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COLLECTIVES OF AUTOMATA ON INFINITE GRID GRAPH WITH
DETERMINISTIC VERTEX LABELING

Automata walking on graphs are a mathematical formalization of autonomous mobile agents with
limited memory operating in discrete environments. Under this model broad area of studies of the
behaviour of automata in finite and infinite labyrinths (a labyrinth is an embedded directed graph
of special form) arose and intensively developing. Research in this regard received a wide range of
applications, for example, in the problems of image analysis and navigation of mobile robots. Automata
operating in labyrinths can distinguish directions, that is, they have a compass. This paper examines
vertex labellings of infinite square grid graph thanks to these labellings a finite automaton without a
compass can walk along graph in any arbitrary direction. The automaton looking over neighbourhood
of the current vertex and may move to some neighbouring vertex selected by its label. We propose a
minimal deterministic traversable vertex labelling that satisfies the required property. A labelling is
said to be deterministic if all vertices in closed neighbourhood of every vertex have different labels.
It is shown that minimal deterministic traversable vertex labelling of square grid graph uses labels
of five different types. Minimal deterministic traversable labelling of subgraphs of infinite square grid
graph whose degrees are less than four are developed. The key problem for automata and labyrinths
is the problem of constructing a finite automaton that traverse a given class of labyrinths. We say
that automaton traverse infinite graph if it visits any randomly selected vertex of this graph in a finite
time. It is proved that a collective of one automaton and three pebbles can traverse infinite square grid
graph with deterministic labelling and any collective with fewer pebbles cannot. We consider pebbles as
automata of the simplest form, whose positions are completely determined by the remaining automata
of the collective. The results regarding to exploration of an infinite deterministic square grid graph
coincide with the results of A.V. Andzhan (Andzans) regarding to traversal of an infinite mosaic
labyrinth without holes. It follows from above that infinite grid graph after constructing a minimal
traversable deterministic labelling on it and fixing two pairs of opposite directions on it becomes an
analogue of an infinite mosaic labyrinth without holes.
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Introduction

Automata walking on graphs are a mathematical formalization of autonomous mobile
agents with limited memory operating in discrete environments. Under this model broad
area of studies of the behaviour of automata in finite and infinite labyrinths (a labyrinth
is an embedded directed graph of special form) arose and intensively developing [1,
2]. Research in this regard received a wide range of applications, for example, in the
problems of image analysis and navigation of mobile robots [3]. The results for automata
and labyrinths are based on the important assumption that automata operating in
labyrinths can distinguish directions, that is, they have a compass [4,5]. This paper
discusses automata without compass, that is, they do not distinguish between the
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directions and relative positions of the vertices. Such restriction of capabilities makes
the behaviour of automata on the graph much more complicated. For example, the
problem of preserving the movement direction on the graph is trivial for an automaton
with a compass, but for an automaton without a compass it requires using additional
equipments and development of methods for their usage [6]. This poses the problem
of enrichment of the graph model (by adding some preferably minimal properties) to
ensure that the automaton could move along graph in any arbitrarily chosen direction.
The most natural enhancement of a graph is to label its structural elements: vertices,
edges, incidentors, etc. The automaton gets an opportunity to read labels in a local
neighbourhood of the current vertex and use them for movement. This article deals
with the vertex-labelled graphs.

1. Problem formulation.

This paper sets out to consider two related problems.

1) Let some labels (colours) be assigned to the vertices of the square grid graph,
and let an automaton be able to receive at the input the label of the current vertex and
the labels of all vertices from its neighbourhood. The automaton can move between
adjacent vertices by selecting a target vertex by its label. Does there exists a vertex
labelling such that using it an automaton can move along a graph in any arbitrarily
chosen direction?

2) If the first is possible, then does there exists an automaton that traverse such
labelled graph, having the only ability to read the vertex labels from a closed neigh-
bourhood of the current vertex?

In addition to the question of labelling existence, there is the question of minimizing
the amount of label types that is also worth studying.

2. Basic definitions.

Let Z denote the set of integers, and let N denote the set of natural numbers. We
will use the symbol Z,, to denote the set {0,1,...,n — 1} for any n € N.

We will use standard terminology for graphs (we refer the reader to [7]).

The path graph P, is a tree with two nodes of vertex degree 1, and the other
n — 2 nodes of vertex degree 2. A l-way infinite path graph (or a ray) Pt is a
graph which isomorphic to the graph with vertex set {v; : ¢ =1,2,...} and edge set
{(vi,viy1) 11 =1,2,...}. A 2-way infinite path graph (or a double ray) P is a graph
which isomorphic to the graph with vertex set {v; : 4 =...,-2,—1,0,1,2,...} and edge
set {(vi,viy1) i =...,—2,-1,0,1,2,...}. An infinite two-dimensional grid graph G*°
is the graph cartesian square of 2-way infinite path graph. A 2-way infinite ladder graph
G(:2) ig the graph cartesian product of P and P. A rectangle graph G(»™) is the
graph cartesian product of P, and F,,.

We will use the embedded square grid graph, which vertices corresponds to the
distinct points of the integer lattice Z? and two vertices are connected by an edge if
and only if the corresponding points are at distance 1. Suppose that the name of the
vertex of the embedded graph is the coordinates of the corresponding point on the
plane. A half-grid graph is the subgraph of the embedded graph G*° induced by the set
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of vertices lying on one side from an infinite straight line including vertices that are on
the line. The line is called the half-grid boundary. An angle graph is the subgraph of
the embedded graph G*° induced by the set of vertices that are between two different
half-lines sharing a common starting vertex including vertices that are on half lines.
Half-lines are called the sides of the angle, and their common vertex is called the vertex
of the angle. The value of the angle is the value of the geometric angle between its
sides. A stripe graph is the subgraph of the embedded graph G*° induced by the set
of vertices that are between two parallel lines including vertices that are on lines. The
lines are called the borders of the stripe, their direction is called the direction of the
stripe, and the distance between them is called the width of the stripe. A half-stripe
graph is the subgraph of a stripe graph induced by the part of the stripe vertices that
are on one side from a straight line crossing the stripe borders. A segment of this line,
enclosed between the borders of the stripe, is called the end of the half-stripe.

A labelled graph is a simple connected vertex-labelled graph G = (V, E, M, u),
where V' is a set of vertices, F is a set of edges, M is a set of labels, u : V — M is
a surjective labelling function. The open neighbourhood O, of a vertex v € V is the
set of all vertices adjacent to v. A neighbourhood in which v itself is included, called
the closed neighbourhood and denoted by O,). A multiset of labels of all vertex from
O(y) is called the labelling of vertex v neighbourhood and denote by p (O,). A walk in
graph G is a series of vertices p = v; ... vy such that (v;,vi41) € E, i =1,...,k — 1.
The positive integer k (the number of vertices) is the length of p. The label u(p) of the
walk p is a word w = p (v1) ... u(vg) in label alphabet M. We say that the word w is
defined by the vertex ;.

A graph-walking automaton on labelled graph G is a sextuple A = (S, X, Y, so, ¢, ),
where S is a finite set of internal states, X = {(ao, {a1,...,ax})|a; € M,0 <i <k} is
a finite input alphabet (ag is a current vertex label, {aj,...,a;} is a set (or multiset)
of labels of all vertices on the current neighbourhood, & is a degree of the current
vertex), Y = M is a finite output alphabet (y = a means that the automaton moves
from the current vertex to an adjacent vertex with the label a), sg € S is the initial
state, ¢ : S x X — S is a transition function, ¢ : § x X — Y is an output function.
Automaton operates as follows: observes the labelling of current vertex neighbourhood,
chooses some label, and moves to the vertex with this label. The automaton does not
have a compass, that is, it does not distinguish directions and relative position of
vertices. Therefore, it does not distinguish vertices with the same labels. It is shown
in [6] that automaton without additional resources cannot maintain movement direction
on the graph all whose vertices are unlabelled or, equivalently, are labelled with the
same label. Let an automaton A at a moment of time ¢ be at a vertex v(t) of the
embedded graph G*°. The automaton movement is called uniform and directional if
there exists natural period 7" such that v(t +7) — v(t) = v(t +27T) —v(t +T') holds for
any moment of time t.

We will consider a collective of interacting automata A = (A, ..., A;,). In addition
to information about labelling each automaton A; also receives information about
presence of other automata from collective in the closed neighbourhood of current
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vertex. We call A the collective of automata without a compass if any component of .4
is an automaton without a compass. Further we will consider only such collectives.

Let J C {1,...,m}. A subsystem (4;),_; of the collective A of interacting automata
is called the pebbles in collective A if for all j € J the following conditions hold: (1)
Aj; has a single inner state; (2) A; can only move if there is an automaton A; (i € J)
on the same vertex, and A; can only move to the same vertex as A;. For non-pebble
automata pebbles play the role of external memory.

We will provide more precise definitions. Here P(S) denotes the set of all subsets
of an arbitrary set S. Let I be a set of indices, and let {S;|i € I} be a family of sets.
We will denote by 7T ({S;|i € I}) the set of all partial transversal of this family and
by definition partial transversal contains no more than one element from each S;. Note
that the empty set is also a partial transversal.

The collective A = (A, A1, ..., Ap,) consisting of one automaton Ag and m pebbles
A1, ..., Ay is called the collective of interacting automata of type (1,m).
Let I = {0,1,...,m}. Each automaton A; from collective A is a sextuple

A = (SZ-, X, Y5, 88, i, ¢i), where S; is a finite set of internal states, X; = {(«ap, {a, ...,
ai}) ag,ar, ..., ap € M x T ({S;]j € I'\ {i})} is a finite input alphabet (here ay
denotes the label of the current vertex (pri (agp)) and automata placed on it (pre (avp)),
and multiset {aq,...ax} denotes the labels of vertices from neighbourhood of current
vertex and automata placed on them); Y; = M x P (I \ {i¢}) U{h} is a finite output
alphabet (here y = h means "stay at the current vertex”, y € Y; \ {h} means "move
to the vertex with label pri (y), on which there are automata from the list pry (y) and
only they”, pro(y) = @ means that there are no other automata in the target vertex);
36 € 5; is an initial state; ¢; : S; X X; — S; is a transition function; ¢; : S; X X; = Y;
is an output function. For any pebble A;, 1 < j < m the following conditions are true:

(1) S; = {sé}; (2) for any = (o, {a1,...,0x}) € X either 1 (s%,ac) = h, or if
) (sé,w) =y # h, then there exists s € Sy such that s € pro (o) and vy (s,2') = v,

where 2/ = ((pr1 (c0) , (72 (a0) \ {s) U {4 }) . {en, - o).
The behaviour of collective A = (Ao, A1,..., Amy1) of type (1,m) on graph G

is the sequence 7 (A, G): (Zo,80,0)s - (Zt, 84, Ut), (Zes+1, St+1, Yet1), ..., where Ty =
1 m+1 J J J J s — (ol m+1 J =
(l’t,...,l‘t ),a? = (o, 101, }) € Xj, st—(st,...,st ),stESj U =

(ytl,...,ythrl), y; € Y; (0<j <m)such that s}, = p; (sg,xi), Yri1 = U; (Si,mg)
Suppose that all automata from the collective A are placed on the same vertex of
the graph G at the initial moment of time.

3. Vertex labelling sufficient for directional movement.

Consider an embedding of graph G™ on the plane Z2. Let’s choose two pairs of
opposite directions on graph G corresponding to the abscissas and ordinates axes
of the plane Z2. We call these directions basic. It easy to check that the movement
of the automaton in any fixed direction different from the basic can be represented
as a combination of moves in the basic ones by increasing the number of states of
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the automaton. Hence we can restrict ourselves to considering automata moving only
in the basic directions. A labelling is said to be periodic in direction (q,r) € Z? if
p(i+q,7+r)=p(i,j) for all i,j € Z. We call a labelling traversable if by using it an
automaton can move along graph in any directions. A vertex labelling that minimize
the number of labels needed for a given graph G is called a minimum vertex labelling
of G.

We call a labelling function p deterministic (or D-labelling) if all vertices in closed
neighbourhood of any vertex have different labels. A labelling graph with deterministic
labelling function is said to be deterministic (or D-graph). In [8] it is proved that
following properties follow from the D-graph definition: (1) for any graph vertex any
word in alphabet M defines no more than one path from this vertex; (2) the distance
between two vertices with the same labels greater than or equal to 4. These properties
enable targeted movement of a graph-walking automaton along D-graph. For example,
if we know labels of the paths connecting the vertices of the graph with each other,
then we can construct an automaton which can move along these paths.

Theorem 1. For a minimal traversable deterministic labelling of G*™ it is necessary
and sufficient to have five types of labels.

Proof. Consider an embedding of graph G on the plane Z2. For any vertex v
of graph G*° the equality ‘O(v)‘ = 5 holds. Therefore five types of labels needed for
D-labelling of closed neighbourhood of this vertex. Let M = {a,b,c,d,e}. We will
choose an arbitrary vertex (i,j) of embedded graph G*° and define the labelling of
neighbourhood of this vertex as follows: p ((4,5)) = a, p((i +1,5)) =b, p((i,5+ 1)) =
e, p((i—1,7)) =d, p((i,5 —1)) = e (consult Fig. 1(a) for illustration). By definition
of the D-labelling it follows that vertex (i + 1,7 4+ 1) must be labelled with either label
d or label e. Let pu((i4+ 1,5+ 1)) = e. Then, by definition of D-labelling, it follows
that ((i —1,j+1))=b, u((t —1,j—1)) =c,and p((¢ +1,j — 1)) = d. We continue
labelling in this fashion obtaining p ((i +2,j)) = ¢, p((4,5+2)) =d, p((1 — 2,j)) = ¢,
p((i,7 —2)) = b (consult Fig. 1(b) for illustration).

Note that after performing these steps for each label from M there exists a vertex
labelled by this label such that all vertices from its neighbourhood are already labelled.
For the label a it is the vertex (i, j), for the label b, the vertex (i + 1, 7), for the label
¢ , the vertex (i,7 + 1), for the label d, the vertex (i — 1,j), and for the label e, the
vertex (i, 7 — 1). Using labelling of the neighbourhoods of these vertices as the patterns
for further labelling, we obtain a deterministic subgraph of the graph G*°, shown in
Fig. 1(c).

For labelling of neighbourhood of vertex (i + 2,7 + 2), p((i +2,5+2)) = b, we
will use corresponding pattern i.e. the labelling of the neighbourhood of the vertex
(t+1,7), p((i+1,5) =p((i+2,j+2)). Vertex (i + 3,7 + 2) will labelled by label ¢
as a result. Note that u ((i + 3,7 +2)) = p((i — 2,5 + 2)). We will continue labelling by
using corresponding patterns and obtain that p((i +3,7+1)) = p((i —2,7+1)) =
a, p((i+3,7) = p((@—=2,7) = e p((i+3,j-1)) = p((i—2,j-1)) = b, and
p((i+3,7—2))=p((i —2,7 —2)) =d. Itis easy to check that p ((i,7)) = u ((¢ + 5k, 7))
holds for all 7, j, k € Z provided that corresponding labelling patterns are used. Similarly
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J*2
Jr1

Jj—1
J=2

Fig. 1. A minimal D-labelling of graph G*°.

we obtain that p((¢,7)) = p((¢,7 + 50)) holds for all 4, 7,1 € Z provided that corres-
ponding labelling patterns are used. It follows from above that we can construct D-
labelling of graph G*° provided that corresponding labelling patterns are used. Thus,
it is necessary and sufficient to have labels of five different types to construct a minimal
D-labelling of the graph G*°.

Fig. 2. A minimal traversable D-labelling of graph G*°.

We next prove that the minimal D-labelling described above is traversable. Without
loss of generality we can assume that a =0,b=1, c=2,d =4, ¢ = 3. We will define
labelling of neighbourhood of any vertex (i, j) of embedded graph G* by the following
condition: if 4 ((i,7)) =x,x € M, then p((i +1,7)) = 2®s51, u((i — 1,5)) = x5 (—1),
w((@,j+1)x @52, p((i,j—1)) = = &5 (—2), where @5 denote modulo 5 addition
(consult Fig. 2 for illustration). Let graph G*° labelled in accordance with the above
rule. Since the automaton “sees” only vertex labels and not their names, it follows that
we must set the directions on the D-graph G*° in the language "understandable” to the
automaton. Let the automaton is on the vertex (i,j) with label a € M. We will say
that the vertex with label a @5 1 (i.e. the vertex (i + 1,7)) is in the "east”, the vertex
with label a @5 (—1) (i.e. the vertex (i — 1, 7)) is in the "west”, the vertex with label
a®s52 (i.e. the vertex (i, j+1)) is in the "north”, and the vertex with label a®s (—2) (i.e.
the vertex (i,j — 1)) is in the "south”. Then "east” denotes the direction (1,0), "west”,
the direction (—1,0), "north”, the direction (0,1), and "south”, the direction (0,—1).
Moving eastward the automaton every times moves to a vertex whose label is equal
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to the sum modulo 5 label of the current vertex and 1. The movements to the "west”,
“north” and ”“south” are determine similarly.

If the automaton only moves in one of four basic directions (“east”, "west”, "north”
or "south”) then the equality v(t +T) —v(t) = v(t +27T) —v(t + T) holds for T' =1
for any time moment ¢. This means that directional movement of the automaton is
uniform.

This finished the proof. [J

Corollary 1.1. For a minimal traversable deterministic labelling of any subgraph
of G°° with maximum degree 4 it is necessary and sufficient to have five types of labels.

Consider minimal traversable D-labellings of subgraphs of the graph G*°, whose
degrees are less than 4.

Theorem 2. For a minimal traversable deterministic labelling of G2 it is ne-
cessary and sufficient to have five types of labels.

Proof. Consider an embedding of graph G2 on the grid Z x Zs. For any vertex v
of graph G°? the equality ’O(U)} = 4 holds. Therefore four types of labels needed for
D-labelling of closed neighbourhood of this vertex.

299392 1233223

o~

N
+

i+2

1+1@
i+2 O
1+3.

(a) (b)

Fig. 3. A minimal D-labelling of graph G(*?.

Let M = {a,b,c,d}. We will choose an arbitrary vertex (i,0) of embedded graph
G2 and define labelling of neighbourhood of this vertex as follows: u((7,0)) = a,
p((i4+1,0)) =0b, n((i,1)) = ¢, p((: —1,0)) = d (consult Fig. 3(a) for illustration). By
definition of D-labelling, the vertex (i 4+ 1,1) should be labelled by label d, the vertex
(1—1,1), by label b. After that, the vertices (i —2,0) and (i+2,0) should be labelled by
label ¢, the vertices (i—2,1) and (i+2, 1), by label a (consult Fig. 3(b) for illustration).
We continue labelling in this fashion and obtain D-labelling of graph G2 with four
type of labels.

Let us check if this labelling is traversable. For the subgraph shown in Fig. 3(b),
the equality 1 ((¢,0)) = u((i +2,1)) = a holds. Regardless of which vertex (¢,0) or
(1+2,1) the automaton is on, its movement to a vertex with label b is the movement in
the direction (1,0), and its movement to a vertex with label d is the movement in the
direction (—1,0). But in the case of the vertex (¢,0), the automaton movement to the
vertex with label ¢ is a movement in the direction (0,1), and in the case of the vertex
(1 +2,1), the movement in the direction (0, —1). Therefore, four different labels is not
enough for a minimal traversable D-labelling of the graph G2,

A traversable D-labelling of the graph G with five types of labels exists due to the
fact that G(°2) is a subgraph of the graph G°°. This finished the proof. [J
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Theorem 3. For a minimal traversable deterministic labelling of P*° it is necessary
and sufficient to have three types of labels.

Proof. Consider an embedding of graph P°° on the one-dimensional grid Z x Z;.
For any vertex v of graph P*° the equality ‘O(U)| = 3 holds. Therefore three types of
labels needed for D-labelling of closed neighbourhood of this vertex. We will choose an
arbitrary vertex v of the graph P*>°. Let O(,) = {v,r,t}, u(r) = a, p(v) = b, pu(t) = c,
{a,b,c} € M. Next let h € O,y and q € O, then vertex h is at a distance of 4 from
vertex t and can be labelled by label c. Similarly vertex ¢ is at a distance of 4 from
vertex r and can be labelled by label a. We continue labelling in this fashion and obtain
D-labelling of graph P*° with three type of labels. Therefore, such labelling is minimal.

Let (i,0) € Z x Z1 be an arbitrary vertex of embedded graph P*° with minimal D-
labelling. By definition of D-graph it follows that p ((¢,0)) # p ((¢ +1,0)), p ((4,0)) #
w((i4+2,0)) and p ((2 +1,0)) # p ((i 4+ 2,0)). Asshown above 1 ((7,0)) =  ((i + 3,0)).
Since the vertex (7,0) is chosen arbitrarily, it follows from the last equality that the
minimal D-labelling of the graph P* is periodic in the direction 3.

Next we prove that the minimal D-labelling of graph P*° is traversable. Without loss
od generality we can assume M = {0, 1,2}. In this case if u(v) = a, a € M, then vertices
adjacent to v have labels b = a @3 1 and ¢ = a @3 (—1), where @3 denotes addition
modulo 3. Using this labelling, an automaton can move in two opposite directions,
which we will nominally call "east” and "west”. Let the automaton is on a vertex with
label a. Moving eastward the automaton every time moves to a vertex with label b, and
moving westward, to a vertex with label c.

Let the automaton only moves eastward (or only westward), then the equality v(t+
T)—v(t) =v(t+2T) —v(t + T) holds for T' =1 for any time moment ¢. This means
that directional movement of the automaton is uniform. This finished the proof. [

4. Capabilities of a single automaton upon traversing G°.

The infinite grid graph after constructing a minimal traversable deterministic la-
belling on it and fixing two pairs of opposite directions on it becomes an analogue of
an infinite mosaic labyrinth without holes [1,2]. The key problem for automata and
labyrinths is the problem of constructing a finite automaton that traverse a given class
of labyrinths, that is, an automaton in the initial state is placed at any vertex of any
labyrinth from this class, and must visit all vertices of this labyrinth up to some moment
of time [9]. We say that automaton traverse infinite graph G*° if it visits any randomly
selected vertex of the graph in a finite time. In his paper [10], Andzhan prove that
a collective of one automaton and three pebbles can traverse infinite mosaic labyrinth
without holes and any collective with fewer pebbles cannot. We will show that methods
and algorithms proposed in this work can be used to traverse infinite grid D-graph after
modification associated with a changed concept of direction.

Theorem 4. Any single automaton cannot explore D-graph G*.

Proof. Let automaton A infinitely moves along D-graph G*°. We first prove that
there are at least two labels such that the automaton visits the vertices labelled with
these labels infinitely many times whatever its trajectory. Without loss of generality we
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can assume M = {a,b, c,d, e} and graph G* is marked as shown in Fig.4(a). Assume to
the contrary that there is an infinite trajectory of automaton such that the number of
entries in corresponding word is finite for any label. Let the automaton no longer visits
vertices with label e from moment of time ¢; but visits vertices with labels a, b, ¢, and
d (consult Fig. 4(b) for illustration). Next, let the automaton no longer visit vertices
with label d from moment of time ¢y but visits vertices with labels a, b, and ¢ (consult
Fig. 4(c) for illustration). Finally, let the automaton no longer visit vertices with label
¢ from moment of time ¢3 but visits vertices with labels a and b (consult Fig. 4(d) for
illustration). Since the automaton moves infinitely, we have that it will endlessly move
between two adjacent vertices with labels a and b from moment of time ¢3. No further
number of labels reduction possible. We have arrived at a contradiction. Hence the
automaton visits the vertices with the same label infinitely many times when moving
along the graph. Among them there exists vertices v; and v; on which the automaton
A are in the same internal state. Since the behaviour of A depends only on internal
state it follows that A will move from vertex v(j) in the same direction as from vertex
v(i) ie. p(v(i+1)) = p(v(@+1)). Then v(j+1) —v(i+ 1) = v(j) — v(i). From the
obvious equality v (i + (j — 1)) = v(i) + (v(j) — v(7)) it follows that v (t+ (j — 1)) =
v(t) + (v(j) — v(4)) holds for all ¢ > i.

Y

©
%
D

28

Fig. 4. Reduction of the number of labels using in automaton movement. (A) no reduction, (b) after

the ban on use 7¢”, (c) after the ban on use "d” and 7¢”, (d) after the ban on use "c”, ’d”, and "¢”.

We next prove that periodic trajectory of the automaton is inside some half-stripe.
Let us draw a line [ passing through the vertices v; and v; mentioned above. It follows
from above that this line will passing through infinite amount of vertices belonging
to the trajectory of the automaton A. Line [ divides graph D into two half-grid
subgraphs. Let us choose any of these subgraphs and find on it a vertex that belongs to
the trajectory of the automaton and is the most distant from line . We will draw a line
passing through this vertex and parallel to the line [. This line is the first bound of the
desired half-stripe. Since the trajectory of automaton is periodic, it follows that there
are infinitely many vertices belong to both first bound and trajectory of automaton.
The bound of the second half-stripe is drawn on the other subgraph in a similar way.
Finally let us draw a line perpendicular to the bounds and passing through initial
vertex of the trajectory of automaton. The set of vertices bounded by these lines forms
desired half-stripe. From the obvious fact that any half-stripe don’t cover graph 1, it
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follows that the statement of the theorem is true. This finished the proof. [J

Corollary 4.1. Any single automaton cannot explore D-graphs G192 qnd G(on)

5. Capabilities of automaton with one pebble upon traversing G*°.

The impossibility to explore D-graph G* by a single automaton poses the problem
of possible enrichment of the automaton model which is able to solve exploration
problem. Several enrichments are suggested. One of the most natural approaches is
to give the automaton an ability to place additional labels on the vertices of the graph
(or paint the vertices in some colours) [9]. In essence, the ability to colour vertices means
that the automaton possesses an unbounded external memory, which greatly increases
its possibilities. Another enhancement of a single automaton is a system of interacting
automata referred to as a collective. In contrast to a single automaton a collective
analyses a graph with regard for positions of its members there. If some members
of the collective are automata of the simplest form whose positions are completely
determined by the remaining automata of the collective then these simplest automata
are called pebbles.

Theorem 5. Any collective of one automaton and one pebble cannot explore D-
graph G°.

Proof. Consider a collective of one automaton Ay and one pebble A;. The proof is
by case analysis. There are two cases:

1. Ap and A; move together all the time.

2. Ag can move away from Aj.

Case 1: Suppose that automaton Ay and pebble Ay move together all the time.
Then collective (Ag, A1) operates like single automaton and cannot explore D-graph
G* by Theorem 4.

Case 2: Suppose that automaton Ay can move away from pebble A;. This case splits
into two subcases:

Case 2.1: Ay and A; are together at the same vertex infinitely many times.

Case 2.2: Ag and A; are together at the same vertex only a finite number of times.

Case 2.1: Suppose that automaton Ay and pebble A; are together at the same vertex
infinitely many times. Consider the infinite sequence of vertices on which Ay and A
meet each other. In this sequence there is an infinite subsequence consisting of vertices
with the same label. Among these vertices there are vertices v(i) and v(j), ¢ < j, on
which the automaton was in the same internal state. Since the behaviour of collective
(Ao, A1) depends only on the state of automaton Ay it follows that collective (Ag, A1)
will move from vertex v(j) in the same direction as from vertex v(7). As in the proof of
Theorem 4 we obtain that trajectory of collective (Ao, A1) is periodic. Therefore this
collective cannot explore D-graph G*°.

Case 2.2: Suppose that automaton Ag and pebble A; are together at the same
vertex only a finite number of times. Let v(k) be the last vertex on which Ag and A;
were together. Then there exists two moments of time ¢’ and ¢’, k < ¢’ < ¢”, such that
automaton Ay is in the same internal state on the vertices v (t') and v (t"), p (v (t')) =
w(v(t")). As in the proof of Theorem 4 we obtain that trajectory of automaton Ag is
periodic. Therefore collective (Ag, A1) cannot explore D-graph G*°.
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This finished the proof. [J

Corollary 5.1. Any collective of one automaton and one pebble cannot explore any
deterministic stripe graph.

6. Capabilities of automaton with two pebbles upon traversing G*°.

Theorem 6. Any collective of one automaton and two pebble cannot explore D-
graph G°.

Proof. The idea of the proof is similar to that of Theorem 3 in [10]. Let automaton
Ap and pebbles Aj, Ay are placed on the vertex v(0) at the initial moment of time
t = 0. Let predicate Ry 1(t) denote that Ap and A; are on the same vertex at the
moment of time ¢, and predicate Ry 2(t) denote the similar statement for Ay and As.
We will denote by s(t) the inner state of automaton Ay at the moment of time ¢. By
D1 5(t) denote the distance between A; and Ay at the moment of time ¢.

If Ro,1(t) holds only for a finite amount of natural ¢ then after last rendezvous with
Ag the automaton Ay and the pebble As operate like a collective of one automaton and
one pebble. Therefore this collective cannot explore D-graph G*° by Theorem 5 and
the statement of the theorem is satisfied. The same reasoning applies to the case where
Ry 2(t) holds only for a finite amount of natural ¢. Further, we assume that Ry 1(t) and
Ry 2(t) hold for an infinite amount of natural ¢.

Suppose the distance between A; and As does not exceed a certain constant C
while the collective (Ap, A1, Aa) operates on the graph G, i.e. there exists an infinite
amount of moments of time ¢;, ¢ = 1,2,..., such that D;5(t;) < C. Let v; (¢;) and
vy (t;) denote the vertices where the pebbles A; and As are placed at the moment of
time ¢;. Consider the pairs (va (t;) — v1 (ti), s (£;)). Since va (t;) —v1 (¢;) is an integer pair
and |vg (t;) — v1 (t;)| = D12 (t;), it follows that amount of different pairs vy (¢;) — vy (%)
is finite. Hence the amount of different pairs (vq (t;) — vy (¢;), s (¢;)) is finite too and
there exists two equal pairs in the infinite sequence of such pairs. This means that the
trajectory of the collective (Ag, A1, A2) is periodic (the proof is similar to the proofs of
Theorem 4 and 5). Therefore this collective cannot explore D-graph G in this case.

Suppose the distance between pebbles increases unlimitedly with increasing ¢. Con-
sider the behaviour of automaton Ag in very moment ¢ > T when D (t) is greater
than the number of internal states of Ag. From the above it follows that automaton Ag
moves from the pebble A; to the pebble Az and returns back. Let Ro 1(¢1) and R 2(t2)
holds, t; < t9, automaton Ay moves from A; to Ay and does not meet the pebbles in
the time interval between ¢1 and t5. Hence in the time interval from ¢; to ¢9 automaton
operates without pebbles. By Theorem 4 in this time interval trajectory of Ag is inside
some half-stripe. This half-stripe is said to be the transition half-stripe. The direction
of transition half-stripe depends only on s (¢;). Since the amount of inner states of Ay is
finite, we have the amount of transition half-stripes different in directions is finite too.
The width of the half-stripes can be bounded by some constant C. The same conclusion
can be drawn for the transition half-stripes from As to Aj.

Let Ro1 (t3) holds and Ay does not meet A; in time interval between ty and t3 i.e.
Ry 1 (t3) is the first rendezvous Ag and Ay after Ry (t1). We shall show that during
the time interval from ¢; to t3 the pebble A, will move a distance no more than the
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amount n of inner states of Ag. In fact, As can only move with Ag. If Ao has moved
a distance greater than n, then Ay has moved with A, more than n times. Then at
least twice Ag has transited to the same inner state during the movements with As.
Therefore, by Theorem 5, the trajectory of the collective (Ao, A2) is periodic and A
does not depart from As further than the distance n. Hence at the moment of time 3
(for which Ry 1 (t3) holds) the pebbles A; and Ay are at a distance less or equal to n
from each other, which is impossible by assumption.

Let us prove that there exists 77 >
Tp such that the directions of all arising
transition half-stripes coincide with an ac-
curacy of 180° for all ¢ > T7. Suppose the
contrary, the directions of two consecutive
transition half-stripes are not opposite. Let
B denote the half-stripe arising from mo-
vement of Ag from A; to As. Assume A;
stays on the vertex v (t;) and Ay meets
with Ay on the vertex v (t2) for the first time after ¢1, t; < t3. From the above it
follows that automaton Ay can move the pebble As at a distance of no more than n
from its current vertex v (t2). Consider all vertices at a distance of no more than n
from v (t2). One of these vertices belongs to the second of the considered transition
half-stripes. Since the width of all transition half-stripes is bounded by constant C, we
have that trajectory of Ay back to Aj is entirely inside a half-stripe with a width at
most 2C' + 2n and a direction not opposite to that of the half-strip B. It is clear that
this half-stripe include the vertex v (t1) iff Dj o (t1) does not exceed an upper bound
which depends only on a rational angle a between directions of half-stripes (consult
Fig. 5 for illustration). Since automaton Ay is finite, we have that amount of half-stripes
different in direction is finite too. Hence the amount of different angles « is also finite.
It follows that automaton Ay will not return to A; with a sufficiently large D 2 (¢;).
The resulting contradiction proves that directions of all transition half-stripes coincide
with an accuracy of 180° from some moment of time.

Further, we will consider the behaviour of the collective (A, A1, A2) only for ¢ > T7.
The only direction of the transition half-stripes at this time is called the main direction.

Let ROJ (tl), R072 (tg), R[)J (tg), R()’g (t4) hOld, 1 < tg < tg < 14, and during time
intervals (t1,t2), (t2,t3) and (t3,t4) the automaton Ay does not meet the pebbles A;
and Ag. Assume that s(¢1) = s(t3). The automaton Aj leaves the pebble A; on its
current vertex and moves along periodic trajectory to the pebble As. A rendezvous of
Ap and Ay can occur generally anywhere in the period of trajectory. Hence the states
of the automaton can differ at time moments ¢9 and t4. It follows that interaction of Ag
and Ay and return to A; can differ too. The same departure leads to the same arrival
iff the automaton trajectory differs only by an integer number of periods in both cases.
Here we say that period is the automaton A displacement vector and denote by f
This vector is parallel to the main direction. Let F be a vector which connects current
vertices of the pebbles A1 and As. We will subtract f from F until we get a vector

Fig. 5. A rational angle o between directions of

half-stripes.
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with minimal projection on the main direction. This vector we will call the remainder
of vector F from dividing by vector fand denote by rest(t). Since the beginning and
the end of vector f have integer coordinates, we have that the amount of remainders is
finite. From the foregoing it follows that state s (t2) is completely determined by state
s (t1) and the remainder of vector F from dividing by vector f.

We will build a normal h to the main direction. Let us fix on A positive direction,
starting point and scale coinciding with the scale on the coordinate axes. By r(t) denote
the difference between the numerical values of the projections of the vertices v (t) and
v2(t) on the axis h. Since for ¢ > T the direction of the half-stripe transition is constant,
their width is bounded, the main direction forms with the coordinate axes an angle with
a rational tangent, automaton Ay moves the pebble at a distance of less than n for one
approach, we have that r(t) can take only a finite amount of different values.

Consider the moments of time ¢; <t < t3... at which Rg1 (¢1), Ro,1 (t2),... hold.
Let P(i) = (s (ti),r (t;) ,rest (t;)), ¢ = 1,2,.... From the above it follows that P(i + 1)
is completely determined by P(i). Since every component of triple P(i) takes only a
finite amount of values, we have that there are a finite amount of such triples. Hence
there exists two equal triples among them.

Let P(k) = P(l), k <, and vo(t) denote the vertex where the automaton Ay is at
moment of time ¢. The following two cases are possible.

Case 1: the projections of the vertices vg (t5) and
vo (t) on the axis h are coincide with each other. Let
us project the trajectory of automaton Ag in the time
interval from t; to ¢; on the axis h. It is clear that the
trajectory will fit inside some finite segment. Let us
draw lines through the ends of this segment parallel to
the main direction. Since the automaton A; at moment
of time t; + 1 will move in the same direction as at
moment of time ¢; + 1, at moment of time ¢; + 2 — in
the same direction as at moment of time t; + 2 etc.,
we have that afterwards automaton Ay will not move
outside the stripe bounded by these lines.

Case 2: the projections of the vertices vy (tx) and
v1 (t;) on the axis h are differ from each other. It is
clear that P (I +m(k — 1)) = P(k) holds for all natural n. Hence there exists ¢ and u,
q < u, such that P(q) = P(u) and projections of vg (t4) and v (t,,) are at a distance
greater than 2n. Let projection of v (¢,) on the axis h be to the right of projection
of vy (ty). Therefore projection of v; (t,) be to the right of projection of v; (¢,) and
projection of vy (t,) be to the right of projection of vy (t;). This follows from the fact
that automaton Ag moves a pebble at a distance of less than n for one approach (consult
Fig. 6 for illustration). Let us draw a line [ parallel to the line passing through the
vertices vy (t,) and vy (t,,) and another line Iy parallel to the line passing through the
vertices vg (t4) and vy (t,) so that all vertices visited by Ao until ¢, are inside angle
formed by lines {; and l5. Automaton Ay will never exit from this angle.

1,

O ==
O BETD O
ASBOBOEED
S OHE O

Fig. 6. An angle that automaton
with two pebbles never exit.
Circles indicate the vertices v1 (tq)
and v1 (ty). Squares indicate the

vertices v2 (tq) and v (t.)
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This finished the proof. [J

Corollary 6.1. For every deterministic stripe graph, there exists a collective of one
automaton and one pebble, which explores this graph.

Corollary 6.2. For every deterministic angle graph provided that its value less
than 180°, there exists a collective of one automaton and one pebble, which explores
this graph.

7. Capabilities of automaton with three pebbles upon traversing G*°.

Theorem 7. There exists a collective of one automaton and three pebbles which
explore D-graph G*°.

Proof. As the proof, we present algorithm for D-graph G*° exploration by automaton
with three pebbles. The algorithm works as follows. In lines 1-5 automaton places
pebbles to initial locations (consult Fig. 1(a) for illustration). During infinite loop of
lines 6-27 automaton moves from pebble to pebble and places pebbles to new locations.

Algorithm 1. D-graph G* exploration by automaton with three pebbles.

Require: Ag, A1, Aa, As are placed on arbitrary vertex of D-graph G*°
Ensure: the trail of Ay visiting every vertex of G at least once

1. Ag, Ay, Ay, A3 move to the 'northern’ vertex
2: Ap, Az, A3 move to the ’southern’ vertex
3: Ap, As, A3 move to the 'western’ vertex
4: Ap, A3 move to the ’eastern’ vertex
5: Ap, Az move to the ’eastern’ vertex
6: loop
7 while A; isn’t found on the current vertex do
8: Ay moves to the 'northern’ vertex
9: Ap moves to the 'western’ vertex
10: end while
11: Ag, A1 move to the 'northern’ vertex
12: Ag moves to the ’southern’ vertex
13: while A isn’t found on the current vertex do
14: Ay moves to the 'western’ vertex
15: Ap moves to the 'southern’ vertex
16: end while
17: Ag, As move to the 'western’ vertex
18: Ag, As move to the ’southern’ vertex
19: Ap, Ay move to the 'western’ vertex
20: while Az isn’t found on the 'northern’ vertex do
21: Ay moves to the 'eastern’ vertex
22: end while
23: Ay moves to the northern’ vertex
24: Ap, A3 move to the ’eastern’ vertex
25: Ag, A3 move to the ’southern’ vertex
26: Ag, A3z move to the ’eastern’ vertex

183



S.V. Sapunov

27: end loop

north north north

T TLTLTES S TLTLTLTLG TTFTL LTI
D OB ODED OO CBOBORD  DOBOEEeDEN
ECCSEECRIIREIN FIECIEGIIII S 4 4 458
0 PECCETIERAND S 82 LELITTIEPAN 228+ S0
OO E EYPCeeLT0 § £ 0UE88009800 &
TLLLLIDC Y009 9990 022222229
ITTTRRIIIT  TITTXXXTIIT  $388999999
south south south

(@) (b) (©)

Fig. 7. The operation of Algorithm 1 on D-graph G*°. (A) after lines 1-5, (b) after first iteration, (c)
after second iteration. Star indicates the initial vertex. Circle, square and pentagon indicate the

current locations of Ay, Aa, As, respectively.

To analyse the algorithm we need some notation. We will denote by vy (7), v2(7) and
v3(1) the vertices on which the pebbles Ay, Ay and As are placed after the algorithm’s
i iteration. Also we will denote by [v1(7),v2(7)] the segment of the line passing through
the vertices vy (i) and vo(i). The line segments [v1 (i), v3(i)] and [v2(7), v2(7)] are defined
similarly.

The main idea of the algorithm is to maintain an explored subgraph to which the
newly explored parts of the graph are merged. After some iteration of algorithm let
the automaton has already explored a connected subgraph of G* such that its inner
faces do not contain unvisited vertices. The set of all not-visited neighbours of visited
vertices is called the fringe. In the next iteration the automaton should visit all vertices
in the fringe and add them to explored subgraph. Not-visited neighbours of visited
vertices form a new fringe etc. It is clear that an arbitrary fixed vertex of the graph will
be visited over time proportional to the distance from this vertex to the initial vertex.

We proceed by induction on the number of algorithm’s iterations. As a base case
observe that after the first iteration all vertices inside and on the sides of the triangle
bounded by [vy (), v2(7)], [v1(4), v3(7)] and [ve(i), v3(i)] are already visited by automaton
Ap (consult Fig. 7(b) for illustration). For the inductive step, let k& > 1 be an integer,
and assume that after the k iteration all vertices inside and on the sides of the triangle
bounded by [v1(k), va(k)], [v1(k),v3(k)] and [va(k),v3(k)] are already visited by auto-
maton Ag. We want to show that the similar statement holds for k& + 1 iteration. All
vertices on the line segment [v;(k + 1), v3(k + 1)] are 'northern’ neighbours of vertices
on the line segment [v1(k), vs3(k)] except the vertex vs(k + 1) and ’eastern’ neighbour
of the vertex wv3(k). Ao visits all these vertices due to the lines 7-11 and 24-26. All
vertices on the line segment [v;(k + 1), v2(k 4 1)] are 'northern’ neighbours of vertices
on the line segment [v1(k), v2(k)] except the vertex vy(k+1) and 'western’ neighbour of
the vertex va(k). The vertex vi(k + 1) has been visited earlier. Ag visits all remaining
vertices due to the lines 13-19. All vertices on the line segment [va(k + 1), v3(k + 1)] are
’southern’ neighbours of vertices on the line segment [va(k), v3(k)]. The vertex vy(k+1)
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has been visited earlier. Ag visits all remaining vertices due to the lines 20-26. This
completes the proof. [J

8. Conclusion.

This work proposes the vertex labelling of the infinite square grid graph, due
to which the graph-walking automaton can move along it in any arbitrarily chosen
direction. It is shown that a collective of one automaton and three pebbles can explore
infinite square grid graph with such labelling and any collective with fewer pebbles
cannot. The results regarding to exploration of the infinite square grid graph coincide
with the results of A.V. Andzhan (Andzans) regarding to traversal of the infinite mosaic
labyrinth without holes. It is shown that infinite grid graph after constructing this
labelling and fixing two pairs of opposite directions on it becomes an analogue of an
infinite mosaic labyrinth without holes. For further investigation, the question of the
minimum amount of different label types needed for the labeled square grid graph to
be traversable by graph-walking automaton is of interest.
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C.B. CamnyuoB

KonekTuBu aBromariB Ha nerepMmiHOBaHOMY HecKiHuyeHOMy rpadi permiTku.

ABToMaTH, sIKi HepecyBaloThCsl 10 rpadax, € MareMaTudHOI (opMai3alji€lo aBTOHOMHAX MOOiIb-
HUX areHTiB 3 0OMEXKEHOIO IaM STTIO, 10 DYHKIOHYIOTh ¥ JUCKPETHUX CepeOBHUINax. B pamkax miel
MO/IeJIi BUHUKJIA Ta IHTEHCHBHO DO3BUBAETHCS BeJIMKA O0JIACTD JIOC/IJZKEHb IOBEIIHKH aBTOMATiB B
snabipunrax (abipunTy € opienToBaHMMHU rpadaMu CIEIiaJbHOrO BUMLY, AKi YKIaJAeHO Ha JBOBUMIDHIN
niouncsoBiit pemirii). JJocaizKeHHsT 3 1bONO HANPSIMKY OTPHMAJIM BEJIUKUN CIIEKTD 3aCTOCYBaHb,
HAIpUKJIaJ, B 3ajadax aHajidy 300parkeHb Ta Hapiramil MobiibHHX poboTiB. ABTOoMarH, mo dyHK-
IIOHYIOTh y JIabipWHTaX, MOXKYTb PO3PI3HSATH HAIPSAMKH, TOOTO BOHH MAIOTh KOMIAc. Y Iiiif poboTi
PO3IJIsIAETHCsT BEPIIMHHA PO3MiTKa I'pada KBaJpaTHOI PEINiTKH, 3aBIAIKN sKiil CKiHYeHu# aBTOMAT
6e3 KOMITaca MOKe IepecyBaTucs Mo rpadi y A0BiIbHOMY HAIpPsIMKY. ABTOMAT OTpUMYy€ Ha CBiil BXis
IIO3HAYKHU YCiX BEPIIUH i3 3aMKHEHOI'O OKOJIy IIOTOYHO! BEPIIMHHU Ta IEPECYBAETHCSI IOMiXK CyMiXKHU-
MH BEpIIUHAMU, OOMPAIOYH ILJILOBY BEPIMUHY 3a i1 MO3HAYKOI. ¥ POOOTI 3aIIPOIIOHOBAHO TaK 3BAHY
MiHIMaJIBHY JleTepMiHOBaHY IIPOXiJHY PO3MITKY, fKa 3aJ0BOJIbHSE IIyKaHiil BiacTuBocTi. Po3MiTka
HA3UBAETHCHA JETEPMIHOBAHOIO, SKINO YCi BEPIIUHU i3 3aMKHEHOTO OKOJIy OyIb-siKOl BepImuHU rpada
MaloTh pi3Hi nosHauku. JloBesieHo, 1o MiHiMaJIbHA JIeTepMiHOBaHA MIPOXi/IHA BEPIIMHHA PO3MITKA Ipa-
¢y KBaJpaTHOI PENNTKH MMOTPEOYE II'STh PI3HUX THUINB MO3HAYOK. TakoyK MiHIMaJIbHI JeTepMiHOBaHi
npoxifHi po3miTky minrpadis rpady KBaapaTHOI PEIITKH, CTYHiHb SKUX MeHIe YJ0TUPboX. OCHOBHOIO
3a7a9€eio PO aBTOMATH Ta JIAOIPHHTH € 3a7ada PO MOOYIO0BY CKiHYEHOTO aBTOMAaTa, KUl 0OXONUTH
3asannii Kiac Jgabipunris. Kazarumemo, 1o aBroMar OOXOAUTH HECKIHYEHWI rpad, SIKIIO BiH BiiBi-
Jye Oylib-sIKy JIOBIJIbHO 0OpaHy BepmnHy rpada 3a ckindenuit dac. JloBejieHO, 110 KOJEKTUB, STKUM
CKJTAJIAE€THCS 3 OJHOTO aBTOMAaTa Ta TPbOX KaMEHIB, OOXOIUTH HECKIHUYEeHWI rpad KBaIpaTHOI PEIiT-
KM 3 33J[aHOI0 H& HHOMY MiHIMAJILHOIO JIETEPMIHOBAHOIO ITPOXi/IHOIO PO3MITKOIO, a HisIKMil KOJIEKTUB
3 MEHIIINM YHCIOM KaMEHIB IbOT0 3pobuTu He MOxKe. KaMiHHS pO3IIIsiiacThbcs SK aBTOMATH HANIPO-
CTIIIOro BU/LY, TEPECYBaHHsI SIKMX I[IJIKOM BH3HAYAETHCS IHIIMMH aBTOMAaTaMK KOJEKTUBY. Pe3ynbraTn

CTOCOBHO OOXO/y HECKIHUYEHOTO MO3HAYEHOro rpada KBaJpaTHOI PEIIiTKHU 30iraoThCs 3 pe3yIbTaTaMu
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A.B. AHmKaHa CTOCOBHO O0OXOJTy HECKIHYEHOIO MO3aIIHOro JiabipuaTy 6e3 mipok. Takum wmHOM rpad
KBaJIpaTHOI PEIIiTKA Mic/Isd mo0y 0B HAa HbOMY MiHIMAJIBHOI JeTepMiHOBAHOI MPOXiIHOI PO3MITKHU Ta
dikcarii JBOX map MPOTUIEKHUX HAMPSIMKIB CTA€ aHAJIOTOM HECKIHYEHOTO MO3alJHOrO JabipuHTy 6e3
JIpOK.

Karovwosi crosa: zpag keadpammoi pewimku, 2pa@orionut a8momam, po3mimKa 6epuwut, KOAEKMUG

asmomamis.
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