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In practice, connections in the form of cylindrical swivel joints are often en-
countered. However, exact methods for calculating such models are absent.
Therefore, the development of algorithms to solve such problems is relevant. In
this study, a spatial elasticity problem is solved for an infinite layer with two
cylindrical swivel joints and a cylindrical cavity positioned parallel to each
other and parallel to the layer surfaces. The embedded cylindrical swivel joints
are represented as cavity with given contact-type conditions (normal displace-
ments and tangential stresses). Stresses are specified on the layer surfaces and
the cavity surface. The layer is considered in a Cartesian coordinate system,
while the cylindrical cavities are considered in local cylindrical coordinates.
The spatial elasticity problem is solved using the generalized Fourier method
applied to the Lamé equations. Satisfying the boundary conditions results in a
system of infinite linear algebraic equations, which undergo reduction methods.
In the numerical study, the accuracy of boundary condition fulfillment reached
107 for stress values ranging from 0 to 1, with the equation system (Fourier
series members) order of m=4. As the order of the system equations increases,
the accuracy of calculations increases. Stress state analysis was conducted at
varying distances between supports. The obtained results indicate that with an
increased distance between supports, stresses on the supporting cylindrical
surfaces of the layer and the cylindrical cavity surface decrease. These stresses
are redistributed to the upper and lower surfaces of the layer, where the
stresses increase and exceed the specified ones. The numerical outcomes can be
applied to predict geometric parameters during design processes.

Keywords: layer with cylindrical cavities, generalized Fourier method, con-
tact-type conditions.

When designing parts of machines and mechanisms in the fields of machine and aircraft construc-
tion, it is necessary to have the most accurate distribution of the stress state in the body. For this reason, it is
important to choose the most accurate method of the calculation results obtaining.

During such design, models with a connection in the form of a cylindrical swivel joints are often found.

Currently, similar problems are solved by methods of construction mechanics or numerical methods,
such as the finite element method [1, 2]. Thus, the study [3] uses the finite element method to analyze the
stress-strain state of a half-space supported by a plate with a vertical cylindrical cavity and a reinforced shell.
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However, the assumptions of construction mechanics methods allow a significant change in the model, and
numerical methods are approximate and do not take into account the infinite boundaries of the body. This
does not give high accuracy and confidence in the final result [4].

The use of analytical methods [5, 6] gives accurate results, but they cannot take into account more
than three spatial boundary surfaces.

Many papers are devoted to a layer with a cylindrical cavity or an inclusion perpendicular to their
surface [7-11]. One of the approaches to solving this problem consists in solving the problem for a layer
with a cylindrical cavity assuming ideal contact conditions at the upper and lower boundaries of the layer [7].
A similar situation was also considered in [8], when the lower surface of the layer was rigidly fixed. These
studies [7, 8] used integral Laplace transforms and integral sine and cosine Fourier transforms. These meth-
ods are applied to boundary conditions and axisymmetric equations of motion, which create a one-
dimensional vector inhomogeneous boundary value problem. However, they cannot help effectively solve
problems with multiple boundary surfaces and are limited to solving only wave diffraction problems.

In the study [9], stress analysis of perforated plates was carried out using genetic algorithm (GA),
gravity search algorithm (GSA) and Bat algorithm (BA). However, the used methods are also approximate
and do not guarantee the accuracy of the final result.

The torsion of an elastic half-space with a vertical cylindrical cavity and a coax was considered in
the paper [10]. The problem was reduced to integral equations of the second kind, which made it possible to
obtain highly accurate values of the stress state of the body.

In the study [11], for composite laminated plates with circular cross-sections, an analytical solution
based on the method of layer whipping was developed. However, the methods used in these problems with
the transverse arrangement of the cavity or inclusion [5, 6] cannot be used to solve the problem for a layer
with longitudinal cylindrical cavities.

The specified type of problems can also be solved by the methods used for the calculation of composite
materials. These methods make it possible to take into account the nonlinearity of the given model. At the same
time, cylindrical swivel joints supports can be considered as completely rigid elements. Similar methods are used
in papers [12—15]. Thus, in [12], the problem of determining the dynamic stress state in two overlapped rods of
different lengths is considered. The load is modeled by a longitudinal force applied to one of the rods. The Hol-
land-Reissner adhesive joint model was used during the solution. The paper [13] studied the behavior of multi-
layer structures during the action of a dynamic load on them during a transverse impact. The theory of two-
dimensional discrete structure is used for the solution. At the same time, the solution is based on the decomposi-
tion of the displacement vector of each layer into a power series. Theoretically obtained results correlate with
experimental data obtained during research. Papers [14] and [15] are devoted to the study of the stress state in
aviation multilayer glass units. At the same time, in [14], the glass unit is considered as an open cylindrical mul-
tilayer shell of constant thickness, and the thermal stress state arises from the action of interlayer film heat
sources. An analytical solution was obtained for the described problem. The paper [15] is devoted to the creation
of a method for assessing the strength of a multilayer glass unit in case of a collision with a bird and a method for
assessing excess pressure in the case of a specified collision. For the solution, a refined theory of taking into ac-
count the first order of transverse shear deformations, reducing the thickness and rotation inertia of the element
of each layer is used.

A general drawback of the methods used in papers [12—15] is the impossibility of taking into account
zero displacements in the contact zones with cylindrical joints.

To take into account the longitudinal inhomogeneities in the layer, the analytical-numerical generalized
Fourier method [16] is the most effective. This method allows to use the transition functions between the basic
solutions of the Lamé equation to combine the solutions of the problem in different coordinate systems.

Thus, with the help of the generalized Fourier method, problems for an elastic cylinder with cylindrical
cavities [17, 18] or cylindrical inclusions [19], as well as for a half-space with a spheroidal cavity [20] were
solved. However, to calculate a layer with a cylindrical cavity, it is necessary to use the formulas for the transi-
tion of basic solutions between cylindrical and Cartesian coordinate systems.

Such transition formulas are considered for a half-space with a cylindrical cavity in paper [21], for a
layer with a cylindrical cavity in papers [22, 23], for a layer with a continuous cylindrical inclusion in paper [24]
and a layer with a cylindrical thick-walled pipe in paper [25]. However, these papers [21-25] do not apply the

26 ISSN 2709-2984. Journal of Mechanical Engineering — Problemy Mashynobuduvannia, 2024, vol. 27, no. 2



JUHAMIKA TA MIITHICTbh MAIIIMH

formulas of the transition between local cylindrical coordinate systems, which does not allow to solve the prob-
lem with several cylindrical inhomogeneities.

In paper [26], the problem was solved for a layer with two cylindrical supports embedded into it, and
in paper [27], the problem was solved for a layer with two continuous cylindrical inclusions and mixed
boundary conditions. However, in these papers, the transition formulas between shifted cylinders are not
used, which allows to consider only two cylindrical inhomogeneities.

In paper [28], the problem of the theory of elasticity for a rigidly connected layer with three embedded
supports is solved. It also takes into account the transition formulas between displaced cylinders, but a different
type of boundary conditions (displacement) is applied to the surfaces of the cavities. However, for the calculation
of a problem containing a cylindrical swivel joint, it is necessary to apply the conditions of the contact type.

Considering the availability of calculation schemes in the form of a layer with cylindrical swivel
joints and a cylindrical cavity, the creation of a method for calculating such problems is relevant. Therefore,
the generalized Fourier method will be used for high-precision calculation.

Problem statement

The elastic homogeneous layer is located on
two cylindrical swivel joints embedded into it and has a
longitudinal cylindrical cavity that is parallel to its bor-
ders (Fig. 1).

Embedded cylindrical swivel joints will be pre-
sented as cavities with contact type conditions set for
them. We denote the radii of the cavities as R,, where p
— cavity number. The layer is given in the Cartesian
coordinate system (x, y, z), cavities are given in local

cylindrical coordinate systems (p,, ¢,, z). Distance to | Fig. I. A layer with two embedded in cylindrical swivel
}7 Jjoints and a cylindrical cavity

layer boundaries is y=h and y=—

It is necessary to find a solution to the Lamé equation Aii +(1—2c)™' Vdivii =0.
Stresses are set on the upper and lower boundaries of the layer, as well as on the surface of the first

cavity FU(x,z)‘y:h =F)(x,z), FU(x,z) F O(x,z2), F(j((pl,z)‘m:R1 =U"(p,,z) respectively, where U
— displacement in a layer;

]';'th (x,z)z T(y’;)éx + c(yh)ey + t(yz) e,

v=—h

F(x,z)= "0 +G( B+l

N , +1).e., —known functions. (1

T (¢y,2)= ()e +7Wz 4.0z

peT pz Z
On the surfaces of cavities p=2, p=3 normal displacements and tangential stresses are given.

Uploye2), ., =Uo,02)
ool =k, 1:5 )((pp,z), . ()

TPZ‘pP=R (2 )((ppa )
We consider all given functions to be rapidly decreasing from the origin of the coordinates along the

axis z and axis x.

Solution method
We choose the basic solutions of the Lamé equation for Cartesian and cylindrical coordinate systems

in the form [16]

7 (X,y,z;x,p) = (d)ei(XZﬂ,lx)iYy.
R (0:0,230) = NI ()04, N
5o p.0.2) = VP sen & (lep) Ozmoll e 123,
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1 4 o1 i 1
N ):IV; N =I(c5—1)e2(l)+IV(y-); N :xrot(@(l) ); pr)zxv;
N :%{V[paﬁ}r%c—l)(v-éf)aiﬂ; ng):%rot(%(z) -); y=A2+p?, —o<h,u<o0,
) 2z

where 1,,(x), K,,(x) are modified Bessel functions; Ek’m ,S 4. are inner and outer solutions of the Lam¢ equation

for the cylinder, respectively; u ,(;), u ,(f) are solutions of the Lamé equation for a layer; o is the Poisson's ratio.

We will present the solution of the problem in the form [28]
3 3 9 o
> > B2 (1)-5, (P @, 20 Ji+
p=l k=l _po m=—o0 (4)

+ f )@,y 2 )+ (ot 2300 ) sl

Mw
8'—.8

b
Il

1 _

where gk,m (p PRGNS x Vs Zo A, ) i ﬁ,g_)(x, V,Z;\, ],t) are basic solutions given by formulas (3), and

unknown functions H (7», u) (7» u) B )(K) must be found from boundary conditions (1) and (2).

The transition between basic solutions in different coordinate systems will be carried out using for-
mulas [16]:

— for the transition from basic solutions S*k,m of the cylindrical coordinate system to layer solutions

b

(at y>0) and u i h (at y<0)

gk’m(pp’(l)p,z;k):%jmg‘e_i“xpiw}p ﬁ]ﬁ?)%, k=1, 3;

)

—IuxX, £vy, d
U

_ _ym © . 7\? _ s _
Sz’m(pp,(pp,z;k)z(;) Iw¢-([im-u—7ik2ypjul(+) FAku + (1 0):4 )—,

Y
where v =3 +p° , o;(h,p)= MZY ,m=0,£1,%2,...;

— for the transition from basic solutions u ,£+) and u ,E’) of the layer to solutions Ek,m of the cylindrical

coordinate system

i) (x, y, 2) = "5 P i(i.mi)mﬁk,m, (=1, 3}
A (6)
( )(x y,z M Z[ m u+y,: kz) ﬁ 2TV R 2,m+4u(1—0)f€3’m)] ,

where By, =By, (p,.2) o/mor+1). zfl,n(p,x)zép‘1,',(7up)+i-ln(7bp) e %pJ“eJ
4o -1)
Ap

52,n<p,x>=ap-[(46—3)-1,;<xp)+xpz,;'(xp)hapz--m[z:,(xp»

1, (Kp)j +&.inpl,(Mp);

53," (o) = —[ép -1, (xp)xiJr é,i-1, (Kp)} ; €, €,, ¢, are coordinates in the cylindrical coordinate system;
p

— for the transition from the basic solutions of the cylinder with the number p to the solutions of the
cylinder with the number ¢
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§k,m(pp,(pp,z;x) Zbk pq(Pq) i(ng, +1z)

n=—0

blm;q (pq )= (_ 1)’! Em*n ()“Z Pq ) ei(min)apq by, (pq > 7“);
)= R b 5, ) ”
bzm;q (pq): (_l)n {[Zmn (7\[ pq)‘bzz’n (pq,k) 2 [Km n+l kf ) m n-1 (7\[ rq )]-[’;;l,n (pq’k)}'ei(m_n)am 5

where a,, is the angle between the axis x, and segment £, , K, (x)=(sign(x))"-K,, (|x|)

The distance and angle of rotation between parallel shifted cavities is calculated by formulas

\/L2 -1-L2 =21, -qu-cos(alq —alp), at a,, =20,

b

2
"B 2, 1, coslo, —ay, ), at @y, <a,

2 2 2

o, —arcco by 4Ly —hy +mat o, >

1p > g = 1p
2'L1p'qu

pa 2 2 2 :
Ly, +L, —Ly
Q,, —arcco —mat o, <o,
2-L,-L,

To take into account the boundary conditions on the upper and lower boundaries of the layer, we ap-
ply the transition formulas (5) to the function (4), rewriting the basic solutions S m (p 2P p,z;k) in the Car-

tesian coordinate system through ﬁ,g’)(x, y,z;?»,u) at y=h and ﬁ,g”(x, y,z;?»,u) at y= —h . After that, we will
apply the stress operator to the right part. We equate the obtained vector with y=h to the given F, 0 (x,z) , and
y= —h — to the given F; (x,z), which we will first present through the double Fourier integral. After getting
rid of the integrals in the right and left parts, we get six equations (one for each projection) with 15 un-
knowns H, (A,p), }le(x,u), B,Ef’,g(k).

From this system of equations, we find H, (A,ut) and H, (x,u) through B,Ef’,)i ().

To take into account the boundary conditions in the stresses on the cavity p=1, we rewrite the basic so-
lutions of the second S’m (p,.9,,2;1) and the third S’M (p5,@5.2;:1) cylinders through basic solutions

Ek’m (pl,(pl,z;X) of the first cylinder, applying the transition formulas (7). We will also rewrite the basic solu-

tions it,g_)(x, y,z;h, 1) and ﬁ,£+)(x, y,z;h,11) of the layer through basic solutions I?k,m (p,,9,.2;1) of the first
cylinder, applying the transition formulas (6). After that, we apply the stress operator to this right-hand side.
The resulting vector at p;=R;, will be equal to the given one U él)((pl,z), which is represented by the Fourier

series and integral. So, we get three equations for the first cylinder.
To take into account the boundary conditions of the contact type on the cavities p=2, p=3, we re-
write the right-hand part of (4) using the transition formulas (5) and (6) in the local cylindrical coordinate

system of each cavity p=1 through basic solutions Iik’m , S’km . After that, we will rewrite these basic solutions

for k=2 and k=3 in terms of stresses. The resulting vector, at p,=R,,, will be equated to the given one (2), rep-
resented by the Fourier series and integral. So, we get six equations for the second and third cylinders.
As a result, for each cylinder with the number p, we get three infinite systems of linear algebraic equa-

tions with respect to B,Ef’,)i (1), which contain H, (A,u) and H,(A,ut). Thus, we will get 9 integral-algebraic
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equations from H, (A,u), H, (Ap), B,E{”,,), (1). Excluding the previously found H, (A,u) and H, (A,u) from
these equations through B,Ef’,z (X) and getting rid of the series over m and integrals over A, we will get 9 infinite
linear algebraic equations of the second kind to determine the unknowns B,Ef’,,)l (r).

Found unknowns B,Ef’,z (1) will be substituted in the expression for H,(A,u) and H,(A,p). In this

way, all the unknowns of expression (4) will be found.

The reduction method is applied to the obtained infinite systems of equations. The accuracy of the
fulfillment of the boundary conditions during the numerical study showed a high convergence of the solution
of this system of linear algebraic equations.

Numerical studies of the stress state
The elastic isotropic layer contains two cylindrical joints and a cylindrical cavity (Fig. 1). Physical
characteristics of the material (ABS plastic): Poisson's ratio 6=0.38, modulus of elasticity £=1700 N/mm?’,

Geometric parameters of the model: R1=R,=R;=5 mm, /=15 mm, h =15 mm, o,,=0, a;;=n. The distance be-
tween the cavities is chosen in two options L;,=L3=30 mm and L,=L5=40 mm.
Normal stresses in the form of a unit wave are set at the upper boundary of the layer

o"(x,z)=-10° -(22 +10 TZ -(x2 + IOZT2 and zero tangential stresses <) = <!”) = 0, at the lower boundary of the

layer — zero stresses c(’?)(x,z):r(g)(x,z):r(’z)(x,z):o. Zero stresses are set on the cavity p=1

) »x ]
o)) =1py =

The infinite system was truncated by the parameter m=4 (the number of members of the Fourier se-
ries and the order of the system of equations).

The accuracy of the fulfillment of the boundary conditions for the specified m and the specified
geometric parameters is not less than 10™ with values from 0 to 1. This corresponds to the paper [22], where
a thorough analysis of the convergence of the results at different values of m and the distance between the
layer and the cavities was carried out.

Fig. 2 shows a graph of specified stresses 6, and their corresponding stresses o, on the upper and lower
surfaces of the layer at z=0.

The stress state (Fig. 2) indicates that the upper part of the layer is compressed, the lower part is
stretched. This is physically correct compared to a beam on two supports.

When increasing the distance between supports, stresses o, on the upper and lower surfaces of the
layer increase and exceed the specified values. The maximum stress values occur on the upper surface of the
layer and at L,=L,3=30 mm are equal to ,=—1.269 MPa, and at L,,=L3=40 mm — 6,= —1.332 MPa.

Fig. 3 shows stresses o, along the cylindrical cavity touching the right support (p=2) at z=0.

Maximum stresses 6, occur on the left side of the cylinder (Fig. 3). This happens due to the lateral
pressure of the specified load on the supports.

Maximum stresses are negative 6,= —0.3336 MPa at L;,=L,5=30 mm and ¢=2.5 in the upper part of
the cylinder. When the distance between the supports increases, the maximum stresses o, decrease, shifting
to the horizontal axis in the direction of the load.

The graph of stresses o, along the cylindrical cavity touching the left support (p=3), is symmetrical
to Fig. 3 relative to the vertical axis.

Fig. 4 shows a graph of stresses o, along the right supporting cylindrical cavity (p=2) at z=0.

In comparison with the paper [27], where the supports are rigidly connected to the layer, the graph of
stresses o, under conditions of the contact type at the supports has the opposite sign. The maximum positive
stresses occur at L;,=L;3=30 mm, ¢=2.356 and reach ,=0.08975 MPa. The maximum negative stresses oc-
cur at L,=L3=30 mm, ¢=3.927 and reach 6,= —0.1094 MPa.

Fig. 5 shows a graph of stresses o, along the right supporting cylindrical cavity (p=2) at z=0.

Graph of stress 6, has the same form as in paper [27], only the values are smaller in proportion to the
angle. Maximum stress values: at L;,=L;3=30 mm and ¢=2.5 positive c,=—0.068 MPa, at L;,=L;3=30 mm
and ¢=3,927 negative 5,=0.0785 MPa.

rgz) = 0, contact type conditions are given U")(¢,z)=1\"(¢,z)=1¥")(¢.z)=0 on cavities p=2, p=3.
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Fig. 2. Stresses on the upper and lower surfaces of the layer Fig. 3. Stresses o, on the surface of the cavity p=2
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Fig. 4. Stresses o, on the surface of the cavity p=2 Fig. 5. Stresses o, on the surface of the cavity p=2
Fig. 6 shows a graph of stresses o, along the 1
cylindrical cavity p=1 at z=0. — — Li2=L.23=40mm

e
(Y

Stresses o, on the surface of the free cavity
have mainly negative values (Fig. 6) due to the com-
pression of this cavity between the supports by the
load. Breaking (positive) stresses o, occur only in small
areas in the upper and lower part of the cavity.

When the distance between the supports in-

— Li2=L13=3 Dmm

/N\ PN

/N SN

% N )

Stress, oo, MPa
(]

o
()]

creases, the maxirnurp stresses decreas; slightly -1 0 w4 m2 34 n Su4d 64 T4 2n
(Flg. 6). Thus, the maximum stress values in the .f?ee Angle of rotation, rad

cavity reach at L»=L;=30 mm: positive ) )
6,=0.32476 MPa, negative c,= —0.7715 MPa. Fig. 6. Stresses o, on the surface of the cavity p=1
Conclusions

A new problem has been solved for a layer located on two cylindrical swivel joints embedded into it
and having one additional cylindrical longitudinal cavity.

Swivel joints are represented as longitudinal cylindrical cavities with contact type conditions (nor-
mal displacements and tangential stresses) set for them. This made it possible to reduce the problem to the
classical model of the spatial theory of elasticity. To solve the problem, the analytical-numerical generalized
Fourier method was applied, which allowed to obtain a solution with the specified accuracy.

A numerical analysis of the stress state was carried out. The analysis shows the distribution of nor-
mal stresses depending on the distance between the supports. The obtained results indicate that as this dis-
tance increases, the maximum stresses on the surface of the cylindrical cavity and the support surfaces de-
crease. At the same time, the stresses on the upper and lower surfaces of the layer increase.

The proposed solution method can be applied to a larger number of cylindrical cavities or cylindrical
joints. The resulting stress state makes it possible to estimate the geometric parameters for the models de-
signed in practice.

Further research on the topic should be conducted in the direction of adding protective layers and
thick-walled cylinders.
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AHaJi3 HANPY:KEHOTO CTAHY LIAPY 3 IBOMA HWIIHAPUYHUMH MIAPHipaMH | ITIHAPUYHOIO OPOKHUHOI0

B. 0. Mipomnikos, B. I1. ITeanx, O. 1O. JleHbmukoB

HamionansHuii aepokocMiunuii yHiBepeuTeT iM. M. €. )KykoBcbkoro «XapKiBChbKHH aBiallifHUIN iHCTHTYT»,
61070, Ykpaina, M. XapkiB, Bys1. Baquma Manbka, 17

Ha npaxmuyi wacmo 3ycmpiuaromsbcs 3’ €OHanus y 8ueiiodi yuriHOpuunux wapuipie. Ilpome mouwni memoou
07151 PO3PAXYHKY NOOIOHUX MoOenell 8i0cymHi. 3 020y Ha ye CMBOPEHHS AleOPUMMIE PO38 SI3AHHA MAKUX 300ay € aKmya-
AbHUM. Y nodariti pobomi po3s ’sa3aHa npocmoposa 3a0aia meopii NPYHCHOCMI 05l HECKIHYEH020 wapy 3 080Ma YUTTHOPU-
YHUMU WAPHIpAMU U YUTTHOPUYHOIO NOPONHCHUHOIO, PO3MAUOBAHUMU NAPALENbHO 0OHA OOHIll ma NapaneibHO NO8epXHAM
wapy. Lunindpuuni epizani wapuipu nooawi y 6ueisnoi NOPONCHUH i3 3A0AHUMU HA HUX YMOBAMU KOHMAKMHO20 Muny (Hop-
ManvHi nepemiugerHs 1 domuyHi Hanpyscenns). Ha nosepxusax wapy i Ha nosepxui noposxcnunu 3a0ani nanpysxcenns. Llap
PO3210aEMbCA Y OeKapmositl cucmemi KOOPOUHam, YUmTHOPUYHI NOPOICHUHU — Y TOKATbHUX yuninopuunux. IIpocmoposa
3a0aua meopii nPysHCHOCMI P38 ’A3YEMbCA 3a O0NOMO2010 ¥3a2anbHeH020 Memoody Dyp’e, AKI 3ACMOCO8YIOMbCA 00 PIBHAHbL
Jlame. 3a00601bHAIOUY SPAHUYHUM YMOBAM, CBOPIOEMBCA CUCTNEMA HECKIHYEHUX NIHIHUX aneeOpaiyHux pieHAHb, 00 AKUX
3aCMOCOByEMbCs Memod pedyKyii. Y qucio8omy doCIiodHcenHi MOUHICMb SUKOHAHHS 2panuyHUX yMo6 cknata 107 ons sna-
yeHb Hanpyoicersb 6i0 ) 00 1 npu nopsaoky cucmemu pieHsans (unenie psoy @yp’c) m=4. [lpu 36inbuenni nopsoxy cucmemu
PIBHAHbL MOYHICMb PO3PAXYHKIB 30116ULYEMBCS. AHANI3 HANPYHCEHO20 CIMAHY NPOBedeHUll NPU PI3HIL 8IOCMAHT MidiC Onopa-
mu. Ompumani pezyromamu c8iouamy, wo 3i 30LIbUEeHHAM Yiel BIOCMAHT HANPYIHCEHHS HA ONOPHUX YUTTHOPUUHUX NOBEPX-
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HAX wapy i Ha YuriHOPUYHILL NOBEPXHI NOPONCHUHU 3MeHuLyiombcsl. Tlepepo3nodin yux nanpysicens 6i00y8acmbcs Ha GepX-
HIO Tl HUDICHIO NOBEPXHI wapy, 0e Hanpyxicenns 30invuiylomucst i nepeguugyioms 3a0ani. Ompumani 4uciosi pe3ynomamu
MOdHCYmb OYymu BUKOPUCTNAHI NPU NPOZHO3YBANHT 2COMEMPUYHUX NAPAMEMPIB Ni0 YaC NPOEKNYBAHHSL.

Knrouoei cnosa: wap 3 yuniHOpuuHUMU NOPOJICHUHAMY, Y3a2anbHeHull Memoo Pyp’e, yMO6U KOHMAKMHO20 MUNY.
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