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PACKING CONVEX HOMOTHETIC 

POLYTOPES INTO A CUBOID 

A mathematical model of the problem of packing homothetic polytopes into 

a cuboid of minimal volume based on the fi-function for two convex poly-

topes is presented. A number of features of the mathematical model are 

noted. Based on the peculiarities, an approach for constructing starting 

points, a fast algorithm for finding local minima, and an exhaustive search 

for local minima to obtain a good approximation to the global extremum 

are proposed. Numerical results are given. Keywords: packing, homothetic 

polytopes, rotations, optimization, phi-

functions. 

Introduction 
3D packing problems are classical optimization problems which have extensive engineering applica-

tions. At present, the interest in finding effective solutions to the problems is growing rapidly. 

These problems combine a large set of various practical problems related with finding the optimal 

packings of geometric objects of one type into the objects of another. In most cases, when solving 3D pack-
ing problems, it is necessary to pack all the given objects into containers of minimum sizes. 

Such problems arise in various fields of science and engineering where full-scale experiments are re-

placed by computer simulation, which significantly saves time and material resources. For example, an actu-
al application of the problems is the 3D simulation of microstructures of different materials (including na-

nomaterials) [1, 2]. Recent advances in the field have been related with the development of the computer 

technology of the 3D X-ray tomography analysis of mineral particles [2]. 
There also exists a wide spectrum of problems in modern biology, mineralogy, medicine, materials 

science, nanotechnology, robotics, pattern recognition systems, control systems, space apparatus control sys-

tems, as well as in chemical industry, power engineering, mechanical engineering, shipbuilding, aircraft con-

struction, civil engineering, etc. 
It is well known that the 3D object packing problem is NP-complete. Because of its NP complexity, 

the problem is difficult to solve satisfactorily. This is why in order to find its approximate solution a lot of 

researchers use a very wide variety of techniques, including heuristics (heuristics based on different approx-
imation rules [3], genetic algorithms [4], simulated annealing algorithm [5], artificial bee colony algorithm 

[6]), extended pattern search [7], traditional optimization methods [8, 9] and different mixed approaches uti-

lizing heuristics and methods of non-linear mathematical programming [10]. 

As mentioned in [3] solution processes consist of the following loop procedures: 1) ordering a se-
quence of objects; 2) applying geometric procedures to the objects according to their position in the se-

quence; 3) calculating an objective function. 

The geometric procedures can be implemented by methods which differ by: the path of object 
movement, complexity of rotation modeling and whether an intersection object is allowed during solution 

phases. 

In the majority of papers, either orientation changes of 3D objects are not allowed or only discrete 
changes in the orientation for given angles (45 or 90 degrees) are allowed. For example, in [11] only the par-

allel translation algorithm is used for packing convex polytopes. In [12] the authors propose the HAPE3D 

algorithm which can be applied to an arbitrarily shaped polyhedral which, in its turn, can rotate around each 

coordinate axis at eight different angles only. 
In [13] the authors point out that for 3D packing problems making calculations of 0 to 360 degrees 

orientations of objects with respect to each axis is impossible. 

At present, due to the difficulty in constructing adequate mathematical models, there are few works 
that solve 3D packing problems provided that continuous rotations of geometric objects are allowed. The 

solutions to the problems are considered in [8, 9, 14, 15, 16]. In [8, 9, 14] continuous and differentiable non-
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linear programming models and algorithms for packing ellipsoids in the 3-dimensional space are introduced. 

In paper [16] the problem of packing different convex 3D objects is solved. 
This work is devoted to solving the packing problem of homothetic convex polytopes with continu-

ous angles of rotation. Our approach is based on the mathematical simulation of relations between geometric 

objects reducing the problem solution to nonlinear programming. To this end, we use the phi-function tech-
nique [9, 15] for the analytic description of object interaction and allocation in a container, taking into ac-

count continuous rotations and parallel translations. 

1. Problem statement  

Let there be homothetic polytopes ,iP  }{1,2,...,= nIi  and a cuboid 

 },,,{= 212121
3  xlxlwxwRXC , (1) 

where 12121 ,,,, llww  and 2  are variable, whence the vector ),,,,,( 212121  llww  determines the sizes of .C  

The polytopes iP  are specified by the vertices 

 }{1,2,...,=,),,,(= 321  OoIippphp ioioioiio , (2) 

where 
ih  is the homothetic coefficient of .iP  

We suppose without loss of generality that 

   nhhh ...=1 21  (3) 

and at least one inequality is strict. 

On the ground of the vertices we construct the inequality systems 

  },{1,2,...,=,0,=)(   KkIidhzcybxaX kikkkik  (4) 

which specify the polytopes ,iP  ,Ii  respectively. Let ikF  be the planes specified by the equations 

0,=)(Xik  .Kk  

It follows from (1) that C  is described by the inequality system 

  },{1,2,...,60,),(  rXr  (5) 

where ,=),( 11 wxX   ,=),( 22 xwX   ,=),( 13 lyX   ,=),( 24 ylX   15 =),(  zX , and 

.=),( 26 zX   

The location of the polytope iP  in the Euclidean 3D arithmetic space 
3R  is defined by the translation 

vector ),,(= iiii zyxv  and rotation angles ),,,(= iiii   .Ii  Thus, the motion vector 

),,,,,(=),(= iiiiiiiii zyxvu   defines the  location of iP  in ,3R  i.e. the vector ,),...,,(= 21
m

n Ruuuu   

where nm 6= , defines the location of ,iP  ,Ii  in .3R  Thus, the coordinates of vertices (2) take the form 

 ,,),)(,)(,)((=))(),(),((=)( 000321 OoIizpqhyplhxpghupupupup i
T

ioiii
T

ioiii
T

iojiiiioiioiioiio    (6) 
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.cos=,cossin=,sinsin= 321 iiiiiiii qqq   

The inequality systems (4) take the form 

  .,0,)),((=),,( KkIivXRuX i
T

iikiik   (9) 

In what follows, the polytope iP  subjected to the translation of iv  and rotations ii  , , and i  is de-

noted by )( ii uP  and the cuboid C  with variable sizes   as ).(C  

Here, we consider the packing problem in the following setting. 

Problem. Define the vector mRu , which insures the arrangement ),( ii uP  ,Ii  without their mutu-

al overlapping in the cuboid )(C  so that the cuboid volume ))()((=)( 121212  llwwH  will reach 

its minimal value. 

 

2. Mathematical model and its characteristics  

In order to construct a mathematical model of the problem stated, it is necessary to describe the in-

teraction of polytopes depending on their location in 
3R  in analytical form. An adapted tool for such a de-

scription is phi-functions [19]. 

Based on the phi-functions, a mathematical model of the problem has the form 

 6),(s.t.)(min=)(   mRRuRHRH , (10) 

where 

 ,0,),(,<<0,0),(:),{(= 6 IiuIjiuuRu iijiij
m    (11) 

0}.0,0,0,0,0, 121212111  llwwlw  

Here, the inequality 0),(  jiij uu  insures the non-overlapping of iP  and jP  and the inequality 

0),(  ii u  provides the containment of iP  in )(C . Note that ),(  ii u  is the phi-function for iP  and the 

set )(\=)( 3  intCRA , where )(intC  is the interior of C . 

Let us consider a number of characteristics of the mathematical model. 

1. Since each of the phi-functions [19] for iP  and jP  has the form 

 }}{1,2,...,=),,(,,),,(),,({max=),( 2321  Lluudtuuuuuu ji
l

ijji
d

ijji
t

ijjiij , (12) 

where 2=   is the number of edges of ,1P  0),(  jiij uu  if at least one of the inequalities 

 LluuTduuTtuu ji
l

ijji
d

ijji
t

ij  0,),(,0,),(,0,),( 321  (13) 

is fulfilled. Thus, the number of the inequalities is 
22  . 

2. Since ),,({min=),( 11
ji

to
ijji

t
ij uuuu   0,}Oo  ),,({min=),( 22

ji
do

ijji
d

ij uuuu   0}Oo  and 

),,({min=),( 33
ji

lb
ijji

l
ij uuuu   and }}{1,2,...,5=Mb  (see [14] and Appendix 1) 0,),(1  ji

t
ij uu  

0),(2  ji
d

ij uu , and 0),(3  ji
l

ij uu  are equivalent to the inequality systems 

 

























































,

0),(

..............

0),(

0),(

,

0),(

..............

0),(

0),(

,

0),(

..............

0),(

0),(

3

23

13

2

22

12

1

21

11

ji
ls

ij

ji
l

ij

ji
l

ij

ji
d

ij

ji
d

ij

ji
d

ij

ji
t

ij

ji
t

ij

ji
t

ij

uu

uu

uu

uu

uu

uu

uu

uu

uu

  (14) 

respectively, where 

 ).),((=),(),),((=),( 21
jiiojkji

ko
ijijjoikji

to
ij uupuuuupuu   (15) 
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3. It follows from items1 and 2 that the polytopes ,iP  ,Ii  do not overlap if at least one of the ine-

quality systems 

 1})(2={0,1,...,==,
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where ),( jiij uu  or ),(1
ji

t
ij uu , or 0),(2  ji

d
ij uu , or ),,(3

ji
l

ij uu  
2

1)(
=




nn
 is fulfilled.  

4. Since }),,({min=),( Rruu i
r
iii  , where }),),((=),({min=),( Ooupuu iiori

r
ioi

r
i   

(see (5) and (6)), 0),(  ii u  is the equivalent to the inequality system 

  .0,),( Rrui
r
i   (17) 

5. It follows from the relation (10) and items 2, 3 and 4 that the point ),(u  if at least one of the 

inequality systems 
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where ),...,2,1(,  tt  or ),( ji uu , or ),( 1wui , or ),( 2wui , or ),( 1lui , or ),( 2lui , or ),( 1iu , or ),( 2iu , or 

),( 21 ww , or ),( 21 ll , or ),( 21  , or 1w , or 1l , or 2  is fulfilled. 

Thus, the feasible region   can be presented as  

 






0=
= , (19) 

where   is defined by the inequality system 0.),(  uF  

6. The relation (17) permits to theoretically find the global minimum point of the problem (10)–(11) 
as a result of solution to the problem 

}),({min=)(   HH , 

where 

.,),(s.t.)(min=)( 6  


 mRuHH  

7. The problem is NP-hard.  
The characteristics of the model show that the process of solving the problem must include the con-

struction of starting points, computation of local minima and non-exhausted search for local minimum points 

to obtain a good approximation to the global minimum. 

3. Construction of starting points 
In order to diminish the time for solving similar problems, it is desirable to obtain starting points be-

longing to the feasible region. At present, the construction of starting points is executed by either greedy or 

heuristic algorithms. The algorithms do not permit to generate all possible starting points, which results in a 
significant restriction of the corresponding local minimum points. Furthermore, the algorithms demand essen-

tial time expenditures. The above facts determine the necessity to develop new approaches to deriving starting 
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points. We offer an approach which allows us to construct the starting points belonging to the feasible region 

without any limits. To realize the approach we cover the polytopes ,iP  Ii with spheres of minimal radii and 

pack the latter into a cuboid C  of a minimal volume. Then we take the center coordinates of the spheres and 

sizes of C  obtained as a starting point and compute the local minimum point of the problem (10)–(11). 

3.1. Packing spheres 

Firstly, we cover the polytope 1P  with a sphere 1S  of minimal radius 0
1r . To that end, we solve the 

problem (see (6)) 

  ),( s.t.min= 11
0
1 v , },,,),{(= 1

0
0

4
1 OopvRv io   (20) 

where ),,(= 0000 zyxv  is the sphere center. In what follows, we suppose that the origin 1O  of the eigen coor-

dinate system of 1P  and the center of 1S  coincide. Thus, the spheres )( 0
iiS   of minimal radii  ii h0

1
0 =  

cover the polytopes iP , .Ii  

Now, we give ),,,,,,(== 0
2

0
1

0
2

0
1

0
2

0
1

0  llww  so that ,<<0 0
2

0
1 ww  0

2
0
1 <<0 ll  and .<<0 0

2
0
1   

Next we suppose that the radii i  of the spheres ,iS  ,Ii  are variable and form the vec-

tor n
n R ),...,,(= 21 . Thus, the vector of all the variables is .),(= 4nRvX   Having given ,iv  ,Ii  

randomly, so that )( 0 Cvi  and assumed 0= , we obtain the point nRvX 4,0)(=  . Then for the start-

ing point 
X  we calculate the local maximum point ),(= 000 vX of the problem 
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The problem (21)-(22) possesses the following features: 

1. If ),(= 000 vX  is the local maximum point of the problem and d
n

i

i

n

i

i  




 11

00 ==)( , then 

the spheres ),( 0
ii vS  Ii  are packed into the cuboid ).( 0C  This means that in this case the point 

0X  is the 

global maximum point of the problem (20). 

2. If the global maximum point ),(= 000 vX  is such that at least one of the components of 0  is 

strictly less than the appropriate component of ),...,,(= 21
  n , then the spheres ,iS  Ii  are not 

packed into the cuboid ).( 0C  

The point ),(= 000 vX  is, evidently, the global maximum point such that d=)( 0  can be easily 

obtained if we provide 
0  with an arrangement of ,iS  Ii  within the cuboid ).( 0C  

3.2. Starting points 

We now take the polytopes )( 0
ii vP  instead of the spheres )( 0

ii vS  and fix both iiii



 =,= and 

,= ii



  .Ii  Since in this case the rotation angles are constants, the vector of all the variables is 

63),(  nRv . Consequently, the inequality system of the form (16) consists of linear inequalities. Thus, the 

problem (10)–(11) takes the form 

 63),(s.t.)(min=)(   nRQvHH , (23) 
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where 

 ,0,),(,<<0,0),(:),{(= 63 IivIjivvRvQ iijiij
n    (24) 

0}.0,0,0,0,0, 121212111  llwwlw  

It follows from (19) that 






 QQ

0=
= , 

where Q  is specified by a linear inequality system. This means that the computation of local minimum 

points of the problem (23)-(24) can be reduced to solving a sequence of sub-problems of optimizing linear 

programming whose solution spaces are specified by an essentially smaller number of inequalities than one 
of the problems (10)–(11). Let us consider the solution approach. 

Let ),(= 000 vX  be the global maximum point of the problem (20). Now we derive the vector 

),( 00 v  (it is evident that Qv  ),( 00 ) and select the sub-region of ,Q  ,  which contains the point 

.),( 00 Qv   Let QQv  0
00 ),(  and 0Q  be specified by the linear inequality system (see (16)) of the form  
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where 0)(0  kk  is an inequality from either the systems (14) (see item 5) or systems 

0,0,0,0, 12111  wwlw  0,12  ll  012  , t , or ),( ji vv , or ),( 1wvi , or ),( 2wvi , or ),( 1lvi , or 

),( 2lvi , or ),( 1iv , or ),( 2iv , or ),( 21 ww , or ),( 21 ll , or ),( 21  , or 1w , or 1l , or 2 , the number   depend-

ing on the number of the inequalities forming 0),( 
jiij vv  in )(vG . 

In order to decrease the time loss when solving the problem (23) – (24) we reduce solving the problem to 

solving a sequence of sub-problems whose feasible regions are specified by a considerably smaller number of in-
equalities. To this end, we make use of the following property: all the spheres cannot simultaneously touch both 

each other and the same facet of the set )( 0A . This means that the values of many left-hand parts of the ine-

qualities in the equality system 0),(0 vB  at the point 0
00 ),( Qv   are greater than some small 0>>1  . 

This makes it possible to single out the inequality subsystem 0),(00 vB  from 0),(0 uB  which consists of a 

considerably smaller number of inequalities. For extracting the subsystem 0),(00 uB  from 0),(0 vB  we 

use the spheres iS  with the radii of Iii  ,  (see (20)). For this purpose we compute 
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Next we compute ),,(=),( 00
1

00
ji

ij
t

ijjiij vvvv   ,1 IJi   ,2 IJj   ),,(=),( 00
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ijjiij vvvv   ,1Ji  ,2Jj  and },),,({min=),( 0000 Rrvv i
r
iii   

,=
6

=1

 KIi r

r

 IIr  . Based on the above inequalities, we derive the inequality system 
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, (27) 

which describes the sub-region .00Q  It should be emphasized that any point 00),( Qv   in accordance with 

the inequalities ,
4

2

4

2 0  ii xx ,
4

2

4

2 0  ii yy  ,
4

2

4

2 0  ii zz  Ii  belongs 

to 0Q , i.e. .000 QQ   In addition, q  is essentially smaller than   in (18). 

Having taken the point ),( 00 v  as a starting point and solved the problem 

)(min=)( 0   HH  s.t. 63
00),(  nRQYv , 

we find the local minimum point ).,( 11  v  After that we define the sets 21, JJ  and K  in (26) at the point 

),,( 11  v  forming a new linear system 0),(01 uB  of the form (27), and for the starting point ),( 11  v  

solve the problem 

)(min=)( 2   HH  s.t. 63
10),(  nRQv , 

where 10Q  is specified by 0),(01 uB . 

The iterative process continues until the equality ),(=),( 1)(1)(   vv  is reached. This means 

that )(min=)(   HH  s.t. .),( 0Qv   

Making use of active inequalities at the point ),(  u , we can execute a transition to a new sub-region 

.1Q  Let the inequalities 0,)(1 
j

i
ji

i  0j  be active at the point .),( 0Qu    We single out the inequality 

subsystems 0,),(0  jiij vv  2010, IjIi   (see (14)) which contain the active inequalities 0,)(1 
j

i
ji

i  

.0j  Next we choose the inequalities 0),(  jiij vv  from the inequality system (11) which incorporate the 

inequality subsystems 0,),(0  jiij vv  ,10Ii  and 20Ij  (see (12)) and compute ,=),( 000
ijjiij vv    ,10Ii  

and .20Ij  This permits us to select the functions ),( ji
a
ij vv  such that 0,>=),(=),( 00000

ijji
a
ijjiij vvvv    

,10
0
10 IIi   2

0
20 IIj  . We can now form a new inequality system specifying the new feasible sub-region 1Q  
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by substituting the inequality subsystems 0),(0  jiij vv  from the system specifying 0  for the inequality sub-

systems 0,>),( ji
a
ij vv  ,0

10Ii  ,0
20Ij  0a  (see item 3 from Section 2). It is evident 

that .),( 1 QQv    So, having taken the starting point ),(=),( 00   vv  and solved the problem 

63
1

1 ),(s.t.)(min=)(   nRQvHH , 

we obtain the local minimum point ),( 11  v  and so on. Thus, searching for a local minimum point of  the 

problem (23)-(24) is reduced to solving a sequence of sub-problems 

 1,2,...=,),(s.t.)(min=)( 63  


 nRQvHH  . (28) 

The computational process continues until the equality 1=  QQ  is reached, i.e. we will be unable 

to move from the feasible sub-region Q  to a new feasible sub-region 1Q . In this case we take the point 

),(  v  as the local minimum point of the problem (23)-(24). Thus, the point ),
~

,(  v  where 
~

 is 

given randomly, can be taken as a starting point for the problem (10)–(11).  

4. Searching for a local minimum point 

Let the angular parameters ),,,(= iiii   Ii  be variable. Then the sets Q  are transformed into 

the sets ,  .  Having taken both 
 0=

~
 and 

~
= , we derive the point 

  ),
~

,(=)
~

,~( vu  

where   is specified by 0),(  uF  (see (18)). For the sake of convenience, we suppose  =0  and 

),(=),(0   uFuF . To search for the local minimum point of the problem (10)–(11) we modify the ap-

proach offered in Subsection 3.2. The modification consists of the following steps. 

Each of the subsystems 0,),(
1

 ji
ij

t

ij uu  ,0
1Ji  ,0

2Jj  0,),(
2

 ji
ij

d

ij uu  ,0
3Ji  

,0
4Jj and 0,),(  i

r
i u  ,Ki  Rr  in the system 0),(00 uF  consists of   inequalities where   is 

the number of polytope vertices (see (2)). Due to the  inequalities ,
2

10  ii vv  ,Ii  the values of the an-

gles ,i  i  and ,i  Ii  are, as a rule, smaller than .
2


 So the number of inequalities from the systems 

0,),(
1

 ji
ij

t

ij uu  ,0
1Ji  ,0

2Jj  0,),(
21

 ji
ij

d

ij uu  ,0
3Ji  

0

4Jj and 0,),(  yui
r
i

  ,Ki  Rr  (14) 

can be omitted. In order to exclude the inequalities from the system 0),(00 uF  we compute 

,,,=}),,({max 0
2

0
1

1 JjJiaOouu t
ijji
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 ,,,=}),,({max 0
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 (29) 

  KKiRraOoyu iri
r
io 0,,=}),,({max 

:

 

and single out the inequalities 
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where 2.q  Then the inequalities 



APPLIED MATHEMATICS 

ISSN 0131–2928. Journal of Mechanical Engineering, 2018, Vol. 21, No. 2 53 

 ,,,0,),( 0
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0
1

1

OOoJjJiuu ijji

o
ij

t

ij   (31) 
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o
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ij   

 KiRruir  ,0,)
~

,(  

together with the inequalities 0,1 w  0,1 l  0,0, 121  ww  0,12  ll  ,
2

1
0, 0

12  ii vv  

Ii  form the inequality subsystem 
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 (32) 

which specifies the set .0N  

Having taken )
~

,~( u  as a starting point, we compute the local minimum point ),( 00  u  of the problem 

 .),(s.t.)(min=)( 0
0 NuHH    (33) 

On the ground of the point ),( 00  Nu , we derive a new inequality system 0),(1 uF of the form 

(27). Next, for the point ),( 00  u  we define 821 ,...,, IJJ  in (26) and derive the system 0),(11 uF  of  

the form (27) (see Subsection 3.2) which describes the set .11 Then for the starting point ),( 00  u  we find 

0
4

0
3

0
2

0
1 ,,, JJJJ  and 0K  and form the system ),(0

11 uF  of the form (32) specifying the set 1N . For the starting 

point ),( 00  u  we solve the problem )(min=)( 1   HH  s.t. 1),( Nu  , providing that the local mini-

mum point ),( 11  u  is determined. Then, based on the point ),( 11  u , we construct a new inequality sys-

tem 0),(2 uF  of the form (27) specifying the sub-region ,2 define 821 ,...,, IJJ  in (26), and generate the 

system 0),(22 uF  of the form (27) (see Subsection 3.2), which specifies the set .22  After that, for the 

starting point ),( 11  u  we find 0
4

0
3

0
2

0
1 ,,, JJJJ  and 0K , and construct the system ),(0

22 uF  of the form (32) 

specifying the set 2N . We solve the problem )(min=)( 2   HH , s.t. 2),( Ru   for the starting point 

),( 11  u  and define the local minimum point ),( 22  u , and so on. Thus, searching for the local minimum 

point of the problem (10)–(11) is reduced to solving a sequence of sub-problems 

 .1,2,...=,),(s.t.)(min=)(  
 NuHH  (34) 

The process is finished if ).(=)( 1)(   HH  Then ),(=),( 00   uu  is taken as the local 

minimum point of the problem (10)–(11). 

We can draw the following conclusions. 

The smaller  , the quicker the computation of the local minimum point of one problem from the sequence 

(34) and the greater number of p  iterations is necessary to compute the  local minimum point of the problem (10)–

(11). The greater  , the more time expenditures are necessary when tackling one problem from the sequence (34). 

Consequently, there has to be a compromise which will ensure a good degree of convergence to the local minimum 

point of the problem (10)–(11) when choosing  . The value of   is defined experimentally. We take 0
1

2

1
=  . 



ПРИКЛАДНА МАТЕМАТИКА 

ISSN 0131–2928. Проблеми машинобудування, 2018, Т. 21, № 2 54 

5. Transition from one local extremum to another 

In order to compute a new local minimum point it is necessary to build a new starting point. If the 
starting point is randomly generated, then the objective value at the appropriate local minimum point may be 

either improved or made worse or invariable. We suggest a way of a transition from the local minimum point 

to a new local minimum point at which the objective value is either improved or invariable. 

5.1. Auxiliary problem 

Let ),( 00  u  be the local minimum point of the problem (10)–(11). This point has a corresponding ar-

rangement of polytopes ),( 0uPi  .Ii  It can be found that around some polytope iP  there is a "free space" which 

allows to place a larger polytope ij PP   instead of the polytope iP . If we can detect the polytopes, then it will 

permit us to "switch" between the polytopes without their overlapping in the packing ),( 0uPi  Ii  so that the 

value of the objective will not worsen. The new placement of the polytopes has a corresponding point 

.),( 00 u  If we take the point as a starting one for the problem (10)–(11) we compute a new local minimum 

point ),( 11  u . It is evident that ).()( 01   HH  In order to execute the approach, we assume that homothet-

ic coefficients ,ih  Ii  are variables and form the vector ,),...,,(= 21
n

n Rhhhh   i.e.  the vector of all the varia-

bles is  RhuY ),,(= , where 6.=  nm  Consequently, the phi-function for ),( iii huP  and ),( jjj huP  de-

pends on ih  and jh  as well, i.e. they take the form ),,,,( jijiij hhuu  and the phi-function for ),( iii huP  and 

)(A  depends on ,ih  i.e. it has the form ).,,(  iii hu  Thus, we can enlarge and diminish the sizes of polytopes 

by changing the values of their homothetic coefficients ,ih  Ii . Inasmuch as for any )(0,ih  the polytopes 

),,( iii huP  Ii  are homothetic, then the phi-functions ),,,( jijiij hhuu  for ),( iii huP  and ),( jjj huP , and phi-

functions ),,((  iii hu  for ),( iii huP  and )(A  have the same form for any )(0,ih . 

Now we state the following auxiliary problem 

 ,),,(=s.t.)(min=)(  RhuYHH  (35) 

where 

 0,),,(,<<0,0),,,(,{=  
iiijijiij huIjihhuuRY  (36) 
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0
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1
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





HHllww
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 .0.1.2....=,)(0.1)
2

1
(= 0 tHt   (37) 

We form the starting point ),,(= 000   huY , where ),,...,,(= 21

nhhhh  and compute the  local 

minimum point ),,(= 1111   huY  of the problem. Since restrictions 0, 
ii hh  Ii  are absent, the values of 

some of ,1
ih  Ii  may become either smaller than 1 or greater than 1. Let ,>1 

ii hh  ,}{1,2,...,=1 Ipki   

and ,1   ii hh  Iqki  }{1,2,...=2 . In addition, the greater  ,  the greater number of homothetic coefficients 

,ih  Ii essentially alter their values (pay attention to the inequality   )()( 0 HH ). Thus, some polytopes 

'become larger', i.e. the exists a free space around them, whereas some polytopes 'become smaller', i.e. there exists 

a lack of free space around them. Thus, the vector ),...,,(= 1
2

1
2

1
1

1  hhhh  can be used to point out which can be 

changed so that the value of )(H  will not deteriorate. 
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5.2. Jump algorithm 

The algorithm proposed in this section is a modification of the Jump algorithm (JA) that was sug-
gested in [18]. The modification of the JA is executed in the following way. 

Uppermost we form the descending sequence 

   11

2

1

1
.... inii hhh  (38) 

If ,= ii j  Ii for all the indices, then the point ),( 00  u  is accepted as an approximation to the 

global minimum point of the problem (10)-(11). If ii j   at least for two indices, then having taken 

,= 11 

j
ij hh  ,Ij  we derive the sequence 

 ..... 11
2

1
1

  nhhh  (39) 

Since 
ii hh >1  may occur for some Ii , we compute },,{min= 10 

jjj hhh  .Ij  It insures the inequality 

.<0

1=

nhi

i

n

  We now construct the points ),
~

,~(=
~

huX  where ,=~ 1
jj uu  ,=

~ 1
jj hh  Ij  (see (33)-(35) and 

)
~~

,
~~(=

~~
huX , where ,=

~~ 1
jj uu  0=

~~
jhh , Ij . Note that if XX

~1 
, then the arrangement corresponding to the point 

X
~

 is obtained from the arrangement corresponding to the point 
1X  as a result of "rearrangements" of some polytopes. 

If XX
~1 

, then ,<
~

=1

nhi

i

n

  i.e. some polytopes ),
~

( ii hP  ,Ii  are reduced (shrunk). Therefore, it is 

necessary to increase the sizes of the polytopes to their initial ones under fixed .= 1  To this end, we 

solve the helper problem 

 ,),(=s.t.  max=)(max=)( 6

1=

   RDhuXhhh i

n

i

 (40) 

where 

 ,),(=s.t.  max=)(max=)( 6

1=

   RDhuXhhh i

n

i

 (41) 

}.0,0,=)( Iihhhh iiiii    

Note that the problem enables us to increase the homothetic coefficients to their initial values (see 

the inequalities 0,=)(  
iiii hhh  0,ih  Ii ). It is evident that DX 

~~
. 

Having taken the starting point X
~~

 and solved the problem (40)–(41), we find the local maximum 

point ),(=


huX . 

Note that the problem possesses characteristics similar to those of the problems (10)–(11). We re-
mind the following properties: 

1. If nhhh i

i

n

i

i

n

===)(
1=1=




 , then 


hh =  and the polytopes ,iP  Ii  are packed into ).( gP   

This means that the point 


X  is the global maximum point of the problem (40)–(41). 

2. If at least one of ,ih


 Ii  is strictly less than 
ih at the global maximal point 



X , then the poly-

topes ,iP  Ii  cannot be packed into ).( 1P  

Thus, two cases are possible: nh =)(


  and .<)( nh


  
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It is evident that if nh =)(


 , then  


),( 1u  and ),( 1


u  is not, in the general case, the local minimal 

point of the problem (10)–(11). Therefore, we take the starting point ),( 1


u , solve the problem (10)–(11), and 

obtain a new local minimal point ),( 00  u . After that we construct a new starting point ),,(= 000   huY  and 

for this very point solve the problem (35)–(36). As a result, a new local minimum point ),,(= 1111   huY  is 

computed. On the basis of the point 1Y  and the sequences (38)–(39) we generate a new point ).,(= 111  huX  

Having taken the point as a starting one, we solve the problem (40)–(41) and so on until nh <)(


  is reached. 

If nh <)(


 , we then increase t by 1 in (37) and for the starting point ),,(= 000   huY  solve the 

problem (35)–(36) and so on. The iterative process is repeated until )(10 03  H  is fulfilled. 

6. General solution scheme 

In this section a general scheme of solving the problem (10)–(11) is illustrated. 

1. Compute the radii of spheres iS  circumscribed around the polytopes ,iP  Ii  (see problem (20)). 

2. Find the global maximum point of the problem (21)–(22) of the packing spheres ,iS  Ii  into the 

cuboid C. 

3. Give the values of angles iiii  ~=,
~

= and ,~= ii   Ii  randomly and fix them. 

4. Take the polytopes iP  instead of the spheres ,iS  Ii , solve the sequence of the linear program-

ming problems (23)–(24), and find the local minimum point ),( 00  v . 

5. Derive a point   ),
~

,(=)
~

,~( 00vu , where ,=~ 0vv  ,~=,~=,
~

= iiiiii   Ii  and .=
~ 0  

6. Take the starting point )
~

,~( u  and compute the local minimum point ),( 00  u  of the problem 

(10)–(11) (see Section 4). 

7. Form a point ),,(= 000   huY , where ).,...,,(= 21

nhhhh  

8. Compute the local maximum point ),,(= 1111   huY  of the problem (35)-(36) for the starting point 
0Y . 

9. Obtain the sequences (38)–(39), compute },,{min= 10 
jjj hhh  ,Ij  and construct the points 

),
~

,~(=
~

huX  where ,=~ 1
jj uu  ,=

~ 1
jj hh  Ij  and )

~~
,

~~(=
~~

huX , where ,=~ 0
jj uu  0=

~~
jhh , Ij . 

10. Find the local maximum point ),(=


huX  of the problem (40)–(41) for the starting point X
~~

. 

11. Generate a point ),( 1


u  if ,=)( nh


  compute the local minimum point ),( 00  u  of the problem 

(10)–(11) for the starting point ),( 1


u  and return to item 7. 

12. Increase t by 1 in (37) if ,=)( nh


  and return to item 8 if )(10> 03  H . 

13. Take the local minimum point ),( 00  u  as an approximation to the global minimum point of the 

problem (10)–(11) if )(10> 03  H . 

7. Numerical results 
At present, we do not know any publications which present the results of solving the problem under 

consideration. So, in order to demonstrate the usefulness and performance capabilities of our mathematical 

model and solution approach we solve a number of problems for different dimensions. In our cases we con-
sider a collection of polytopes from 10 to 500 and use polytopes with 4, 5 and 16 vertices. 

We have run our experiments on an Intel Core i5- 750 CPU computer. For local optimization we 

used the IPOPT code (https://projects.coin-or.org/Ipopt). 

The table below presents the computational efforts and results of solving our problems. 
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Table. Computational results 

Number of homothetic polytopes Number of vertices of polytopes Runtime Result of packing polytopes 

10 4 20 min Fig.1 

20 16 1 hour Fig.2 

50 4 3 hours Fig.3 

100 5 8 hours Fig.4 

300 4 14 hours Fig.5 

400 16 30 hours Fig.6 

500 4 34 hours Fig.7 

Figs. 1 a – 1 g depict the results of packing polytopes. 

The obtained results show that despite the complexity of the mathematical model, the developed so-

lution approach makes it possible to solve large dimension problems. 

   
a b c 

   
d e f 

 

 

 

 g  

Fig. 1. Result of packing: 

a – 10 polytopes; b – 20 polytopes; c – 50 polytopes;  

d – 100 polytopes; e – 300 polytopes; f – 400 polytopes; g – 500 polytopes 
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Conclusion 

Covering polytopes with spheres of minimal radii makes it possible to generate arbitrary starting points. 
The hypothesis that the homothetic coefficients of polytopes are variable allows us to develop a new 

way of generating local extremum points. This approach simplifies the solution process and increases the 

speed of obtaining results. 
The modification of the JA executes smooth transitions between local maximum points in the helper 

problem, ensuring an increase in the objective value. The algorithm is especially effective if the adjacent 

homothetic coefficients of polytopes in the sequence (2) are slightly different. 

The reduction of the problem (10)–(11) to solving a sequence of sub-problems and decreasing the 
number of inequalities specifying the feasible region allows us to considerably reduce computational time. 

The optimization approaches and the solution algorithms worked out can be applied when tackling 

optimization packing problems of any homothetic 3D solids. 
The proposed approach with some modifications can be applied for solving the problem of packing 

different convex polytopes. 
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Appendix 1 

It follows from paper [19] that the function of the form ),(3
ji

l
ij uu  defines interaction between two edges 

of polytopes iP  and .jP  Let )](),([ iikiio upup  be an edge of iP  which lies on a straight line formed by the 

intersection of planes 0=),( iir uX  and 0=),(1, iri uX  and )](),([ jjvjjs upup  − an edge of jP  which lies on a 

straight line formed by the intersection of planes 0=),( ijl uX  and 0=),(1, ilj uX .  The planes form dihedral 

angles ir  and jl  so that iriP   and .jljP   It is evident that if the dihedral angles are not intersected then 

.= ji PP  So let us derive the condition for  the non-overlapping of the dihedral angles in analytical form. 

Having translated the edge )](),([ jjvjjs upup  by the vector )()( jjsiik upup   and the edge 

)](),([ iikiio upup  by the vector )()( iikjjs upup  , we obtain 

)],(),([=)](),()()([ ji
ab
ijjiojjsjikijsjio uuaupupupupup  , 

where )),,(),,(),,((=),( 321
ji

ab
ijji

ab
ijji

ab
ijji

ab
ij uuauuauuauua  a  and b  are the edge numbers, and 

)](),,([=)](),()()([ jioji
ba
ijjjvjikijsjio upuuaupupupup  , respectively. 

Next we construct an equation of plane ab
ijQ  passing through the points )(),( jivjio upup  and ),( ji

ab
ij uua  

0=))())(())(((

))())(())((())())(())(((=),,(

33

2211

j
ab
ijjivjio

j
ab
ijjivjioj

ab
ijjivjioji

ab
ij

uazupzupz

uayupyupyuaxupxupxuuXF




 

and an equation of plane ba
ijQ  passing through the points )(),( jjvjjs upup  and ),( ji

ba
ij uua  

.0=))())(())(((

))())(())((())())(())(((=),,(

33

2211

j
ba
ijjjvjjs

j
ba
ijjjvjjsj

ba
ijjjvjjsji

ba
ij

uazupzupz

uayupyupyuaxupxupxuuXF




 

Thus, the plane ab
ij  passes through the edges )](),([ iikiio upup  and )],(),([ ji

ab
ijjik uuaup  and the plane 

ba
ij  passes through the edges )](),([ ijvijs upup  and )].(),,([ jioji

ba
ij upuua  Since )](),([ iikiio upup  is parallel to 

)](),,([ jioji
ba
ij upuua  and )](),([ jjvjjs upup  is parallel to )],(),([ ji

ab
ijjik uuaup , the planes ab

ij  and ba
ij  are 

parallel. If the plane ab
ij  ( ba

ij ) is a separating plane of the dihedral angles ir  and jt , then the inequalities 

0,)},),((),,),(({min=)},(),,({min 1,1,
3231   jiiki

ab
ijjiiki

ab
ijji

ab
ijji

ab
ij uuupFuuupFuuuu  

0,)},),((),,),(({min=)},(),,({min 1,1,
3433   jijvj

ba
ijjijvj

ba
ijji

ba
ijji

ba
ij uuupFuuupFuuuu  

0),),((=),(35 jiijv

ab

ijji

ab

ij uuupFuu  

are fulfilled, where ab
ijikiiki upup  )(),( 1,1,  are the adjacent vertices of the vertex )( iik up  and 

ba
ijjvjjvj upup  )(),( 1,1,  are the adjacent vertices of the vertex ).( ijv up  

Thus, if the inequality holds true 

,0>)},),((),,),((

),,),((),,),((),,),(({min=),(

1,

1,1,1,

3

jiijv

ab

ijjijvj

ba

ij

jijvj

ba

ijjiiki

ab

ijjiiki

ab

ijji

ab

ij

uuupFuuupF

uuupFuuupFuuupFuu




 

then .= jtir  Whence if at least one inequality of the set 0,>),(3
ji

ab
ij uu  2}={1,2,...,,  ba , 

then .= ji PP  For the sake of convenience we label ),,( ji
ab
ij uu  2},={1,2,...,,  ba  as 

),,({min=),( 33
ji

cl
ijji

l
ij uuuu   },Mc  Ll  (see items 2 and 3, Subsection 2). If the function 

0>},),,({max 3 Lluu ji
l

ij  , then .= ji PP  

Received 17 January 2018 
 


	Introduction
	1. Problem statement
	2. Mathematical model and its characteristics
	3. Construction of starting points
	3.1. Packing spheres
	3.2. Starting points
	4. Searching for a local minimum point
	5. Transition from one local extremum to another
	5.1. Auxiliary problem
	5.2. Jump algorithm
	6. General solution scheme
	7. Numerical results
	Conclusion
	References
	Appendix 1

