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IDENTIFICATION OF VAN DER POL OSCILLATOR NETWORK
PARAMETERS

The problem of state observation and parameters identification of an oscillatory system consisting of
coupled van der Pol oscillators is considered. The unknowns are: velocity of oscillations and parameters
that characterize the threshold values for displacements of network’s oscillators at which the damping
forces change sign. An invariant relations method for simultaneous of the state and parameters
estimation is used. Such approach is based on dynamical extension of original system and synthesis
of appropriate invariant relations, from which the unknowns can be expressed as a function of the
known quantities on the trajectories of extended system during the observed motion. The stability
property is formally checked considering the oscillatory behavior of the system. On the first step the
corresponding observation and identification problems are solved for one of autonomous van der Pol
oscillator, further, the results obtained are extended to a system of interconnected oscillators. The
simulation results confirm efficiency of the proposed scheme of nonlinear observer and identifier design
for network of oscillators.
MSC: 34N05.
Keywords: identification, nonlinear oscillations, coupled van der Pol oscillators, invariant relations,
asymptotic estimates.

1. Introduction. In many practical applications of physics, biology and other
sciences an approach based on the concept of model equations is used as an approximate
mathematical model of complex nonlinear processes. The basis of this concept is the
provision that a small number of characteristic type’s movements of simple mathematical
models inherent in systems give the key to understanding and exploring a huge number
of different phenomena. In particular, it is known that nonlinear oscillatory motion of
various systems can be modeled by a system consisting of one or more coupled van
der Pol oscillators or some of their modifications [1]. For this reason, oscillators have
been widely studied, as a way to model, analyze or even control in various fields such
as electronics [2], control [3], biology [4–6], geology [7].

Naturally, when using of such models, the problems may arise in determining
their state and parameters from the known data on observed motion. In such cases,
parameter identification becomes the basis for a number of engineering tasks, such
as: i) gaining knowledge of the behavior of the process; ii) to test theoretical models
and adjust related parameters; iii) to develop control algorithms, etc. In particular, the
method for reconstruction the numerical values of а nonlinear potential, dissipation and
coupling functions for ensembles of coupled van der Pol oscillators from multivariate
time series is proposed [8]. A classical approach with exact Kalman-like observer design
for simultaneous state and parameter estimation is proposed in [9] for the autonomous
van der Pol oscillator. The influence of colored noise in measurements on the identification
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process was investigated in the [10] on phenomen of thermoacoustic instabilities in gas
turbine as an example.

This article discusses one of such identification problems for ensembles of coupled
van der Pol oscillators, namely, the problem of determining the threshold values of
deviations at which the damping forces in the system change sign. Previously, this
problem was solved by authors under the assumption that the system output is a
complete phase vector [11]. In this paper, we propose a scheme for the simultaneous
estimation of the state and parameters only from the data on the displacements of the
oscillators. On the first step the identification problem is solved for single van der Pol
oscillator; further, the results obtained are extended to a system of interconnected
oscillators. It was used developed in analytical mechanics the method of invariant
relations [12], modification of which in the problems of observation, identification allows
us to synthesize additional relations arising between known and unknown quantities
during the observed motion of the system considered [13–15]. It should be noted that
a more general approach, which forms an appropriate method for solving observation
problems for nonlinear dynamical systems due to the synthesis of invariant manifold,
was proposed as a modification of the method I&I (Input and Invariance) of stabilization
of nonlinear systems in [16,17]. Numerical simulation confirms the effectiveness of this
method of a nonlinear observer and identifier design for a network of oscillators.

2. An identification problem of dissipation characteristics for a single van
der Pol oscillator.

The van der Pol oscillator is defined by a dynamical equation which we write in the
following form [1]

ẍ = (λ− x2)ẋ− ω2x. (1)

Here x(t) is the oscillator displacement from the equilibrium position; λ is the parameter
that characterizes alternating dissipation in the system, λ ≥ 0. The absence of the
nonlinear term in (1) corresponds to harmonic oscillations without friction with fre-
quency ω. It is assumed that: i) system (1) performs an bounded oscillatory motion in a
given area, ii) the trivial motion x(t) ≡ 0 is not considered and iii) oscillator movements
are measured, i.e. the values of output y(t) = x(t) are known ∀t ≥ 0. The unknowns
are the vibration velocity ẋ(t) and the parameter λ.

The purpose of this paper is to find or estimate the numerical values of these
unknowns by the known information. The known information is the output - the time
function y(t) = x(t), as well as those values that can be obtained by using only the
output. In particular, we can assume that any solution of the Cauchy problem is known
for any system of differential equations of the form

ξ̇ = U(ξ, x(t)), ξ(0) = ξ0 ∈ Rp, p ≥ 2 (2)

where vector function U(ξ, x(t)) does not contain unknown variables.
Consider the problem of ẋ(t) and parameter λ determination as a classical problem

of observation and identification for nonlinear dynamical system. For this purpose,
rewrite (1) in the form of a second-order system in a state space representation. To
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avoid bilinearity with respect to unknowns ẋ(t) and λ we express (1) in the Lienard
form [14] by performing the following change of variables:

x1(t) = x(t), x2(t) = ẋ(t) +

x∫
0

(λ− σ2)dσ. (3)

As a result, we obtain

ẋ1 = x2 − λx1 + x31/3,

ẋ2 = −ω2x1, y(t) = x1(t).
(4)

Note that the transform (3) depends on an unknown function ẋ(t), which will be
determined if we find variable x2(t) of the system (4). Further, we will assume that
system (4) performs an bounded oscillatory motion: namely, suppose that there exist
two positive constants 0 < ρ1, ρ2 < ∞ such that ∀t ≥ 0, (x1(t), x2(t)) ∈ P = {(x1, x2) :
x1 ≤ ρ1, x2 ≤ ρ2}. Next, we will consider

Identification problem 1. It is required to found asymptotically accurate estimates
of the parameter λ and component x2(t) of the phase vector of system (4) by the known
output data y(t) = x1(t).

In order to solve this problem, we synthesis of special kind of invariant relations,
which will allow us to express the unknowns as functions on the known quantities on
the observed trajectories [9–13].

3. Synthesis of additional relations.
The main idea of this approach is to obtain additional equations for unknowns

of the original system. For this purpose, the system of differential equations (4) is
supplemented by differential equations (2), where p = 2 – the number of unknowns:
namely, the constant λ and component of the phase vector – x2(t). Moreover, the right-
hand sides of the auxiliary system – function U(ξ, x1(t)) must be chosen so that the
resulting extended system (2), (4) admits invariant relations

Fi(x1, x2, ξ, λ) = 0, i = 1, 2 (5)

on its solutions with the following properties:
i) Equalities (5) form the additional equations for the unknowns: λ and x2(t), i.e.

rank∂(F1,F2)
∂(λ,x2)

= 2;
ii) The invariant manifold {(x1, x2, ξ, λ) ⊆ R5 : Fi(x1, x2, ξ, λ) = 0, i = 1, 2}

appropriate to equalities (5) has the property of global attraction for any solutions of
the extended system (2), (4). In other words, on any trajectories

lim
t→∞

Fi(x1(t), x2(t), ξ(t), λ) = 0, i = 1, 2 (6)

Let show that for the problem considered the relations of the form (5) exist. In
order to satisfy the property i) we will search these invariant relations in the form

F1 = λ− ξ1(t)− Φ(x1(t)) = 0,

F2 = x2(t)− ξ2(t)−Ψ(x1(t)) = 0,
(7)
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where the variables ξi, i = 1, 2 are solutions of the system of differential equations (2).
On this step we don’t set any restrictions on the functions Φ(x1),Ψ(x1), U(ξ, x1), except
for the requirement of continuous differentiability with respect to their arguments. If
these functions are chosen so that relations (7) have become invariant on observed
solution, then unknowns’ values can be found directly from these equalities. We first
choose the right-hand side U(ξ, x1) of differential equations (2) so that for any functions
Φ(x1),Ψ(x1) equalities (7) hold identically on some trajectories of the extended system
of differential equations (2), (4). Introduce for this purpose the variables ε1, ε2, which
characterize the residual in formulas (7) on the solutions of system (2), (4).

λ− ξ1(t)− Φ(x1(t)) = ε1(t),

x2(t)− ξ2(t)−Ψ(x1(t)) = ε2(t).
(8)

Differentiating (8) with respect to system (2), (4), we obtain a differential equation
for the deviations ε1, ε2.

ε̇1 = ξ̇1 − Φ́[Ψ + ξ2 + ε2 − (Φ + ξ1 + ε1)x1 + x31/3],

ε̇2 = ξ̇2 − Ψ́[Ψ + ξ2 + ε2 − (Φ + ξ1 + ε1)x1 + x31/3]− ω2x1.
(9)

To prove that equalities (7) are identities on some solutions of the system (2), (4), it
suffices to show that the system of differential equations (9) admits the trivial solution
ε1(t) = ε2(t) ≡ 0. For this purpose, we fix the form of the right-hand sides (2), namely:
for any Φ(x1),Ψ(x1) we put

ξ̇1 = −Φ́[Ψ + ξ2 − (Φ + ξ1)x1 + x31/3],

ξ̇2 = −Ψ́[Ψ + ξ2 − (Φ + ξ1+)x1 + x31/3]− ω2x1.
(10)

As a result, equations (8) become linear and homogeneous with respect to deviations
ε1, ε2

ε̇1 = Φ́(x1ε1 − ε2),

ε̇2 = Ψ́(x1ε1 − ε2),
(11)

and therefore, admits the trivial solution ε1(t) = ε2(t) ≡ 0.

4. Stabilization of deviations.
In order to satisfy the property ii) of invariant relations i.e. stabilizes the trivial

solution of system (11) consider the problem of the free functions Φ(x1) and Ψ(x1)
synthesis. Take the positive definite function

V =
ε21 + ε22

2
. (12)

Let the functions Φ(x1) and Ψ(x1) are equal

Φ(x1) = −kx21/2, Ψ(x1) = kx1, (13)
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where k is some positive constant. Then the deviations equations (11) take the form

ε̇1 = −kx1(x1ε1 − ε2),

ε̇2 = k(x1ε1 − ε2).
(14)

and the derivative of the function (12) becomes negatively semidefinite

V̇ = −k(x1ε1 − ε2)
2 ≤ 0. (15)

We can now show with the use of LaSalle’s invariance principle [19] that inequality
(15) is sufficient for the asymptotic stability of the trivial solution of the system (14).
As an autonomous system under study, consider the system (4), (14) with a phase
vector (x1(t), x2(t), ε1(t), ε2(t)) ∈ Ω.

Let us show that Ω – compact set that is positively invariant with respect to
this system. Indeed, under assumption (x1(t), x2(t)) ∈ P ⊂ R2 where P describe the
bounded region of oscillations. The values of deviations according (15) lie inside the
sphere S = {(ε1, ε2) : ε21 + ε22 ≤ ε21(0) + ε22(0)}. Then Ω = P × S is a compact set that
is positively invariant with respect to system (4), (14).

Denote d(t) = x1(t)ε1(t)−ε2(t). Let E be the set of all points (x1, x2, ε1, ε2) from Ω
where V̇ = −kd(t)2 = 0. It is obvious that the set M = {(x1(t), x2(t), 0, 0)} is invariant
in E. If M will be the largest invariant set, then by LaSalle’s theorem all solutions
starting in Ω will tend to M , i.e.

lim
t→∞

εi(t) = 0, i = 1, 2. (16)

We prove this by contradiction. Namely, suppose that d(t) = 0 and E contains
trajectories with nonzero deviations. Then it follows from (14) that εi(t) = ε∗i −
const, i = 1, 2 and there is a stationary linear constraint ε∗1x1(t)−ε∗2 = 0. The last one
contradicts the oscillation regime of x1(t).

5. Non-linear observer and identifier.
All free functions Φ(x1),Ψ(x1), U(ξ, x1) was chosen in such a way that the deviations

ε1, ε2 in formulas (8) tend to zero with increasing t. So finite relations (7) and auxiliary
differential equations (10) define a nonlinear identifier:

ξ1 = −kx1[kx1 + ξ2 − (ξ1 −
kx21
2

)x1 +
x31
3
],

ξ2 = −k[kx1 + ξ2 − (ξ1 −
kx21
2

)x1 +
x31
3
]− ω2x1.

(17)

As a result, we have Proposition 1. For any nontrivial solution x1(t), x2(t) of system
(4), a positive constant k, and any initial value in the Cauchy problem for the auxiliary
system of differential equations (17) the formulas

λ̂ = ξ1(t)− k
x21(t)

2
,

x̂2(t) = ξ2(t) + kx1(t)

(18)
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provide the asymptotic estimates for the parameters λ and variable x2(t).

6. Non-linear observer and identifier for coupled oscillators.
Consider a system consisting of n interconnected non-identical van der Pol oscillators

ẍi = (λi − x2i )ẋi − ω2
i xi +Gi(t, x1, ..., xn), i = 1, n. (19)

Here the variables xi mean the displacement from the equilibrium position of
the i-th oscillator ẋi – the speed of the corresponding displacement; the functions
Gi(t, x1, ..., xn) formalize the external influence and the influence of connections in the
network on the dynamics of the i-th oscillator. In the problems of approximate modeling
of oscillations of complex objects using models of the form (19), these functions are
selected for various reasons and may not have a physical or mechanical meaning,
describing, for example, one-way relationships.

Regardless of the type and structure of these functions, we will require the following
assumptions to construct the observer and identifier of the system (19): а) the values of
the functions Gi(t, x1, ..., xn) are known at any instant of time; b) solutions of systems
of differential equations, which contain in their right-hand parts these functions are
bounded. Changing variables according to the formulas (3), we obtain the Lienard
form of oscillator network equations

ẋi1 = xi2 − λixi1 +
x3i1
3
,

ẋi2 = −ω2
i xi1 +Gi(t, x11, ..., xn1),

y(t) = (x11(t), ..., x1n(t)), i = 1, n.

(20)

Identification problem 2. It is required to found asymptotically accurate estimates
of the parameters λi and components xi2(t) of the phase vector of system (20) by the
known output data y(t) = (x11(t), ..., x1n(t)), i = 1, n.

The solution of problem 2 is carried out according to the scheme of the autonomous
oscillator described above. We consider a dynamic extension of system (20) – an
auxiliary system of differential equations (2) of dimension p = 2n. Similarly (8) we
present the unknowns in the form of the sum of uncertain values

λi = ξi1 +Φi(xi1) + εi1,

xi2 = ξi2 +Ψi(xi1) + εi2, i = 1, n.
(21)

where Φi(xi1),Ψi(xi1) - free functions, ξi1, ξi2 - components of the solution ξ of system
(2) with an indefinite right-hand side U(ξ, y,G1, ..., Gn), εi1, εi2 - deviations in the
equations of invariant relations. Differentiating (21), we obtain

ε̇i1 = ξi1 − Φ́i[Ψi + ξi2 + εi2 − (Φi + ξi1 + εi1)xi1 +
x3i1
3
],

ε̇i2 = ξi2 − Ψ́i[Ψi + ξi2 + εi2 − (Φi + ξi1 + εi1)xi1 +
x3i1
3
].

(22)
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Let, by analogy with (13),

Φi(xi1) = −k
x2i1
2
, Ψi(xi1) = kxi1. (23)

For the system of equations in deviations (22) to allow a trivial solution, we write
the auxiliary system of differential equations (2) in the form

ξi1 = kxi1[kxi1 + ξi2 + (k
x2i1
2

− ξi1)xi1 +
x3i1
3
],

ξi2 = −k[xi1 + ξi2 + (k
x2i1
2

− ξi1)xi1 +
x3i1
3
] +Gi − ω2

i xi1, i = 1, n.

(24)

We note that functions describing the interactions among oscillators are contained
in auxiliary equations (24). As a result, the system of equations for deviations is
decomposed into n identical subsystems of differential equations, which completely
coincide with the similar system for the autonomous van der Pol oscillator (14).

ε̇i1 = −kxi1(xi1εi1 − εi2)

ε̇i2 = k(xi1εi1 − εi2), i = 1, n.
(25)

Using the results of the previous section, we obtain Proposition 2. For any nontrivial
solution x(t) of system (20) and any initial value of ξ(0) in the Cauchy problem for the
auxiliary system of differential equations (24) the formulas

λ̂i = ξi1(t)− k
x2i1(t)

2
,

x̂i2(t) = ξi2(t) + kxi1(t),

(26)

determine asymptotic estimates of parameters λi and variables xi2(t), i = 1, n.

7. Numerical simulation.
The scheme proposed in the work was numerically modeled for a wide range of

initial conditions and parameters of the dynamic system, which is formed by a chain
of three non-identical van der Pol oscillators

ẍi = (λi − x2i )ẋi − ω2
i xi +Gi(t, x1, x2, x3), i = 1, 3. (27)

connected by elastic connections given by functions

G1 = ν(x2 − x1), G2 = ν(x1 − x2) + ν(x3 − x2), G3 = ν(x2 − x3).

Here ν = 1.2 is the stiffness coefficient, λ1, λ2, λ3 are equal to 1.0, 3.0, 5.0. System
output - vector (x1(t), x2(t), x3(t)) was obtained as a result of numerical solution of the
system of differential equations (27). The system considered is transformed to the form
(20) and variant of calculation simulates the case when the chain of oscillators is brought
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Fig. 1. Asymptotical estimation of parameters λi, i = 1, 3 in the chain of three
coupled oscillators.

out of equilibrium by shifting the position of the first of them by 1 unit of length. i.e. the
initial conditions in the Cauchy problem are taken equal to (1.0; 0.0; 0.0; 0.0 ; 0.0; 0.0).
The initial conditions for the variables of the auxiliary system of differential equations
(24) are chosen arbitrarily, in this case: ξi1(0) = −1.0, ξi2(0) = −15.0, i = 1, 2, 3.
Other parameters: k = 2.5, ω2

1 = ω2
2 = ω2

3 = 8.0.

Figure 1 shows the graphs of functions ξi1(t)−
kx2

i1(t)
2 , i = 1, 2, 3, which, according

to Proposition 2, asymptotically tend to the required parameters λ1 = 1.0, λ2 = 3.0,
λ3 = 5.0 respectively. The dash-dot lines on Figure 2 show the graphs of functions
ξi2(t) + kxi1(t), i = 1, 2, 3 which, according to Proposition 2, asymptotically tend to
unknowns xi2(t), i = 1, 2, 3 (solid lines). The simulation results confirm the efficiency of
the proposed method for solving nonlinear problems of observation and identification
for coupled van der Pol oscillators.

8. Resume.
In this paper we have proposed a new observer scheme for state and parameter

estimation in the system of coupled van der Pol oscillators, with a convergence analysis.
The method of invariant relations is used that allow us to synthesize additional relation-
ships between known and unknown components of initial mathematical model on the
trajectories of special dynamical system. The approach developed will be further used
in the problems of parameters identification of a Lienard system – a second-order
system ẍ + F (x)ẋ + G(x) = 0 where F (x) and G(x) are functions that represent
various nonlinear phenomena. In order to determine these nonlinearities, identifying
the parameters characterizing their behaviors is essential. Parameters identification is
the basis for a series of engineering tasks such as: i) to gain knowledge about the process
behavior; ii) to validate theoretical models and to tune appropriate parameters; iii) for
control algorithms design, etc.
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Fig. 2. Asymptotical estimation of variables xi2(t), i = 1, 3 in the chain of three
coupled oscillators.
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I.С. Баранюкова, В.Ф. Щербак
Параметри осциляторiв ван дер Поля.

Вiдомо, що нелiнiйний коливальний рух складних систем може бути приблизно промодельовано
рухом системи, яка складається з одного або декiлькох пов’язаних мiж собою осциляторiв ван
дер Поля. З цiєї причини осцилятори широко вивчаються як спосiб моделювання, аналiзу або
навiть контролю у рiзних сферах, таких як електронiка, керування, медико-бiологiчнi дослiджен-
ня, геологiя та iн. Природньо, що при цьому на практицi виникають проблеми визначення стану
та параметрiв таких моделей за результатами вимiрювання вихiдних сигналiв у режимi реаль-
ного часу. Одну з таких проблем, а саме проблему визначення порогових значень вiдхилень, при
яких значення сил демпфiрування в компонентах системи осциляторiв змiнюють знак, забезпе-
чуючи тим самим автоколивальнй режим руху, розглянуто у цiй статтi. В роботi запропонована
схема визначення асимптотичних оцiнок цих параметрiв, а також швидкостi коливань осиля-
торiв системи за даними про їх положення. На першому кроцi вiдповiдна задача iдентифiкацiї
та спостереження була вирiшена для одного автоколивального осцилятора ван дер Поля; надалi
отриманi результати поширено на систему взаємопов’язаних осциляторiв. Для отримання оцiнок
невiдомих був використаний розроблений в аналiтичнiй механiцi метод iнварiантних спiввiдно-
шень, модифiкацiя якого у задачах спостереження, iдентифiкацiї дозволяє синтезувати додатковi
спiввiдношення, що виникають мiж вiдомими та невiдомими величинами пiд час спостережува-
ного руху побудованої спецiальним чином розширеної динамiчної системи. В результатi в роботi
було запропоновано новий суттєво нелiнiйний метод отримання асимптотичних оцiнок стану та
параметрiв для мережi пов’язаних мiж собою осциляторiв ван дер Поля. Чисельне моделювання
пiдтверджує ефективнiсть цього способу спостереження та конструкцiї вiповiдного iдентифiка-
тора для розглянутої системи.

Ключовi слова: iдентифiкацiя, нелiнiйнi коливання, пов’язанi осцилятори ван дер Поля, iн-
варiантнi спiввiдношення, асимптотичнi оцiнки.
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