Л. В. Мосенцова

Физико-технологический институт металлов и сплавов НАН Украины, Киев

ПРИМЕНЕНИЕ МЕТОДА МОДЕЛЬНЫХ ЭКСПЕРИМЕНТОВ ДЛЯ РЕШЕНИЯ ЗАДАЧ ИНТЕРПРЕТАЦИИ НАБЛЮДЕНИЙ

Актуальной проблемой при создании современных систем наблюдения является разработка программных систем, предназначенных для решения задач интерпретации наблюдений, подвергнувшихся искажениям. С точки зрения математики, задачи интерпретации наблюдений являются обратными и принадлежат к классу некорректно поставленных задач. Наиболее важным и сложным моментом при решении некорректных обратных задач является определение параметра регуляризации. Для этого могут быть использованы специальные методы, в том числе метод модельных экспериментов [1], который заключается в следующем:

1. Пусть задано уравнение (оригинал P) $Ay \equiv \int_a^b K(x,s)y(s)ds = f(x), c \le x \le d$

своей правой частью $\tilde{f}_{\mathrm{p}}\left(x\right)$ и ядром $\tilde{K}_{p}\left(x,s\right)$.

- 2. Составляется модельный пример Q, в котором точное решение задается с учетом априорной информации об искомом решении.
- 3. Определяется правая часть модельного примера $f_{\mathcal{Q}}(x)$ из $\int_{0}^{b}K(x,s)y(s)ds=f(x), c\leq x\leq d$, при $K\left(x,s\right)=K_{\mathcal{Q}}\left(x,s\right)$ таком, что

$$\frac{\parallel \vec{K_Q} - \vec{K_P} \parallel}{\parallel \vec{K_Q} \parallel} = \tilde{\xi}_{\text{OTH}P}.$$

4. Численно решается уравнение (при различных значениях параметра регуляризации $\delta > 0$)

$$6\left[y_{6}\left(t\right)-qy_{6}^{"}\left(t\right)\right]+\int_{a}^{b}\int_{c}^{d}\tilde{K}\left(x,s\right)dx\right]y_{6}\left(s\right)ds=\int_{c}^{d}\tilde{K}\left(x,t\right)\tilde{f}\left(x\right)dx,\quad a\leq t\leq b,\quad (1)$$

относительно $[y_a(s)]_Q$ с ядром $\tilde{K}(x,s)$ = $\tilde{K}_Q(x,s)$ = $\tilde{K}_D(x,s)$

и такой правой частью $\tilde{f}(\mathbf{x}) = \tilde{f}_Q(x)$, что выполняется условие $\frac{\parallel f_Q - \tilde{f}_Q \parallel}{\parallel f_Q \parallel} = \tilde{\delta}_{\text{отн}P}.$

5. Определяется оптимальный параметр регуляризации $\alpha_{\mbox{\tiny ont}Q}$ — то α из множества рассмотренных параметров регуляризации, при котором выполняется условие

$$\frac{\parallel y_{\alpha_Q} - y_Q \parallel}{\parallel y_Q \parallel} = \min_{>.0}.$$

6. Для получения решения исходного уравнения P используется найденное значение оптимального параметра регуляризации $\delta_{\text{опт}}$ модельного примера Q.

Хроника. Информация

Для данного метода разработана программа в системе Matlab и решен ряд тестовых задач, которые показали, что метод модельных примеров является эффективным для задач, в которых восстанавливаемая функция является функцией со всплесками.

Список литературы

1. *Верлань А. Ф., Сизиков В. С.* Интегральные уравнения: методы, алгоритмы, программы: Справочник. – Киев: Наук. думка, 1986. – 544 с.

ВАЛЕРИЙ ПЕТРОВИЧ ЛИХОШВА

(к 60-летию со дня рождения)

23 января исполнилось 60 лет доктору технических наук, заведующему отделом технологии многослойного литья и покрытий **Лихошве Валерию Петровичу.**

Родился В. П. Лихошва в 1953 г. в Перми (Россия). После учебы в Ростовском—на—Дону институте сельхозмашиностроения (с 2008 г. — Донской государственный технический университет), факультет «приборостроение» (1970-1975 г.г.) получил квалификацию инженера-механика по специальности «приборы точной механики». С 1976 по 1983 г.г. работал старшим лаборантом и ассистентом кафедры общетехнических дисциплин в Новочеркасском политехническом институте.

С 1983 г. Валерий Петрович связал свою судьбу с Украиной, поступив в аспирантуру Института проблем литья АН УССР (ныне Физико-технологический институт металлов и сплавов НАН Украины), где работает и в настоящее время.

После окончания аспирантуры в 1988 г. В. П. Лихошва успешно защитил кандидатскую диссертацию по специальности «металлургия черных металлов», в 1990 г. его переводят на должность научного сотрудника.

К этому времени относится возвращение в институт члена-корреспондента НАН