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The spatial problem of the elasticity theory is studied for a layer with two
infinite circular solid cylindrical inclusions that are parallel to each other
and to the layer boundaries. The physical characteristics of the layer and the
inclusions are different from each other and they are homogeneous, isotropic
materials. The spatial function of stresses is given at the upper boundary, and
the function of displacements is given at the lower layer boundary. Circular
cylindrical elastic inclusions are rigidly connected to the layer. It is neces-
sary to determine the stress-strain state of the composite body. The problem
solution is based on the generalized Fourier method, which uses special for-
mulas for the transition between the basic solutions of the Lamé equation in
different coordinate systems. Thus, the layer is considered in the Cartesian
coordinate system, the inclusions — in the local cylindrical ones. Satisfying
the boundary and conjugation conditions, systems of infinite integro-
algebraic equations were obtained, which were subsequently reduced to lin-
ear algebraic ones. The resulting infinite system is solved by the reduction
method. After determining the unknowns, it is possible to find the stress val-
ues at any point of the elastic composite body. In numerical studies, a com-
parative analysis of the stress state in the layer and on the surfaces of inclu-
sions at different distances between them is carried out. The analysis showed
that when the inclusions approach each other, the stress state in the layer
practically does not change. However, its significant change is observed in
the bodies of inclusions, so with dense reinforcement ((R;+ Ry) /L > (0.5), it
is necessary to take into account the distances between the reinforcing fibers.
At stress values from 0 to 1 and the order of the system of equations m=10),
the accuracy of meeting the boundary conditions was 107, With an increase
in the system order, the accuracy of meeting the boundary conditions will
increase. The given analytical-numerical solution can be used for high-
precision determination of the stress-strain state of the given type of prob-
lems, and also as a reference for problems based on numerical methods.

Keywords: composite, cylindrical inclusions in a layer, generalized Fourier
method.

In various industries, one has to face the design of parts and structures from composite materials, which

often are a layer with longitudinal reinforcement, where, based on engineering calculations, it is necessary to
place reinforcement elements at a close distance to each other. In view of this, it is important to understand how
the distance between the longitudinal rods affects the stress-strain state in the zone of contact between the layer
and the reinforcement. To solve these problems, it is possible to conduct experiments [1, 2] or use a numerical-
experimental approach [3-7], perceiving the composite as a single layer. Another approach is numerical-
analytical, in which the composite body is perceived as a component of the intersection of several elements.
However, this requires an efficient and highly accurate method of the stress-strain state calculation. Thus, in
paper [8] the two-dimensional boundary value problem of diffraction of symmetric normal longitudinal shear
waves for a layer with a cylindrical cavity or inclusion was solved using the method of images, and in papers
[9-12], stationary wave diffraction problems of stress determination for a layer with a cylindrical cavity or in-
clusion were solved on the basis of the Fourier series decomposition method.

However, for spatial models with a large number of boundary surfaces and high accuracy of
determining the stress state, the numerical-analytical generalized Fourier method [13] is most suitable. On the
basis of this method, the problems for a half-space with a cavity or an inclusion [14-16], a layer with a cavity
or inclusions [17-20], a cylinder with cylindrical cavities or inclusions [21-24], as well as for a half-space with
a cavity coupled to a layer [25] are considered.
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The generalized Fourier method is also used in the paper
during research studies.

Problem statement

In an elastic homogeneous layer, there are two cylindrical
inclusions with radii R, made of materials different from the layer
material and placed parallel to its boundaries.

The inclusions are considered in local cylindrical coordi-
nate systems (p,, ¢, z), the layer — in the Cartesian coordinate sys-
tem (x, y, z), combined with the coordinate system of the inclusion
with the number p=1. The boundaries of the layer are located at a

distance of y=h and y=— ;Nl (Fig. 1). Fig. 1. A layer with two cylindrical inclusions

It is necessary to find a solution to the Lamé equation, provided that stresses are given at the upper
layer boundary FU, (x,z} yen = F(x,z), displacements are given on the lower one Uo(x,z)‘ 5 =U 7 x,z),

conjugation conditions are given on the boundaries of the contact of the layer and inclusions

Oyl0,e2), , =0,(0,02), - (M
FU, ((pp,z}pp:Rp - FU, (cpp,z}pp:Rp , @)
where (70 is displacement in the layer; U , 1s displacement in the cylindrical inclusion;
FU=2-G- O ji.divU +£U+l(ﬁxrotlj) is stress operator;
1-2-c on 2
FO(x,2)="e, +0z, +<0g.

Opw.z) =" )EX+U£ )éy+U£ 3 3)

known functions, which are considered as rapidly decreasing from the origin along the axis z and x.

Solution method
The basic solutions of the Lamé equation for Cartesian and cylindrical coordinate systems are chosen
in the form [11]:

al;_‘— (X, y, Z;}\'a lvl) = N]Ed)ei(kz-%—px)-_*—yy;
I_é (p,(p,z'?\,)zN(l’)[ (kp)e"(x“mq)). @
5, (p0.z52) = N s K, 1) 1,25
1 4 - . 3 |
N =2V N = 2 (o1l JTV(y,); N3(d):ér0t(e3(l) ): Nl(”)=IV;
. =%[V(p§}+4(0_1)(v_53(2)(?)} Ny =%rot(é3(2) ‘); y=AP 1, —o<hp<o,
p z

where 7,,(x), K,(x) is modified Bessel functions; Iék’m, .§k’m are inner and outer solutions of the Lamé equa-

tion for the cylinder, respectively; u ,E’), u ,E” are Lamé equation solutions for the layer ¢ is Poisson's ratio.
The problem solution is given in the form

Oy=3"3 [ S B00)-50 0,0, b+

(5)
3 <X ~
+ Z j ,[(Hk (X,p)- 12,£+)(x, y,z;?»,p)+Hk (X,u)-ﬁ,gf)(x, y,z;?»,p))dpdk
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k=1

S AR Renp) 0,200, ®)

where Ek’m (pp,(pp,z k) km(pp,(pp,z;K), u,g )(x,y,z'k u) and ﬁ,g’)(x,y,z;k,u) are basic solutions given

by the formulas (4), and unknown functions H,(A,u), H, (A1), B ,E ,,)1(%), A,gf’,,)i (1) are necessary to be found

from the boundary conditions (3) and conjugation conditions (1) and (2).
The formulas [17] are used for a transition between coordinate systems:

— for a transition from solutions S . of cylindrical coordinate system to layer solutions i 13 (at 1>0)

and u uk (at y<0)

R U S

Senlp,o0,,2%)= =

+|§

S (pp,(pp,z A=

0 2
j [[im- u—%ikzj_/p Jaf*) T2l + (7)

WX, 7y,
ap(1-o)?) ¢ M
Y

where y:wMeruz , (x u) H;t“/ ,m=0+1%2,... ;

— for a transition from layer solutions u ,£+) and u ,E_) to solutions Iék’m of cylindrical coordinate system

W e02) = Y (0] Ree (61, 3)

m=

i(x, y,2) = WZ[Z o) 3 (mone 3, 22) Ry, 2 (8)
+v-R,,, +4u(1-o)R;, )] ,

where R, ,, =b; (p,,,?u)-ei('”“’”*kz);ii,n(p,l)ﬁp-Ié(kp)+i‘1n(7»p)-(5¢i+ézj;

Ap
bolo) =2, a3 100} otz oolseion| 1000+ 401,60 e o)
P
b:3,n (p,2)= —[e 1 (Xp)k—Jr e (kp)} ; €, €, €, are unit vectors in the cylindrical coordinate system;
p

— for a transition from solutions of the cylinder with the number p to solutions of the cylinder with
the number ¢

gk’m(pp’(PP’Z;x) zbk pq( ) ey 22)
blm;q( )_ (-1 K, (k[ Pa ) o Zl,n (pq ) 7“);
B o =1V By, b5 ) 0

b2m;q (pq):( 1) { (xﬂ ) b2 n(pq’ 7‘) 2 [Km il M ) K, (M g )] b:1,,, (pq,x)} . ei(m_")a”" ,

where o, is the angle between the axis x, and the line segment.

=
I
ub—i
»
W
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To meet the boundary conditions at the upper layer boundary, vector (5) is equated (at y=h) to the
given one F X (x,z), introduced by the double Fourier integral. Basic solutions S om (p >0 ,,2; )\ are rewrit-

ten in the Cartesian coordinate system through basic solutions u (’)(x, v,z \, p) with the help of transition
formulas (7). Taking this into account, the first three equations (one for each projection) with 12 unknowns
are obtained H, (,u), H, (), BY (), B,EZ,L ().

k,m

To meet the boundary conditions at the lower layer boundary, vector (5) is equated (at y——g ) the
given one U }g (x, z), introduced by the double Fourier integral. Basic solution S ko (p »»®,>2;\) is rewritten in the

Cartesian coordinate system through basic solutions u ,E”(x, v,z A, u) with the help of transition formulas (7).
Thanks to this, three more equations are obtained.
From this system of equations, we find H, (A, ) and H, (A,u) by B,Ef’ ) (n).

Taking into account the conjugation conditions of the layer and inclusions, it is possible to write down
three equations for each inclusion in the form of displacements (1). At the same time, using the expression

U, ((p » ,Z)‘p.”:R[’ , it is necessary to take into account the formulas for transition from solutions # ,£+)(x, V,Z; A, u)

and ﬁ(_)(x, V,Z; A, u) to solutions f?k’m(pp,(pp,z;k) (8) and formulas for transition from solutions

S o (p 2Py ,z;?») to solutions S kom (p 2P, ,z;?») (9). Applying the stress operator to the obtained expression, it
is possible to write three more equations for each inclusion in the form of stresses (2).

If there are two inclusions, then there will be 12 such equations (in displacements and stresses) with un-
knowns H, (X, u), H i (X, u), B,Ef’rz (X), A,E{”,,), (k) Excluding the H, (X, u) and H i (k, u) previously found from

these equations by B,Ef’,z (X) and discarding the series in m and integrals in A, 12 infinite linear equations of

(1) are obtained.

The determinant of this system of equations coincides with [16].

The reduction method is applied to the obtained infinite systems of equations, as a result of which
the coefficients B,Ef’rz (1) are found. Now B (1) is substituted in the expression for H, (A,p) and H, (A, p).

k,m

the second kind to determine the unknowns B,Ef’,z (1) and AP

k,m

Thus, all the unknowns of the expressions (5) and (6) will be found.
The solutions of the infinite system by the reduction method given in the paper showed its conver-
gence, which satisfies the boundary conditions with high accuracy.

Numerical studies of the stress state

In the elastic isotropic layer (Fig. 1) there are two elastic isotropic cylindrical inclusions that are rig-
idly connected to it. Poisson's ratio of the layer (ABS plastic) 6,=0.38, elastic modulus £,=1700 N/mm?, in-
clusions (steel) 6,=6,=0.21, E,=E,=200000 N/mm?. Geometric characteristics of the model: R;=R,=10 mm,

h=20 mm, h =30 mm, o;,=0. The distance between the inclusions centers is taken in two options:
L,=25 mm and L,=30 mm.
On the wupper layer boundary, stresses are given in the form of a wave

c(yh)(x,z)z -10® ~(22 + 102)72 ~(x2 +10? )72 , r(y};) = T(y}? =0, there are no displacements on the lower one

ol =yl —ul) =g

The infinite system was truncated by parameter m. At L;,=30 mm, parameter m=6, at L,=25 mm,
parameter m=10.

The calculation of integrals is performed by the quadrature Filon’s rule (for oscillating functions)
and Simpson’s rule (for functions without oscillations). The accuracy of meeting the boundary conditions at
the values of m and the specified geometric parameters is 10™.

When the inclusions approach each other, the stress state in the layer almost does not change. The
difference is observed only in the inclusion bodies.
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Flg' 2 shows stress graphs Oo and 0 n/4 n/23n/4 n S5n/46ni4 Trn/d 2n 0.4 0 m4 n/23n/4 n 5n/d6n/d Tnld 2n

o, on the surface of the second inclusion at | 0.03

z=0 in N/mm’. g'gf \ ol B O O
When the second cylindrical in- | oo L % Za I\ 1./

clusion approaches the first one, stresses |-0.01 \’ 2 ]1 “\ yi 4 g'; % Y

o, and o, on its surface increase. More- | 002 AN ,."/ ; - o L, 2 ‘

over, the stresses values o, increase sig- :g:gi \ [/ 02 A\

nificantly (Fig. 2, a), especially in the up- |-0.05 AV 03 [t

per part of the inclusion, where they are a b

maximum. In general, the increase in the
inclusion stress, as it approaches the place
of the stress dislocation, is natural.

Fig. 2. Stresses on the surface of the second inclusion:
a—0y b—o0.; 1 —atL;=25 mm; 2 —at L;,=30 mm

Fig. 3 shows graphs of styesses.cs(p 0.0 04 W23nl4 w54 6ld Txld 2n o ol B vl A B
and o, on the surface of the first inclusion 556 Pah 15
at z=0 in N/mn’. P 2 10 <
When the second cylindrical in- | ., i & \\ 05 /] N
clusion approaches the first one, the | ;s J \ ' \\

stresses o, on the surface of the first cyl- | ;50 \ 00 \
inder increase (Fig. 3, a), and the stresses | 25 \ 7 0.5 1
o, slightly decrease (Fig. 3, b), being re- | .30 1 10 \\L""’{z
distributed to the second cylinder. a b

On the surface of the first cylin-

der, the maximum stresses value &, occur Fig. 3. Stresses on the surface of the first inclusion:
at =n/4, and o, — at p=m/2. a—0y b—o0.; 1 —atL;=25 mm; 2 —at ;=30 mm

“;a_:__h-

Conclusions

Based on the generalized Fourier method, a method for solving the third basic spatial problem of the
elasticity theory for a layer with two longitudinal circular cylindrical inclusions is proposed. The problem is
reduced to an infinite system of linear equations, which allows the reduction method to be applied to it. Nu-
merical studies give grounds for asserting that its solution can be found with any accuracy by the given
method, which is confirmed by the high accuracy of the boundary conditions.

The solution method can be used in the design of composite materials, the calculation scheme of
which is a reinforced layer with specified boundary conditions in the form of stress on the upper layer
boundary and displacements on the lower layer boundary.

The given comparative analysis shows that the convergence of reinforcement elements affects their
stress state, in particular, the stresses 6, and c..

The given solution method allows to obtain the stress-strain state for a layer with only two longitudi-
nal circular cylindrical inclusions. For further development of this method, the number of inclusions can be
increased to three or more. For this, it is necessary to change this algorithm by working out the connections
between the two shifted coordinate systems, as well as between their basic solutions.
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AHaJii3 Hanpy:KeHoro CTaHy mapy 3 ABOMa NMJIiHAPUYHIAMHM NPY:KHUMH BKJIIOYeHHAMH i
MilIAHUMH TPAHNYHMMH YMOBAMHU

B. 10. Mipomnikos, O. b. CaBin, M. M. I'pebennikoB, O. A. Ilorpeonsik

HamionansHuii aepokocMiunuii yHiBepeuTeT iM. M. €. )KykoBcbkoro «XapKiBChbKHH aBialliftHUN iHCTUTYT»,
61070, Ykpaina, XapkiB, Bys. Ukanosa, 17

Jocnidorcyemocs npocmoposa 3a0a4a meopii npysHcHoCmi O wapy 3 080Ma HECKIHYEHHUMU KPY208UMU CYYITbHU-
MU YUTTHOPUYHUMU BKTIOYEHHAMY, NAPATeTbHUMU Midc cob010 11 medcamu wapy. Lllap i exntouents € 00HOPIOHUMUY, i30mpo-
NHUMU Mamepianamu, Qi3UYHI Xapakmepucmuky yux min 8iOMiHHI 00HA 6i0 00HoL. Kpyeosi yuniHOpuyHi nPYiCHI GKIIOYEHHS
arcopemko cnpsoiceni 3 wapom. Ha eepxuitl medswci wiapy 3a0ana npocmoposda (QYHKYisE HanpysiceHb, Ha HUMICHIL — nepemi-
wenv. Heobxiono eusnauumu nanpysiceno-oeopmosanuii cmar komnozumuoeo mina. Ipu yvomy poss’sazanns sadaui 6asy-
E€MbCAL HA Y3a2aTbHEHOMY Memodi DYp e, de BUKOPUCOBYIOMbCSL 0COOIUBE (POPMYIU NEPEXOOY MIdC DAZUCHUMU PO36 SA3KAMU
pienanna Jlame y pisHux cucmemax Koopouram. Taxum yuHoM, wap po321a0aemvcsa 8 0eKapmosili cucmemi KoopouHam,
BKNIIOUEHHS — Y TOKANbHUX YUTTHOPUYHUX. 3a0080IbHAIOYY SPAHUYHUM YMOBAM U YMOBAM CHPANCEHHS, OMPUMAHO CUCHeMU
HeCKIHUEeHHUX THMespo-aneeOpaiuHux pieHsHb, SKi 6 NOOAILUIOMY 36e0eHi 00 JiHItHUX areebpaiunux. Heckinuenna cucmema
P038’s3yemuest Memooom pedykyii. Tlicis 3uaxooscenns HegiooMux MONCHA SUSHAYUUMU HANPYICEHHS. 68 0YO0b-5Kill mouyi
NPYHCHO20 KOMROZUYIIHO20 Mina. V uucenbHUx OOCHIONCEHHAX NPo6edeHO NOPIGHANbHUL AHANI3 HANPYIHCEHO20 CMAaHy HA
NOBEPXHAX BKIIOUEHb 3a PI3HUX 8i0cmanetl Midxc HUMU. AHAni3 noKasas, wjo npu 30IUdHCEHHI KIIOUEHb HANPYHCEHULL CTNAH )
wapi npakmudro He 3miHroemovcs. OOHaAK cCnocmepieacmvCsi Cymmeea 1oeo 3mina 6 miiax exkuouens. Tax, npu witbHomy
apmyeanti (R;+ R;) /L > 0,5) neobxiono epaxosysamu 8iocmani misic apmyroyumu 6oaokHamu. Ilpu 3nauennsx nanpyosicetn
6i0 0 00 1 i nopsoky cucmemu pisuans m=10 mounicmo eukonanns spanuunux ymos cknasa 107, Ipu 36inbuenni nopsaoky
cucmemu MOYHICMb BUKOHAHHA SPAHUYHUX YMO8 3pocmamume. lIpedcmasiene aHanimuKko-ducenbHe po3g sI3aHHA MOdice
BUKOPUCNOBYBAMUCS 0151 BUCOKOMOYHO20 BUSHAYEHHS HANPYIHCEHO-0ehOPMOBAHO20 CMAH) NPedCmAasieH020 muny 3a0ad, a
MAaKox;c AK emaioHHe 0Jid 3a0ad, wjo 6A3VIOMbCs HA YUCETbHUX Memooax.

Knwouoei cnosa: komnosum, yuninOpuuHi 8Ku04eHHs 8 wapi, y3azanibHeHuu memoo @yp’e.
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