projections of the vertices v0 (tk) and
v1 (tl) on the axis h are differ from each other. It is

clear that P (l +m(k − l)) = P (k) holds for all natural n. Hence there exists q and u,
q < u, such that P (q) = P (u) and projections of v0 (tq) and v0 (tu) are at a distance
greater than 2n. Let projection of v0 (tu) on the axis h be to the right of projection
of v0 (tq). Therefore projection of v1 (tu) be to the right of projection of v1 (tq) and
projection of v2 (tu) be to the right of projection of v2 (tq). This follows from the fact
that automaton A0 moves a pebble at a distance of less than n for one approach (consult
Fig. 6 for illustration). Let us draw a line l1 parallel to the line passing through the
vertices v1 (tq) and v1 (tu) and another line l2 parallel to the line passing through the
vertices v2 (tq) and v2 (tu) so that all vertices visited by A0 until tv are inside angle
formed by lines l1 and l2. Automaton A0 will never exit from this angle.
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This finished the proof. �
Corollary 6.1. For every deterministic stripe graph, there exists a collective of one

automaton and one pebble, which explores this graph.
Corollary 6.2. For every deterministic angle graph provided that its value less

than 180◦, there exists a collective of one automaton and one pebble, which explores
this graph.

7. Capabilities of automaton with three pebbles upon traversing G∞.
Theorem 7. There exists a collective of one automaton and three pebbles which

explore D-graph G∞.
Proof. As the proof, we present algorithm for D-graphG∞ exploration by automaton

with three pebbles. The algorithm works as follows. In lines 1-5 automaton places
pebbles to initial locations (consult Fig. 1(a) for illustration). During infinite loop of
lines 6-27 automaton moves from pebble to pebble and places pebbles to new locations.
Algorithm 1. D-graph G∞ exploration by automaton with three pebbles.
Require: A0, A1, A2, A3 are placed on arbitrary vertex of D-graph G∞

Ensure: the trail of A0 visiting every vertex of G∞ at least once
1: A0, A1, A2, A3 move to the ’northern’ vertex
2: A0, A2, A3 move to the ’southern’ vertex
3: A0, A2, A3 move to the ’western’ vertex
4: A0, A3 move to the ’eastern’ vertex
5: A0, A3 move to the ’eastern’ vertex
6: loop
7: while A1 isn’t found on the current vertex do
8: A0 moves to the ’northern’ vertex
9: A0 moves to the ’western’ vertex

10: end while
11: A0, A1 move to the ’northern’ vertex
12: A0 moves to the ’southern’ vertex
13: while A2 isn’t found on the current vertex do
14: A0 moves to the ’western’ vertex
15: A0 moves to the ’southern’ vertex
16: end while
17: A0, A2 move to the ’western’ vertex
18: A0, A2 move to the ’southern’ vertex
19: A0, A2 move to the ’western’ vertex
20: while A3 isn’t found on the ’northern’ vertex do
21: A0 moves to the ’eastern’ vertex
22: end while
23: A0 moves to the ’northern’ vertex
24: A0, A3 move to the ’eastern’ vertex
25: A0, A3 move to the ’southern’ vertex
26: A0, A3 move to the ’eastern’ vertex
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27: end loop
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Fig. 7. The operation of Algorithm 1 on D-graph G∞. (A) after lines 1-5, (b) after first iteration, (c)
after second iteration. Star indicates the initial vertex. Circle, square and pentagon indicate the

current locations of A1, A2, A3, respectively.

To analyse the algorithm we need some notation. We will denote by v1(i), v2(i) and
v3(i) the vertices on which the pebbles A1, A2 and A2 are placed after the algorithm’s
i iteration. Also we will denote by [v1(i), v2(i)] the segment of the line passing through
the vertices v1(i) and v2(i). The line segments [v1(i), v3(i)] and [v2(i), v2(i)] are defined
similarly.

The main idea of the algorithm is to maintain an explored subgraph to which the
newly explored parts of the graph are merged. After some iteration of algorithm let
the automaton has already explored a connected subgraph of G∞ such that its inner
faces do not contain unvisited vertices. The set of all not-visited neighbours of visited
vertices is called the fringe. In the next iteration the automaton should visit all vertices
in the fringe and add them to explored subgraph. Not-visited neighbours of visited
vertices form a new fringe etc. It is clear that an arbitrary fixed vertex of the graph will
be visited over time proportional to the distance from this vertex to the initial vertex.

We proceed by induction on the number of algorithm’s iterations. As a base case
observe that after the first iteration all vertices inside and on the sides of the triangle
bounded by [v1(i), v2(i)], [v1(i), v3(i)] and [v2(i), v3(i)] are already visited by automaton
A0 (consult Fig. 7(b) for illustration). For the inductive step, let k > 1 be an integer,
and assume that after the k iteration all vertices inside and on the sides of the triangle
bounded by [v1(k), v2(k)], [v1(k), v3(k)] and [v2(k), v3(k)] are already visited by auto-
maton A0. We want to show that the similar statement holds for k + 1 iteration. All
vertices on the line segment [v1(k + 1), v3(k + 1)] are ’northern’ neighbours of vertices
on the line segment [v1(k), v3(k)] except the vertex v3(k + 1) and ’eastern’ neighbour
of the vertex v3(k). A0 visits all these vertices due to the lines 7-11 and 24-26. All
vertices on the line segment [v1(k + 1), v2(k + 1)] are ’northern’ neighbours of vertices
on the line segment [v1(k), v2(k)] except the vertex v2(k+1) and ’western’ neighbour of
the vertex v2(k). The vertex v1(k + 1) has been visited earlier. A0 visits all remaining
vertices due to the lines 13-19. All vertices on the line segment [v2(k + 1), v3(k + 1)] are
’southern’ neighbours of vertices on the line segment [v2(k), v3(k)]. The vertex v2(k+1)
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has been visited earlier. A0 visits all remaining vertices due to the lines 20-26. This
completes the proof. �

8. Conclusion.
This work proposes the vertex labelling of the infinite square grid graph, due

to which the graph-walking automaton can move along it in any arbitrarily chosen
direction. It is shown that a collective of one automaton and three pebbles can explore
infinite square grid graph with such labelling and any collective with fewer pebbles
cannot. The results regarding to exploration of the infinite square grid graph coincide
with the results of A.V. Andzhan (Andzans) regarding to traversal of the infinite mosaic
labyrinth without holes. It is shown that infinite grid graph after constructing this
labelling and fixing two pairs of opposite directions on it becomes an analogue of an
infinite mosaic labyrinth without holes. For further investigation, the question of the
minimum amount of different label types needed for the labeled square grid graph to
be traversable by graph-walking automaton is of interest.
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С.В. Сапунов
Колективи автоматiв на детермiнованому нескiнченому графi решiтки.

Автомати, якi пересуваються по графах, є математичною формалiзацiєю автономних мобiль-
них агентiв з обмеженою пам’яттю, що функцiонують у дискретних середовищах. В рамках цiєї
моделi виникла та iнтенсивно розвивається велика область дослiджень поведiнки автоматiв в
лабiринтах (лабiринти є орiєнтованими графами спецiального виду, якi укладено на двовимiрнiй
цiлочисловiй решiтцi). Дослiдження з цього напрямку отримали великий спектр застосувань,
наприклад, в задачах аналiзу зображень та навiгацiї мобiльних роботiв. Автомати, що функ-
цiонують у лабiринтах, можуть розрiзняти напрямки, тобто вони мають компас. У цiй роботi
розглядається вершинна розмiтка графа квадратної решiтки, завдяки якiй скiнчений автомат
без компаса може пересуватися по графi у довiльному напрямку. Автомат отримує на свiй вхiд
позначки усiх вершин iз замкненого околу поточної вершини та пересувається помiж сумiжни-
ми вершинами, обираючи цiльову вершину за її позначкою. У роботi запропоновано так звану
мiнiмальну детермiновану прохiдну розмiтку, яка задовольняє шуканiй властивостi. Розмiтка
називається детермiнованою, якщо усi вершини iз замкненого околу будь-якої вершини графа
мають рiзнi позначки. Доведено, що мiнiмальна детермiнована прохiдна вершинна розмiтка гра-
фу квадратної решiтки потребує п’ять рiзних типiв позначок. Також мiнiмальнi детермiнованi
прохiднi розмiтки пiдграфiв графу квадратної решiтки, ступiнь яких менше чотирьох. Основною
задачею про автомати та лабiринти є задача про побудову скiнченого автомата, який обходить
заданий клас лабiринтiв. Казатимемо, що автомат обходить нескiнчений граф, якщо вiн вiдвi-
дує будь-яку довiльно обрану вершину графа за скiнчений час. Доведено, що колектив, який
складається з одного автомата та трьох каменiв, обходить нескiнчений граф квадратної решiт-
ки з заданою на ньому мiнiмальною детермiнованою прохiдною розмiткою, а нiякий колектив
з меншим числом каменiв цього зробити не може. Камiння розглядається як автомати найпро-
стiшого виду, пересування яких цiлком визначається iншими автоматами колективу. Результати
стосовно обходу нескiнченого позначеного графа квадратної решiтки збiгаються з результатами
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А.В. Анджана стосовно обходу нескiнченого мозаїчного лабiринту без дiрок. Таким чином граф
квадратної решiтки пiсля побудови на ньому мiнiмальної детермiнованої прохiдної розмiтки та
фiксацiї двох пар протилежних напрямкiв стає аналогом нескiнченого мозаїчного лабiринту без
дiрок.

Ключовi слова: граф квадратної решiтки, графохiдний автомат, розмiтка вершин, колектив
автоматiв.
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