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OBSERVER DESIGN FOR A FLEXIBLE STRUCTURE
WITH DISTRIBUTED AND POINT SENSORS

The paper is devoted to the observability study of a dynamic system, which describes the vibrations
of an elastic beam with an attached rigid body and distributed control actions. The mathematical
model is derived using Hamilton’s principle in the form of the Euler-Bernoulli beam equation with
hinged boundary conditions and interface condition at the point of attachment of the rigid body.
It is assumed that the sensors distributed along the beam provide output information about the
deformation in neighborhoods of the specified points of the beam. Based on the variational form of the
equations of motion, the spectral problem for defining the eigenfrequencies and eigenfunctions of the
beam oscillations is obtained. Some properties of the eigenvalues and eigenfunctions of the spectral
problem are investigated. Finite-dimensional approximations of the dynamic equations are constructed
in the linear manifold spanned by the system of eigenfunctions. For these Galerkin approximations,
observability conditions for the control system with incomplete information about the state are derived.
An algorithm for observer design with an arbitrary number of modal coordinates is proposed for the
differential equation on a finite-dimensional manifold. Based on a quadratic Lyapunov function with
respect to the coordinates of the finite-dimensional state vector, the exponential convergence of the
observer dynamics is proved. The proposed method of constructing a dynamic observer makes it
possible to estimate the full system state by the output signals characterizing the motion of particular
point only. Numerical simulations illustrate the exponential decay of the norm of solutions of the
system of ordinary differential equations that describes the observation error.
MSC: 93B07, 74K10.
Keywords: flexible beam structure, Galerkin approximation, observability, Luenberger observer.

1. Introduction.
Control theory for flexible structures is a thoroughly studied field from theoretical

point of view. Controllability and stabilization problems for different models of flexible
beams have been the subject of interest of many authors for several decades; see, for
instance, [1–4] and references therein.

In real engineering structures that consist of networks of interconnected beams,
there is often a need to provide a feedback control which takes into account an output
information about the state of the system. A general challenge is that most of the
real settings have limitations for recording and processing output signals. Namely, only
partial information about the motion of certain reference points is usually available for
control purposes. That is why the questions of observability and observer design become
important for estimating the complete state of a dynamic model [5–7]. Controllability
and observability problems have been studied for strings, plates, beams and multi-link
networks in [11–18].

An analytical approach for designing a Luenberger observer for a finite-dimensional
linear system is based on constructing an auxiliary matrix of gain parameters such
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that the error dynamics is asymptotically stable. Then the above gain parameters can
be defined by checking the Routh—Hurwitz or the Liénard–Chipart conditions for the
corresponding characteristic polynomial. For mathematical models of flexible structures
with multiple degrees of freedom, this approach requires the analysis of high order
polynomial inequalities with parameter dependent coefficients. The implementation
of this scheme may be a very difficult technical task. An alternative approach for
observer design is based on Lyapunov’s direct method. The idea is to take a suitable
quadratic form as a Lyapunov function candidate and define the gain parameters in
such a way that the observation error dynamics has stable trivial equilibrium. Moreover,
it is possible to prove that the trivial solution is asymptotically stable with the help of
the Barbashin–Krasovskii theorem (or LaSalle’s invariance principle). This technique
has been applied to observer design and observed-based stabilization in [8–10] for
mathematical models of flexible manipulators.

In the present paper, we study the mathematical model that describes a flexible
beam attached to a rigid body (shaker). The beam is simply supported at the ends
by two hinges and is actuated by distributed piezoelectric controllers and the shaker.
In previous studies, the stabilization problem with a state feedback was investigated
for this infinite-dimensional system. The control design that ensures strong asymptotic
stability of the trivial equilibrium was proposed in [19]. Now, we widen our study to the
system with output and question ourselves whether it is possible to fully reconstruct the
state vector having at our disposal only output signals on a subset of the domain. In this
work, the observability problem is investigated for a finite-dimensional approximation
of the dynamics. An observer design that guarantees the exponential decay of the
observation error is proposed.

The rest of this paper is organized as follows. The mechanical system under con-
sideration is described in section 2, and its equations of motion are derived from the
variational principle in section 3. Some properties of eigenvalues of the associated
spectral problem are discussed in sections 4. A finite-dimensional approximation of the
dynamical equations based on Galerkin’s method is proposed in section 5. The main
results (observability conditions together with observer design scheme) are presented
in section 6. Finally, we illustrate the convergence of the proposed observer with some
numerical simulations in section 7.

2. Modeling of a flexible beam with a shaker.
Consider a flexible beam supported at both ends and attached to the shaker. Let l

be the length of the beam, and let w(x, t) denote the deflection of the centerline of the
beam at a point x ∈ [0, l] and time t (here x = 0 stands for the upper end and x = l for
the lower one, correspondingly). We assume that the shaker is attached at the point
x = l0, and m is the mass of the moving part of the shaker. Then the kinetic energy of
the system considered is

K =
1

2

∫ l

0
ρ(x)ẇ2(x, t) dx+

m

2
ẇ2(l0, t), (1)

where ρ(x) is the mass per unit length of the beam. We use dots to denote derivatives
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with respect to t, and primes to denote derivatives with respect to x. According to the
Euler–Bernoulli beam model, the potential energy can be written as follows:

U =
1

2

∫ l

0
E(x)I(x)

(
w′′(x, t)

)2
dx+

κ
2
w2(l0, t). (2)

Here E(x) and I(x) are the Young modulus and the moment of inertia of the cross
section area, respectively, and κ is the stiffness coefficient of the shaker. In the sequel,
we assume that damping may be neglected.

3. Variational form of the dynamical equations.
Suppose that w(x, t) defines the motion of the system considered for t ∈ [0, τ ],

τ > 0. We have the following geometric boundary conditions:

w(0, t) = w(l, t) = 0.

By using Hamilton’s principle, we get

δ

∫ τ

0
(K − U) dt+

∫ τ

0

Fδw(l0, t) +
k∑

j=1

Mj

∫ l

0
ψj(x)δw

′′(x, t)dx

 dt = 0, (3)

for each admissible variation δw(x, t) of class C2 ([0, l]× [0, τ ]) satisfying the boundary
conditions

δw|t=0 = δw|t=τ = δw|x=0 = δw|x=l = 0.

Here F is the control force implemented by the shaker. In formula (3), we assume also
that there are k piezoelectric actuators attached to the beam. We describe the action of
the j-th actuator by its density of the torque Mj and the shape function ψj(x). These
characteristics may be computed by using results of the paper [20]. We assume that

suppψj ∩ {0, l0, l} = ∅ for each j = 1, 2, . . . , k.

By performing the integration by parts with respect to t in (3), we obtain∫ l

0

ρẅδw +

EIw′′ −
k∑

j=1

Mjψj

 δw′′

 dx+ (mẅ + κw − F ) δw|x=l0
= 0. (4)

Then another integration by parts with respect to x yields the following partial
differential equation:

ρẅ(x, t) +
(
EIw′′(x, t)

)′′
=

k∑
j=1

ψ′′
j (x)Mj , x ∈ (0, l) \ {l0}, (5)

with boundary and interface conditions

w|x=0 = w|x=l = 0, w′′|x=0 = w′′|x=l = 0,

(mẅ + κw)|x=l0
= (EIw′′)′

∣∣
x=l0−0

− (EIw′′)′
∣∣
x=l0+0

+ F,
(6)
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for w(x, t) of class C2 ([0, l]× [0, τ ]) such that the derivatives w′′′(x, t) and w′′′′(x, t)
exist for all x ∈ [0, l] \ {l0} and t ∈ [0, τ ].

4. Spectral problem.
To analyse the spectrum of oscillations of the mechanical system considered, we first

study the control system (5)–(6) with M1 = . . . =Mk = 0 and F = 0. For simplicity,
we assume that the beam is homogeneous, i.e. ρ, E, and I are treated as constants in
the sequel.

By substituting w(x, t) = W (x)q(t) into the homogeneous part of (5)–(6), we get
q̈(t) = −λq(t) together with the following spectral problem:

d4

dx4
W (x) = λ

ρ

EI
W (x), x ∈ (0, l) \ {l0},

W (0) =W (l) = 0, W ′′(0) =W ′′(l) = 0, W ∈ C2[0, l],

W ′′′(l0 − 0)−W ′′′(l0 + 0) =
κ − λm

EI
W (l0).

(7)

The eigenfunctions of the above problem are

W (x) =

{
C1 sin(µx) + C2 sinh(µx), x ≤ l0,
B1 sin(µ(x− l)) +B2 sinh(µ(x− l)), x > l0,

where µ =
(

λρ
EI

)1/4
, and the constants C1, C2, B1, B2 satisfy the following linear

algebraic system:


sinµl0 − shµl0 − sinµ(l0 − l) shµ(l0 − l)
sinµl0 shµl0 − sinµ(l0 − l) − shµ(l0 − l)
cosµl0 chµl0 − cosµ(l0 − l) − chµ(l0 − l)

cosµl0 + κ−mλ
EIµ3 sinµl0

κ−mλ
EIµ3 shµl0 − chµl0 − cosµ(l0 − l) chµ(l0 − l)




C1

C2

B1

B2

 = 0. (8)

Thus, the eigenvalues λ of the spectral problem (7) are obtained by solving the equation

∆(λ) = 0, (9)

where ∆(λ) is the determinant of the 4 × 4-matrix of (8). A rigorous investigation of
the characteristic equation (9) with regard to the asymptotic behavior of its roots is
carried out in [21].

Let λ1, λ2, . . . be eigenvalues of (7), and let W1(x) ,W2(x), . . . be the corresponding
eigenfunctions. Let us define

⟨Wi,Wj⟩H :=

∫ l

0
ρWi(x)Wj(x) dx+mWi(l0)Wj(l0). (10)

We have the following lemma.
Lemma 1. If λi ̸= λj then ⟨Wi,Wj⟩H = 0.
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Proof. The integration by parts of the expression
∫ l
0 W

′′
i (x)W

′′
j (x)dx and exploiting

the interface conditions W ′′′
j (l0 + 0)−W ′′′

j (l0 − 0) = λm−κ
EI Wj(l0), j = 1, . . . , N , gives∫ l

0
Wj(x)

d4

dx4
Wi(x)dx+

λim− κ
EI

Wi(l0)Wj(l0)

on the one hand, and∫ l

0
Wi(x)

d4

dx4
Wj(x)dx+

λjm− κ
EI

Wi(l0)Wj(l0)

on the other hand. Calculating the difference between these two expressions, we obtain∫ l

0

(
Wj(x)

d4

dx4
Wi(x)−Wi(x)

d4

dx4
Wj(x)

)
dx+

m

EI
(λi − λj)Wi(l0)Wj(l0) = 0.

As both Wi(x) and Wj(x) satisfy (7),

(λi − λj) ⟨Wi,Wj⟩H = 0,

which leads to ⟨Wi,Wj⟩H = 0 for λi ̸= λj . �
Lemma 2. Each eigenvalue of the spectral problem (7) is a non-negative real

number.
Proof. Consider the differential operator L : D(L) → H̃ = L2[0, l]× R acting as

ζ =

(
u(x)
p

)
7→ Lζ =

( EI
ρ u

′′′′(x)
κ
mp−

EI
m (u′′′(l0 − 0)− u′′′(l0 + 0))

)
with the domain

D(L) =


ζ ∈

(
H2[0, l] ∪H4(0, l0) ∪H4(l0, l)

)
× R :

u(0) = u(l) = 0, u′′(0) = u′′(l) = 0,

u′′(l0 − 0) = u′′(l0 + 0), p = u(l0)

 ⊂ H̃.

Then the spectral problem (7) can be rewritten as

Lζ = λζ.

Let us rewrite the bilinear form (10) in terms of elements of H̃:

⟨ζi, ζj⟩H̃ =

⟨(
ui
pi

)
,

(
uj
pj

)⟩
H̃

:=

l∫
0

ρui(x)uj(x)dx+mpipj .

A direct computation leads to

⟨Lζi, ζj⟩H̃ =

l∫
0

EIu′′′′i (x)uj(x)dx+ κpipj − EI
(
u′′′i (l0 − 0)− u′′′i (l0 + 0)

)
pj
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and

⟨ζi,Lζj⟩H̃ =

l∫
0

EIui(x)u
′′′′
j (x)dx+ κpipj −EI

(
u′′′j (l0 − 0)− u′′′j (l0 + 0)

)
pi.

The integration by parts gives ⟨Lζi, ζj⟩H̃ = ⟨ζi,Lζj⟩H̃ . Besides, it is easily verifiable

that ⟨ζ,Lζ⟩H̃ =
l∫
0

EI(u′′(x))2dx + κp2 ≥ 0 for all ζ ∈ D(L). So, L is positive self-

adjoint operator with respect to the bilinear form ⟨·, ·⟩H̃ ; thus the eigenvalues of L are
real and non-negative. �

5. Galerkin’s method.
Let us consider a finite set of eigenvalues λ1, λ2, ... , λN and the corresponding

eigenfunctionsW1(x),W2(x), ...,WN (x) of the spectral problem (7). Then we substitute

w(x, t) =
N∑
j=1

Wj(x)qj(t)

into the variational form of equations of motion (4), assuming that (4) holds for each

δw(·, t) ∈ span {W1,W2, . . . ,WN} , t ≥ 0.

As a result, we get the Galerkin system with respect to q1(t), q2(t), . . . , qN (t):

q̈j + λjqj =
Wj(l0)

∥Wj∥2H
u0 +

k∑
i=1

∫ l
0 ψi(x)W

′′
j (x) dx

∥Wj∥2H
ui, j = 1, 2, . . . , N, (11)

where u0 = F , ui =Mi, i = 1, . . . , k.
System (11) can be equivalently written as

ż = Az +Bu, z = (q1, p1, . . . , qN , pN )T , u = (u0, u1, . . . , uk)
T , (12)

where A = diag(A1, A2, . . . , AN ),

Aj =

(
0 1

−λj 0

)
, B =


0 0 . . . 0
b10 b11 . . . b1k
...

...
. . .

...
0 0 . . . 0
bN0 bN1 . . . bNk

 ,

bj0 =
Wj(l0)

∥Wj∥2H
, bji =

∫ l
0 ψi(x)W

′′
j (x) dx

∥Wj∥2H
, i = 1, 2, . . . , k. (13)
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6. Luenberger observer design.
Assume that the state w(x, t) of the flexible beam can measured by r strain gauges

located at points x = l1, . . . , lr and, moreover, the shaker displacement w(l0, t) is
measured as function of time. The current, generated by the s-th gauge, is proportional
to ẇ′′(ls, t). By assuming that the measuring device implements a current integrator,
we treat the signals

y0(t) = w(l0, t), ys(t) = w′′(ls, t), s = 1, . . . , r, (14)

as the output for the mathematical model (5)–(6). Then, as the representation

w(x, t) =

N∑
j=1

Wj(x)qj(t)

is used to derive Galerkin’s system (12), we express the output (14) in terms of functions
q1(t), . . . , qN (t) as follows:

y0(t) ≈
N∑
j=1

Wj(l0)qj(t), ys(t) ≈
N∑
j=1

W ′′
j (ls)qj(t), s = 1, . . . , r.

Thus, we assume that the output signal y(t) = Cz(t) ∈ Rr+1 is available for the
finite-dimensional control system (12), where

y = Cz, C =


c01 0 . . . c0N 0
c11 0 . . . c1N 0
...

...
. . .

...
...

cr1 0 . . . crN 0

 , c0j =Wj(l0), csj =W ′′
j (ls), s = 1, r. (15)

Lemma 3. Let the eigenvalues λ1, λ2, ..., λN be distinct and, for each j = 1, N ,
there is an s ∈ {0, ..., r} such that csj ̸= 0. Then system (12) with output (15) is
observable.

Proof. Let us prove that rankH = 2N , where the matrix

H =


C
CA
...
CA2N−1


by a suitable permutation of its rows and columns can be transformed to the following
block form:

H0 0
...

...
Hr 0

0 H0
...

...
0 Hr


, Hs =


cs1 . . . csN

−λ1cs1 . . . −λNcsN
...

. . .
...

−λN−1
1 cs1 . . . −λN−1

N csN

 , s = 0, . . . , r.
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Each Hs is a Vandermonde-like matrix whose determinant can be calculated as

detHs =
N∏
i=1

csi
∏

1≤j<n≤N

(λn − λj), s = 0, . . . , r.

Under the assumptions of Lemma 3, the rectangular block

 H0
...
Hr

 has a nonzero

minor of order N . So, rankH = 2N and system (12), (15) is observable by Kalman’s
observability criterion. �

The following result describes an explicit scheme for constructing the Luenberger
observer for system (12), (15).

Theorem 1. Let system (12), (15) be observable and λj > 0 for all j = 1, N . Then,
for any z(0) ∈ R2N , z̄(0) ∈ R2N , and any u ∈ L∞[0,∞), the corresponding solutions
z(t) and z̄(t) of system (12) and

˙̄z(t) = (A− FC)z̄(t) +Bu(t) + Fy(t) (16)

satisfy the property
∥z(t)− z̄(t)∥ → 0 as t→ +∞. (17)

Here

F =


f10 . . . f1r
0 . . . 0
... · · ·

...
fN0 . . . fNr

0 . . . 0

 , fjs = γs
csj

λj∥Wj∥2
, j = 1, N, s = 0, r,

and γs > 0 are arbitrary constants.
Proof. Consider the observation error e(t) = z(t) − z̄(t) = (∆1, δ1, . . . ,∆N , δN )T .

Then subtracting (16) from (12) yields the following dynamics:

ė = (A− FC)e. (18)

Let us consider the following positive definite quadratic form:

2W (e) =

N∑
j=1

∥Wj∥2(δ2j + λj∆
2
j ),

and compute its time derivative along the trajectories of system (18):

Ẇ (e) = −
r∑

s=1

N∑
j=1

∥Wj∥2λj∆jfjs

N∑
i=1

Csi∆i = −
r∑

s=1

γs

 N∑
j=1

Csj∆j

2

≤ 0.
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According to Lyapunov’s theorem, the trivial solution of (18) is stable.
Our goal is to check whether the system (18) admits nontrivial trajectories on the

set K = {e ∈ R2N : Ẇ (e) = 0}. As far as γs > 0 for all s = 0, . . . , r, the identity

Ẇ (e(t)) ≡ 0 implies that
N∑
j=1

Csj∆j(t) ≡ 0 or, in the matrix form,

Ce(t) ≡ 0, (19)

which in turn implies that the time derivatives dn

dtn (Ce(t)) vanish for all n = 0, 1, 2, ....
In view of (19), system (18) reduces to

ė = Ae (20)

on the set K. Computing the derivatives of Ce(t) up to (2N−1)-st along the trajectories
of (20), one can see that

dn

dtn
Ce(t) = CAne(t), n = 0, . . . , 2N − 1.

So, the components of e(t) satisfy the following algebraic system:

CAne(t) = 0, n = 0, . . . , 2N − 1. (21)

As system (12), (15) is observable, system (21) admits only the trivial solution e(t) ≡ 0
because of Kalman’s observability rank condition. Thus, the trivial solution of (18) is
asymptotically stable by the Barbashin–Krasovskii theorem. �

Remark. As the error dynamics (18) is linear in the considered case, the obtained
asymptotic stability result guarantees in fact the exponential convergence in (17). Note
that the assertion of Theorem 1 can be reformulated in terms of partial asymptotic
stability of the extended system (12), (15), (16) with respect to the variables z− z̄. This
type of stability conditions can be formally analyzed with extensions of the Barbashin–
Krasovskii–LaSalle results for partial stabilization of ordinary differential equations
(see, e.g., [22]) and dynamical systems in abstract spaces [23].

7. Numerical simulations.
The goal of this section is to illustrate the behavior of solutions of control sys-

tem (12), (15) and its dynamic observer (16) by numerical simulations for the model
with N = 6 modes of oscillations. All computations are carried out for the following
realistic mechanical parameters (cf. [21]):

l = 1.875m, l0 = 1.4m, E = 7.1 · 1010 Pa, I = 1.6875 · 10−10 m4,

ρ = 2660 · 2.25 · 10−4 kg/m, m = 0.045 kg, κ = 2630N/m.

The model is driven by the periodic force F = sin 4t and the beam displacement at x =
l0 is taken as the output, so that the piezo actuators are switched off the data from piezo
sensors is neglected. For numerical simulations, we choose the observer gain parameter
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γ1 = 3 and the initial conditions z̄(0) = 0, qi(0) = 0.1, pi(0) = 0.1, i = 1, . . . , N . The

overall weighted error ∥e(t)∥2 = κ
2

N∑
j=1

(∆j(t))
2 + m

2

N∑
j=1

(δj(t))
2 is presented in Fig. 1,

while high frequency components of the observation error are depicted in Figs. 2 and 3.

Fig. 1. The time plot of ∥e(t)∥2.

Fig. 2. The time plot of
κ
2 (∆N (t))2 + m

2 (δN (t))2.
Fig. 3. The time plot of

κ
2 (qN (t)− q̄N (t))2 + m

2 (pN (t)− p̄N (t))2.

The above time plots confirm the convergence of the proposed observer for the
considered multidimensional model.

8. Conclusions and future work.
In this paper, we have proposed an explicit analytic approach for constructing the

Luenberger observer for a class of finite-dimensional models of flexible structures. This
observer design allows estimating the full system state for an arbitrary dimension of the
output vector. We do not solve here the output stabilization problem leaving this task
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for future investigations. In the previous work [19], the stabilization problem was solved
for the beam-shaker model by a feedback law depending on the infinite-dimensional
state vector. So, another direction of further study is related to the observer-based
stabilization of this class of distributed parameter flexible structures.
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О.Л. Зуєв, Ю.I. Калоша
Синтез спостерiгача для пружної структури з розподiленими та точковими сенсора-
ми.

Статтю присвячено дослiдженню задачi спостережуваностi динамiчної системи, яка описує ко-
ливання пружної балки з приєднаним твердим тiлом i розподiленими керуючими впливами. Ма-
тематичну модель виведено за допомогою варiацiйного принципу Гамiльтона–Остроградського
у виглядi рiвняння Ейлера–Бернуллi з крайовими умовами шарнiрного закрiплення кiнцiв бал-
ки та умовами iнтерфейсу в точцi прикрiплення твердого тiла. Передбачається, що розподiленi
вздовж балки сенсори надають вихiдну iнформацiю про деформацiї в околi заданих точок балки.
На основi варiацiйної форми рiвнянь руху отримано спектральну задачу для обчислення влас-
них частот i власних форм коливань балки. Дослiджено деякi властивостi власних значень i
власних функцiй спектральної задачi. У лiнiйному многовидi, що породжується системою влас-
них функцiй спектральної задачi, побудовано скiнченновимiрнi апроксимацiї динамiчних рiвнянь.
Для моделi наближень за Гальоркiним наведено достатнi умови спостережуваностi системи з ви-
ходом при неповнiй iнформацiї про стан системи. Для диференцiального рiвняння з виходом у
скiнченновимiрнiй лiнiйнiй оболонцi запропоновано алгоритм побудови системи-спостерiгача для
довiльної кiлькостi модальних координат. На основi аналiзу функцiї Ляпунова у виглядi квад-
ратичної форми вiд координат скiнченновимiрного фазового вектора доведено експоненцiальну
збiжнiсть розв’язкiв побудованої системи-спостерiгача. Отриманий метод побудови динамiчного
спостерiгача дає можливiсть оцiнювання стану всiєї системи за наявностi вихiдних сигналiв що-
до руху лише окремих точок. Результати чисельного iнтегрування iлюструють експоненцiальне
згасання норми розв’язкiв системи диференцiальних рiвнянь, яка описує похибку спостережень.

Ключовi слова: система з пружною балкою, наближення за Гальоркiним, спостережува-
нiсть, спостерiгач Луенбергера.
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