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DIRICHLET PROBLEM WITH MEASURABLE DATA FOR
QUASILINEAR POISSON EQUATIONS

The study of the Dirichlet problem with arbitrary measurable data for harmonic functions in the unit
disk D goes to the famous dissertation of Luzin, see e.g. its reprint [25]. His result was formulated in
terms of angular limits (along nontangent paths) that are a traditional tool for the research of the
boundary behavior in the geometric function theory.

Following this way, we proved in [16] Theorem 7 on the solvability of the Dirichlet problem for the
Poisson equations △U = G with sources in classes G ∈ Lp, p > 1, in Jordan domains with arbitrary
boundary data that are measurable with respect to the logarithmic capacity. There we assumed that
the domains satisfy the quasihyperbolic boundary condition by Gehring–Martio, generally speaking,
without the known (A)−condition by Ladyzhenskaya–Ural’tseva and, in particular, without the outer
cone condition that were standard for boundary-value problems in the PDE theory. Note that such
Jordan domains cannot be even locally rectifiable.

With a view to further development of the theory of boundary value problems for semi-linear
equations, the present paper is devoted to the Dirichlet problem with arbitrary measurable (over
logarithmic capacity) boundary data for quasilinear Poisson equations in such Jordan domains.

For this purpose, it is first constructed completely continuous operators generating nonclassical
solutions of the Dirichlet boundary-value problem with arbitrary measurable data for the Poisson
equations △U = G with the sources G ∈ Lp, p > 1.

The latter makes it possible to apply the Leray-Schauder approach to the proof of theorems on the
existence of regular nonclassical solutions of the measurable Dirichlet problem for quasilinear Poisson
equations of the form △U(z) = H(z) · Q(U(z)) for multipliers H ∈ Lp with p > 1 and continuous
functions Q : R → R with Q(t)/t → 0 as t → ∞.

As consequences, we give applications to some concrete quasilinear equations of mathematical
physics, arising under modelling various physical processes such as diffusion with absorption, plasma
states, stationary burning etc. These results can be also applied to semi-linear equations of mathematical
physics in anisotropic and inhomogeneous media.
MSC: Primary 30C65, 31A05, 31A20, 31A25, 31B25, 35J61 Secondary 30E25, 31C05, 34M50, 35F45,
35Q15.
Keywords: logarithmic capacity, quasilinear Poisson equations, nonlinear sources, Dirichlet problem,
measurable boundary data, angular limits, nontangent paths.

1. Introduction.
Recall that a path in D := {z ∈ C : |z| < 1} terminating at ζ ∈ ∂D is called

nontangential if its part in a neighborhood of ζ lies inside of an angle in D with
the vertex at ζ. Hence the limit along all nontangential paths at ζ ∈ ∂D also named
angular at the point. The latter is a traditional tool of the geometric function theory,
see e.g. monographs [6, 9, 14,19,25,29] and [30].

The research of boundary-value problems with arbitrary measurable data is due
to the famous dissertation of Luzin, see its original text [24], and its reprint [25] with
comments of his pupils Bari and Men’shov. Namely, he has established that, for each
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measurable a.e. finite 2π−periodic function φ(ϑ) : R → R, there is a harmonic function
U in the unit disk D such that U(z) → φ(ϑ) for a.e. ϑ as z → ζ := eiϑ along all
nontangential paths to ∂D. The latter was based on his other deep result on the
antiderivatives stated that, for any measurable function ψ : [0, 1] → R, there is a
continuous function Ψ : [0, 1] → R with Ψ′ = ψ a.e., see e.g. his papers [23] and [26],
Theorem VII(2.3) in the Saks monograph [32].

Following this way, we proved in [16] Theorem 7 on the solvability of the Dirichlet
problem for the Poisson equations △U = G with sources in classes G ∈ Lp, p > 1, in
Jordan domains with arbitrary boundary data that are measurable with respect to the
logarithmic capacity. There we assumed that the domains satisfy the quasihyperbolic
boundary condition by Gehring–Martio, generally speaking, without the known
(A)−condition by Ladyzhenskaya–Ural’tseva and, in particular, without the outer cone
condition that were standard for boundary-value problems in the PDE theory. Note that
such Jordan domains cannot be even locally rectifiable.

With a view to further development of the theory of boundary value problems
for semi-linear equations, the present paper is devoted to the Dirichlet problem with
arbitrary measurable (over logarithmic capacity) boundary data for quasilinear Poisson
equations in such Jordan domains.

For this purpose, it is first constructed completely continuous operators generating
nonclassical solutions of the Dirichlet boundary-value problem with arbitrary measurable
data for the Poisson equations △U = G with the sources G ∈ Lp, p > 1.

The latter makes it possible to apply the Leray-Schauder approach to the proof of
theorems on the existence of regular nonclassical solutions of the measurable Dirichlet
problem for quasilinear Poisson equations of the form △U(z) = H(z) · Q(U(z)) for
multipliers H ∈ Lp with p > 1 and continuous functions Q : R → R with Q(t)/t → 0
as t→ ∞.

As consequences, we give applications to some concrete quasilinear equations of
mathematical physics, arising under modelling various physical processes such as dif-
fusion with absorption, plasma states, stationary burning etc. These results can be also
applied to semi-linear equations of mathematical physics in anisotropic and inhomoge-
neous media.

2. Definitions and preliminary remarks.
First of all, recall that a completely continuous mapping from a metric space

M1 into a metric space M2 is defined as a continuous mapping on M1 which takes
bounded subsets of M1 into relatively compact ones of M2, i.e. with compact closures
in M2. When a continuous mapping takes M1 into a relatively compact subset of M1,
it is nowadays said to be compact on M1.

Leray and Schauder extend as follows the Brouwer degree to compact perturbations
of the identity I in a Banach space B, i.e. a complete normed linear space. Namely,
given an open bounded set Ω ⊂ B, a compact mapping F : B → B and z /∈ Φ(∂Ω),
Φ := I − F , the (Leray–Schauder) topological degree deg [Φ,Ω, z] of Φ in Ω over
z is constructed from the Brouwer degree by approximating the mapping F over Ω
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by mappings Fε with range in a finite-dimensional subspace Bε (containing z) of B.
It is showing that the Brouwer degrees deg [Φε,Ωε, z] of Φε := Iε − Fε, Iε := I|Bε , in
Ωε := Ω∩Bε over z stabilize for sufficiently small positive ε to a common value defining
deg [Φ,Ω, z] of Φ in Ω over z.

This topological degree “algebraically counts” the number of fixed points of F (·)−
z in Ω and conserves the basic properties of the Brouwer degree as additivity and
homotopy invariance. Now, let a be an isolated fixed point of F . Then the local
(Leray–Schauder) index of a is defined by ind [Φ, a] := deg[Φ, B(a, r), 0] for small
enough r > 0. ind [Φ, 0] is called by index of F . In particular, if F ≡ 0, correspondingly,
Φ ≡ I, then the index of F is equal to 1.

The fundamental Theorem 1 in [22] can be formulated in the following way:

Proposition 1. Let B be a Banach space, and let F (·, τ) : B → B be a family of
operators with τ ∈ [0, 1]. Suppose that the following hypotheses hold:

(H1) F (·, τ) is completely continuous on B for each τ ∈ [0, 1] and uniformly
continuous with respect to the parameter τ ∈ [0, 1] on each bounded set in B;

(H2) the operator F := F (·, 0) has finite collection of fixed points whose total index
is not equal to zero;

(H3) the collection of all fixed points of the operators F (·, τ), τ ∈ [0, 1], is bounded
in B.

Then the collection of all fixed points of the family of operators F (·, τ) contains a
continuum along which τ takes all values in [0, 1].

Let us also recall with the following analog of the Luzin theorem on the antiderivatives
in terms of logarithmic capacity, see Theorem 3.1 in [10].

Lemma 1. Let φ : [a, b] → R be a measurable function with respect to logarithmic
capacity. Then there is a continuous function Φ : [a, b] → R with Φ′(x) = φ(x) q.e.
on (a, b). Furthermore, Φ can be chosen with Φ(a) = Φ(b) = 0 and |Φ(x)| ≤ ε for all
x ∈ [a, b] under arbitrary prescribed ε > 0.

Remark 1. In view of arbitrariness of ε > 0 in Lemma 1, for each φ, there is the
infinite collection of such Φ. Furthermore, it is easy to see by Lemma 3.1 in [10] that
the space of such functions Φ has the infinite dimension.

Corollary 1. Let φ : ∂D → R be a measurable function with respect to logarithmic
capacity. Then the space of continuous functions Φ : ∂D → [−1, 1] with Φ(1) = 0,
|Φ(ζ)| ≤ ε for all ζ ∈ ∂D under arbitrary prescribed ε > 0, and Φ′(eit) = φ(eit) q.e. on
R has the infinite dimension.

On this basis, we obtain the following result, see e.g. Theorem 4.1 in [10].

Proposition 2. Let φ : ∂D → R be a measurable function with respect to logarithmic
capacity. Then there is a space of harmonic functions U in the unit disk D of the infinite
dimension with the angular limits

lim
z→ζ

u(z) = φ(ζ) q.e. on ∂D . (1)
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Remark 2. By the proof of Theorem 4.1 in [10], u(z) = ∂
∂ϑ U(z), where

U(reiϑ) =
1

2π

2π∫
0

1− r2

1− 2r cos(ϑ− t) + r2
Φ(eit) dt , (2)

i.e., for any function Φ from Corollary 1, u can be calculated in the explicit form

u(reiϑ) = − r

π

2π∫
0

(1− r2) sin(ϑ− t)

(1− 2r cos(ϑ− t) + r2)2
Φ(eit) dt . (3)

Later on, it was shown by Theorems 1 and 3 in [31] that the functions u(z) can be
represented as the Poisson–Stieltjes integrals

UΦ(z) =
1

2π

π∫
−π

Pr(ϑ− t) dΦ(eit) ∀ z = reiϑ, r ∈ (0, 1) , ϑ ∈ [−π, π] , (4)

where Pr(Θ) = (1− r2)/(1− 2r cosΘ + r2), r < 1,Θ ∈ R, is the Poisson kernel.
The corresponding analytic functions A(z) in D with the real parts u(z) can be

represented as the Schwartz–Stieltjes integrals

SΦ(z) =
1

2π

∫
∂D

ζ + z

ζ − z
dΦ(ζ) , z ∈ D , (5)

because of the Poisson kernel is the real part of the (analytic in the variable z) Schwartz
kernel (ζ + z)/(ζ − z). Integrating (5) by parts, see Lemma 1 and Remark 1 in [31],
we obtain also the more convenient form of the representation

SΦ(z) =
z

π

∫
∂D

Φ(ζ)

(ζ − z)2
d ζ , z ∈ D . (6)

Note that by Corollary 1 the spaces of solutions of the Dirichlet problem in the
classes of harmonic and analytic functions generating by integral operators UΦ and SΦ,
correspondingly, under each fixed boundary date φ that is measurable with respect to
logarithmic capacity have the infinite dimension.

Next, given a bounded Borel set E in the plane C, a mass distribution on E is
a nonnegative completely additive function ν of a set defined on its Borel subsets with
ν(E) = 1. The function

Uν(z) :=

∫
E

log

∣∣∣∣ 1

z − ζ

∣∣∣∣ dν(ζ) (7)
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is called a logarithmic potential of the mass distribution ν at a point z ∈ C. A
logarithmic capacity C(E) of the bounded Borel set E is the quantity

C(E) = e−V , V = inf
ν

Vν(E) , Vν(E) = sup
z

Uν(z) . (8)

It is also well-known the following geometric characterization of the logarithmic
capacity, see e.g. the point 110 in [27]:

C(E) = τ(E) := lim
n→∞

V
2

n(n−1)
n (9)

where Vn denotes the supremum of the product

V (z1, . . . , zn) =

l=1,...,n∏
k<l

|zk − zl| (10)

taken over all collections of points z1, . . . , zn in the set E. Following Fékete, see [11],
the quantity τ(E) is called the transfinite diameter of the set E.

Remark 3. Thus, we see that if C(E) = 0, then C(f(E)) = 0 for an arbitrary
mapping f that is Hölder continuous.

In order to introduce sets that are measurable with respect to logarithmic capacity,
we define, following [5], inner C∗ and outer C∗ capacities:

C∗(E) : = sup
F⊆E

C(E), C∗(E) : = inf
E⊆O

C(O) (11)

where supremum is taken over all compact sets F ⊂ C and infimum is taken over
all open sets O ⊂ C. A set E ⊂ C is called measurable with respect to the
logarithmic capacity if C∗(E) = C∗(E), and the common value of C∗(E) and C∗(E)
is still denoted by C(E).

A function φ : E → C defined on a bounded set E ⊂ C is called measurable with
respect to logarithmic capacity if, for all open sets O ⊆ C, the sets

Ω = {z ∈ E : φ(z) ∈ O} (12)

are measurable with respect to logarithmic capacity. It is clear from the definition that
the set E is itself measurable with respect to logarithmic capacity.

Note also that sets of logarithmic capacity zero coincide with sets of the so-called
absolute harmonic measure zero introduced by Nevanlinna, see Chapter V in [27].
Hence a set E is of (Hausdorff) length zero if C(E) = 0, see Theorem V.6.2 in [27].
However, there exist sets of length zero having a positive logarithmic capacity, see e.g.
Theorem IV.5 in [5].

Remark 4. It is known that Borel sets and, in particular, compact and open sets are
measurable with respect to logarithmic capacity, see e.g. Lemma I.1 and Theorem III.7
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in [5]. Moreover, as it follows from the definition, any set E ⊂ C of finite logarithmic
capacity can be represented as a union of a sigma-compactum (union of countable
collection of compact sets) and a set of logarithmic capacity zero. Thus, by Remark
3 functions that are measurable with respect to the logarithmic capacity are invariant
under Hölder continuous mappings.

It is also known that the Borel sets and, in particular, compact sets are measurable
with respect to all Hausdorff’s measures and, in particular, with respect to measure
of length, see e.g. Theorem II(7.4) in [32]. Consequently, any set E ⊂ C of finite
logarithmic capacity is measurable with respect to measure of length. Thus, on such a
set any function φ : E → C being measurable with respect to logarithmic capacity is
also measurable with respect to measure of length on E. However, there exist functions
that are measurable with respect to measure of length but not measurable with respect
to logarithmic capacity, see e.g. Theorem IV.5 in [5].

Later on, we use the abbreviation q.e. (quasi-everywhere) on a set E ⊂ C if
the corresponding property holds only for all ζ ∈ E except its subset of zero logarithmic
capacity, see e.g. [21] for this term.

3. On completely continuous Dirichlet operators.
Here we apply the designation of the logarithmic (Newtonian) potential NG

of sources G ∈ Lp(C), p > 1, with compact supports given by the formula:

NG(z) :=
1

2π

∫
C

ln |z − w|G(w) dm(w) , (13)

where dm(w) corresponds to the Lebesgue measure in the plane.
As known, NG with G supported in D is continuous in C, belongs to the class

W 2,p(D) and △NG = G a.e. Moreover, NG ∈ W 1,q
loc (C) for q > 2, consequently, NG is

locally Hölder continuous. If G ∈ Lp(C), p > 2, then NG ∈ C1,α
loc (C) for α := (p− 2)/p,

and for all α ∈ (0, 1) under p = ∞, see e.g. Lemma 3 in [16] or Theorem 2 in [17].
Furthermore, the collection {NG} is equicontinuous if the collection {G} is bounded

by the norm in Lp(C). More precisely, on each compact set S in C

∥NG∥C ≤ M · ∥G∥p , (14)

where M is a constant depending only on S and, in particular, the restriction of NG

to D is a completely continuous bounded linear operator, see e.g. Lemma 2 in [16] or
Theorem 1 in [17].

By Proposition 2 there is a space of harmonic functions u in the unit disk D of the
infinite dimension with the angular limits q.e. on ∂D

lim
z→ζ

u(z) = ψG(ζ) := φ(ζ) − φG(ζ) , φG(ζ) := NG(ζ) . (15)

Note that U := u + NG|D with such u are continuous solutions of the Poisson
equation △U = G a.e. in the class W 2,p

loc (D) with the angular limits

lim
z→ζ

U(z) = φ(ζ) q.e. on ∂D . (16)
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By Remark 2 such a harmonic function u : D → R can be obtained in the form of
the real part of the analytic function

SΨ(z) :=
z

π

∫
∂D

Ψ(ζ)

(ζ − z)2
d ζ , z ∈ D , (17)

where Ψ is an antiderivative of the function ψG from Corollary 1.
Consequently, such a harmonic function u can be represented in the form

u(z) = u0(z) − uG(z) , u0(z) := Re SΦ(z) , uG(z) := Re SΦG
(z) , (18)

where Φ and ΦG are antiderivatives of φ and φG in Corollary 1, correspondingly. Note
that the harmonic function u0 does not depend on the sources G at all.

Let us choose the function ΦG in a suitable way to guarantee that the correspon-
dence G 7→ u + NG|D is a Dirichlet operator DG that is completely continuous on
compact sets in D generating solutions of the Poisson equation △U = G a.e. in the
class C ∩W 2,p

loc (D) with the Dirichlet boundary condition (16).
Namely, the following function ΦG is an antiderivative for the function φG:

ΦG(ζ) :=

ϑ∫
0

NG(e
iθ) d θ − S(ϑ) , ζ = eiϑ, θ , ϑ ∈ [0, 2π] , (19)

where S : [0, 2π] → C is either zero or a singular function of the form

S(ϑ) := C(ϑ)

2π∫
0

NG(e
iθ) d θ , ζ = eiϑ, θ , ϑ ∈ [0, 2π] , (20)

with a singular function C : [0, 2π] → [0, 1] of the Cantor ladder type, i.e., C is
continuous, nondecreasing, C(0) = 0, C(2π) = 1 and C ′ = 0 q.e. Recall that the
existence of such functions C follows from Lemma 3.1 in [10].

Setting uG = Re SΦG
, it is easy to see by (14) that

|ΦG(ζ)| ≤ 4πM · ∥G∥p ∀ ζ ∈ ∂D (21)

and by (6) that, for constants Cr and C∗
r depending only on r ∈ (0, 1),

|uG(z)| ≤ |SΦG
(z)| ≤ Cr · ∥G∥p , ∀ z ∈ Dr , (22)

|uG(z1)− uG(z2)| ≤ |SΦG
(z1)− SΦG

(z2)| ≤ C∗
r ∥G∥p|z1 − z2|, z1, z2 ∈ Dr. (23)

Consequently, the operator uG := Re SΦG
is completely continuous on compact sets in

D by the Arzela-Ascoli theorem, see e.g. Theorem IV.6.7 in [8]. Thus, we obtain the
next conclusion.
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Lemma 2. Let φ : ∂D → R be measurable over logarithmic capacity. Then there
is a Dirichlet operator DG over G : D → C in Lp(D), p > 1, generating continuous
solutions U : D → R of the Poisson equation △U = G in the class W 2,p

loc (D) with the
Dirichlet boundary condition (16) in the sense of angular limits q.e. on ∂D, that is
completely continuous over Dr for each r ∈ (0, 1).

Remark 5. Note that the nonlinear operator DG constructed above is not bounded
except the trivial case Φ ≡ 0 because then D0 = SΦ ̸= 0. However, the restriction of
the operator DG to Dr under each r ∈ (0, 1) is bounded at infinity in the sense that
max
z∈Dr

|DG(z)| ≤M · ∥G∥p for some M > 0 and all G with large enough ∥G∥p. Note also

that by Corollary 1 we are able always to choose Φ for any φ, including φ ≡ 0, which
is not identically 0 in the unit disk D.

Moreover, by the above construction U := DG belongs to the class W 1,q
loc (D) for

some q > 2, consequently, U is locally Hölder continuous. If G ∈ Lp(D), p > 2, then
U ∈ C1,α

loc (D) for α := (p− 2)/p, and for all α ∈ (0, 1) under p = ∞.

4. The Dirichlet problem in the unit disc.
In this section we study the solvability of the Dirichlet problem for semi-linear

Poisson equations of the form △U(z) = H(z) ·Q(U(z)) in the unit disk D.

Theorem 1. Let φ : ∂D → R be measurable with respect to the logarithmic capacity.
Suppose that H : D → R is a function in the class Lp(D) for p > 1 with compact support
in D and Q : R → R is a continuous function with

lim
t→∞

Q(t)

t
= 0 . (24)

Then there is a function U : D → R in the class W 2,p
loc (D) such that

△U(z) = H(z) ·Q(U(z)) a.e. in D (25)

with the angular limits

lim
z→ζ

U(z) = φ(ζ) q.e. on ∂D . (26)

Moreover, U belongs to the class W 1,q
loc (D) for some q > 2, consequently, U is locally

Hölder continuous and, if G ∈ Lp(D), p > 2, then U ∈ C1,α
loc (D) for α := (p− 2)/p, and

for all α ∈ (0, 1) under p = ∞.
Proof. If ∥H∥p = 0 or ∥Q∥C = 0, then any harmonic function from Theorem

7.2 in [18] gives the desired solution of (25). Thus, we may assume that ∥H∥p ̸= 0 and
∥Q∥C ̸= 0. Set Q∗(t) = max

|τ |≤t
|Q(τ)|, t ∈ R+ := [0,∞). Then the function Q∗ : R+ → R+

is continuous and nondecreasing and, moreover, by (24)

lim
t→∞

Q∗(t)

t
= 0 . (27)
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By Lemma 2 and Remark 3 we obtain the family of operators F (G; τ) : Lp
H(D) →

Lp
H(D), where Lp

H(D) consists of functions G ∈ Lp(D) with supports in the support of
H,

F (G; τ) := τH ·Q(DG) ∀ τ ∈ [0, 1] (28)

which satisfies hypothesis H1-H3 of Theorem 1 in [22], see Proposition 1. Indeed:
H1). First of all, by Lemma 2 the function F (G; τ) ∈ Lp

H(D) for all τ ∈ [0, 1] and
G ∈ Lp

H(C) because the function Q(DG) is continuous and, furthermore, the operators
F (· ; τ) are completely continuous for each τ ∈ [0, 1] and even uniformly continuous
with respect to the parameter τ ∈ [0, 1].

H2). The index of the operator F (· ; 0) is obviously equal to 1.
H3). Let us assume that solutions of the equations G = F (G; τ) is not bounded in

Lp
H(D), i.e., there is a sequence of functions Gn ∈ Lp

H(D) with ∥Gn∥p → ∞ as n→ ∞
such that Gn = F (Gn; τn) for some τn ∈ [0, 1], n = 1, 2, . . .. However, then by Remark
5 we have that, for some constant M > 0,

∥Gn∥p ≤ ∥H∥p Q∗ (M ∥Gn∥p)

and, consequently,
Q∗(M ∥Gn∥p)
M ∥Gn∥p

≥ 1

M ∥H∥p
> 0 (29)

for all large enough n. The latter is impossible in view of the condition (27). The
obtained contradiction disproves the above assumption.

Thus, by Proposition 1 there is a function G ∈ Lp
H(D) with F (G; 1) = G, and by

Lemma 2 the function U := DG gives the desired solution of (25). The rest properties
of the given solution U follows from Remark 5. �

Remark 6. By the construction in the above proof, U = DG, where DG is the
completely continuous Dirichlet operator described in the last section, and the support
of G is in the support of H and the upper bound of ∥G∥p depends only on ∥H∥p and
on the function Q. Moreover, G : D → R is a fixed point of the nonlinear operator
ΩG := H · Q(DG) : L

p
H(D) → Lp

H(D), where Lp
H(D) consists of functions G in Lp(D)

with supports in the support of H.

5. On quasihyperbolic boundary condition.
Further, it is said that a domain D satisfies the quasihyperbolic boundary con-

dition by Gehring-Martio, see [12], if there exist some constants a and b and a point
z0 ∈ D such that

kD(z, z0) ≤ a + b ln
d(z0, ∂D)

d(z, ∂D)
∀ z ∈ D , (30)

where
kD(z, z∗) := inf

γ

∫
γ

ds

d(ζ, ∂D)
∀ z, z∗ ∈ D
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is the quasihyperbolic distance by Gehring-Palka, see [13]. Here d(ζ, ∂D) denotes
the Euclidean distance from the point ζ ∈ D to ∂D and the infimum is taken over all
rectifiable curves γ joining the points z and z∗ in D.

Recall that by the discussion in [18], every smooth (or Lipschitz) domain satisfies the
quasihyperbolic boundary condition but such boundaries can be even nowhere locally
rectifiable.

Note that it is well–known the so-called, (A)−condition by Ladyzhenskaya–Ural’tse-
va, which is standard in the theory of boundary-value problems for PDE, see e.g. 1.1.3
in [20]. Recall that a domain D in Rn, n ≥ 2, is called satisfying (A)-condition if

mes D ∩B(ζ, ρ) ≤ Θ0 mes B(ζ, ρ) ∀ ζ ∈ ∂D , ρ ≤ ρ0 (31)

for some Θ0 and ρ0 ∈ (0, 1), where B(ζ, ρ) denotes the ball with the center ζ ∈ Rn and
the radius ρ.

Recall also that a domain D in Rn, n ≥ 2, is said to be satisfying the outer cone
condition if there is a cone that makes possible to be touched by its top to every
boundary point of D from the completion of D after its suitable rotations and shifts.
It is clear that the outer cone condition implies (A)–condition.

Probably one of the simplest examples of a domain D with the quasihyperbolic
boundary condition and without (A)–condition is the union of 3 open disks with the
radius 1 centered at the points 0 and 1± i. It is clear that this domain has zero interior
angle at its boundary point 1.

Theorem 2. Let D be a Jordan domain in C with the quasihyperbolic boundary
condition, ∂D have a tangent q.e. and φ : ∂D → R be measurable with respect to
logarithmic capacity.

Suppose that H : D → R is a function in the class Lp(D) for p > 1 with compact
support in D and Q : R → R is a continuous function with

lim
t→∞

Q(t)

t
= 0 . (32)

Then there is a continuous function U : D → R in class W 2,p
loc (D) such that

△U(ξ) = H(ξ) ·Q(U(ξ)) a.e. in D (33)

with the angular limits

lim
ξ→ω

U (ξ) = φ(ω) q.e. on ∂D . (34)

Moreover, U belongs to the class W 1,q
loc (D) for some q > 2, consequently, U is locally

Hölder continuous in D and, if G ∈ Lp(D), p > 2, then U ∈ C1,α
loc (D) for α := (p−2)/p,

and for all α ∈ (0, 1) under p = ∞.
Proof. Let c be a conformal mapping of D onto D that exists by the Riemann

mapping theorem, see e.g. Theorem II.2.1 in [14]. Now, by the Caratheodory theorem,
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see e.g. Theorem II.3.4 in [14], c is extended to a homeomorphism c̃ of D onto D.
Furthermore, by Corollary of Theorem 1 in [4], c∗ := c̃|∂D : ∂D → ∂D and its inverse
function are Hölder continuous. Then φ̃ := φ ◦ c−1

∗ is measurable with respect to the
logarithmic capacity by Remark 4.

Now, set H̃ = |C ′|2 ·H ◦ C, where C is the inverse conformal mapping C := c−1 :
D → D. Then it is clear by the hypothesis of Theorem 2 that H̃ has compact support
in D and belongs to the class Lp(D). Consequently, by Theorem 1 there is a continuous
function Ũ : D → R in the class W 2,p

loc (D) such that

△Ũ(z) = H̃(z) ·Q(Ũ(z)) a.e. in D (35)

with the angular limits

lim
z→ζ

Ũ(z) = φ̃(ζ) q.e. on ∂D , (36)

moreover, Ũ = DG̃, where DG̃ is the completely continuous Dirichlet operator described
in Section 3, and the support of G̃ is in the support of H̃ and the upper bound of ∥G̃∥p
depends only on ∥H̃∥p and on the function Q.

Next, setting U = Ũ ◦c, by simple calculations, see e.g. Section 1.C in [1], we obtain
that △U = |c′|2 ·△Ũ ◦c and, consequently, the continuous function U : D → C is in the
class W 1,p

loc (D) that satisfies equation (33) a.e. and, moreover, U(ξ) = DG̃(c(ξ)), where
DG̃ is the completely continuous Dirichlet operator from Section 3. Hence, by Remark
5, U belongs to the class W 1,q

loc (D) for some q > 2, consequently, U is locally Hölder
continuous in D and, if G ∈ Lp(D), p > 2, then U ∈ C1,α

loc (D) for α := (p − 2)/p, and
for all α ∈ (0, 1) under p = ∞.

It remains to show that (36) implies (34). Indeed, by the Lindelöf theorem, see e.g.
Theorem II.C.2 in [19], if ∂D has a tangent at a point ω, then arg [c∗(ω) − c(ξ)] −
arg [ω−ξ] → const as ξ → ω. In other words, the images under the conformal mapping
c of sectors inD with a vertex at ω ∈ ∂D is asymptotically the same as sectors in D with
a vertex at ζ = c∗(ω) ∈ ∂D. Consequently, nontangential paths in D are transformed
under c into nontangential paths in D and inversely q.e. on ∂D and ∂D, respectively,
because ∂D has a tangent q.e. and c∗ and c−1

∗ keep sets of logarithmic capacity zero.
�

Remark 7. By the construction in the above proof, U(ξ) = DG̃(c(ξ)), where c is
a conformal mapping of D onto D, DG̃ is the completely continuous Dirichlet operator
described in Section 3 and G̃ : D → R is a fixed point of the nonlinear operator
Ω̃G∗ := H̃ ·Q(DG∗) : L

p

H̃
(D) → Lp

H̃
(D), where Lp

H̃
(D) consists of functions G∗ in Lp(D)

with supports in the support of H̃ := |C ′|2 ·H ◦ C, where C is the inverse conformal
mapping C := c−1 : D → D.

6. Dirichlet problem in physical applications.
Theorem 2 on the Dirichlet problem for quasilinear Poisson equations with arbitrary

measurable boundary data over the logarithmic capacity can be applied to mathematical
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problems appearing under modeling various types of physical and chemical absorption
with diffusion, plasma states, stationary burning etc.

The first circle of such applications is relevant to reaction-diffusion problems. Prob-
lems of this type are discussed in [7], p. 4, and, in detail, in [2]. A nonlinear system is
obtained for the density U and the temperature T of the reactant. Upon eliminating
T the system can be reduced to equations of the type (33),

△U = σ ·Q(U) (37)

with σ > 0 and, for isothermal reactions, Q(U) = Uβ where β > 0 that is called the
order of the reaction. It turns out that the density of the reactant U may be zero in a
subdomain called a dead core. A particularization of results in Chapter 1 of [7] shows
that a dead core may exist just if and only if β ∈ (0, 1) and σ is large enough, see also
the corresponding examples in [15]. In this connection, the following statements may
be of independent interest.

Corollary 2. Let D be a Jordan domain with the quasihyperbolic boundary condition,
∂D have a tangent q.e. and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose that H : D → R is a function in the class Lp(D) for p > 1 with compact
support in D.

Then there is a solution U : D → R in the class W 2,p
loc (D)∩W 1,q

loc (D) for some q > 2,
consequently, locally Hölder continuous of the equation

△U(ξ) = H(ξ) · Uβ(ξ) , 0 < β < 1 , a.e. in D (38)

satisfying the Dirichlet boundary condition

lim
ξ→ω

U(ξ) = φ(ω) q.e. on ∂D (39)

in the sense of the angular limits, i.e., along all nontangent paths.
In addition, if G ∈ Lp(D), p > 2, then U ∈ C1,α

loc (D) for α := (p− 2)/p, and for all
α ∈ (0, 1) under p = ∞.

Note also that certain mathematical models of a thermal evolution of a heated
plasma lead to nonlinear equations of the type (37). Indeed, it is known that some of
them have the form △ψ(u) = f(u) with ψ′(0) = ∞ and ψ′(u) > 0 if u ̸= 0 as, for
instance, ψ(u) = |u|q−1u under 0 < q < 1, see e.g. [7]. With the replacement of the
function U = ψ(u) = |u|q · signu, we have that u = |U |Q · signU , Q = 1/q, and, with
the choice f(u) = |u|q2 · signu, we come to the equation △U = |U |q · signU = ψ(U).

Corollary 3. Let D be a Jordan domain with the quasihyperbolic boundary condition,
∂D have a tangent q.e. and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose also that H : D → R is a function in the class Lp(D) for p > 1 with
compact support in D.
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Then there is a solution U : D → R in the class W 2,p
loc (D)∩W 1,q

loc (D) for some q > 2,
consequently, locally Hölder continuous of the equation

△U(ξ) = H(ξ) · |U(ξ)|β−1U(ξ) , 0 < β < 1 , a.e. in D (40)

with the Dirichlet boundary condition (39) in the sense of the angular limits.
In addition, if G ∈ Lp(D), p > 2, then U ∈ C1,α

loc (D) for α := (p− 2)/p, and for all
α ∈ (0, 1) under p = ∞.

Finally, we recall that in the combustion theory, see e.g. [3, 28] and the references
therein, the following model equation

∂u(z, t)

∂t
=

1

δ
· △u + eu , t ≥ 0, z ∈ D, (41)

takes a special place. Here u ≥ 0 is the temperature of the medium and δ is a certain
positive parameter. We restrict ourselves here by the stationary case, although our
approach makes it possible to study the parabolic equation (41), see [15]. Namely, the
corresponding equation of the type (33) is appeared here after the replacement of the
function u by −u with the function Q(u) = e−u that is bounded at all.

Corollary 4. Let D be a Jordan domain with the quasihyperbolic boundary condition,
∂D have a tangent q.e. and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose also that H : D → R is a function in the class Lp(D) for p > 1 with
compact support in D.

Then there is a solution U : D → R in the class W 2,p
loc (D)∩W 1,q

loc (D) for some q > 2,
consequently, locally Hölder continuous of the equation

△U(ξ) = H(ξ) · eU(ξ) , a.e. in D (42)

with the Dirichlet boundary condition (39) in the sense of the angular limits.
In addition, if G ∈ Lp(D), p > 2, then U ∈ C1,α

loc (D) for α := (p− 2)/p, and for all
α ∈ (0, 1) under p = ∞.

Finally, due to the factorization theorem in [15], we are able by the quasiconformal
replacements of variables to extend the above results to semi–linear equations of the
Poisson type describing the corresponding physical phenomena in anisotropic and
inhomogeneous media, too, that shall be published elsewhere.
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В. Гутлянський, О. Нєсмєлова, В. Рязанов, А. Єфiмушкiн
Задача Дiрiхле з вимiрюваними даними для квазiлiнiйних рiвнянь Пуассона.

Дослiдження задачi Дiрiхле з довiльними вимiрними граничними даними для гармонiчних функ-
цiй в одиничному крузi D починається з вiдомої дисертацiї Лузiна, див., напр., [25]. Його резуль-
тат був сформульований в термiнах кутових границь (тобто уздовж недотичних шляхiв до точок
межи D), якi є традицiйним iнструментом для дослiдження граничної поведiнки в геометричнiй
теорiї функцiй. Слiдуючи цим шляхом, ми довели в [16] Теорему 7 про розв’язнiсть задачi Дiрiхле
для рiвняня Пуассона △U = G з джерелами в класах GLp, p > 1, в жорданових областях з до-
вiльними граничними даними, вимiрними вiдносно логарифмiчної ємностi. Тодi ми припускали,
що областi задовольняють квазiгiперболiчну граничну умову Геринга–Мартiо, взагалi кажучи,
без вiдомої (A)−умови Ладиженської–Уральцевої i, зокрема, без умови зовнiшнього конуса, якi
були стандартними для крайових задач в теорiї рiвнянь з частинними похiдними. Звертаємо
увагу, що межи таких жорданових областей можуть бути навiть локально не спрямлюванi. З
метою подальшого розвитку теорiї крайових задач для напiвлiнiйних рiвнянь, ця стаття при-
свячена задачi Дiрiхле з довiльними вимiрними (вiдносно логарифмiчної ємностi) граничними
даними для квазiлiнiйних рiвнянь Пуассона в таких жорданових областях. Для цього ми спо-
чатку будуємо цiлком неперервнi оператори, якi генерують некласичнi розв’язки задачi Дiрiхле
з довiльними вимiрними даними для рiвняння Пуассона △U = G з джерелами G ∈ Lp, p > 1.
Останнє дозволяє застосувати пiдхiд Лере–Шаудера до довендення теорем про iснування ре-
гулярних некласичних розв’язкив вимiрної задачi Дiрiхле для квазiлiнiйних рiвнянь Пуассона
вигляду △U(z) = H(z) · Q(U(z)) з множниками h ∈ Lp з p > 1 i неперервними функцiями
q : R → R з q(t)/t → 0 як t → ∞. Наприкiнцi наведемо застосування до деяких конкретних
квазiлiнейних рiвнянь математичної фiзики, що виникають при моделюваннi рiзних фiзичних
процесiв, таких як дифузiя з абсорбцiєю, стан плазми, стацiонарне горiння i т.д. Цi результати
також можуть бути застосованi до напiвлiнiйних рiвнянь математичної фiзики в анiзотропних i
неоднорiдних середовищах.

Ключовi слова: логарифмiчна ємнiсть, квазiлiнiйне рiвняння Пуассона, нелiнiйнi джерела,
задача Дiрiхле, вимiрнi граничнi данi, кутовi границi, недотичнi шляхи.
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