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Introduction

Fibrous composites are often used in mechanical and aircraft engineering, which increases the re-
quirements for assessing the stress-strain state of such bodies and forces us to search for the most effective
calculation methods. The model of fibrous composites is represented as an infinite layer with longitudinal
inclusions. The cross-sections of the inclusions can be of various shapes, solid or with cavities. In addition,
various boundary conditions can be set on the surfaces of the model, in particular, the conjugation surfaces.

The embedded tube layer model is used in: cooling systems (in engines and other mechanisms, tubes
can be embedded in layers of structures to circulate coolant), fuel systems (in some structures, tubes can be
embedded in metal layers to transport fuel to engines or other machine components), for noise absorption
and vibration isolation (in tubes embedded in layers of structures, air or other gases can circulate, which
helps reduce vibrations or noise in mechanical systems), in turbochargers (in turbines and compressors, tubes
can be embedded in layers of the housing to supply air or gas under pressure to turbo-supercharging sys-
tems), in lubrication systems (in mechanical engineering, tubes embedded in layers of metal structures can
provide lubrication to critical parts of machines and mechanisms, reducing friction and wear).

One of the approaches to solving problems with composites is testing samples from finished sheets [1].
In this case, the reinforced layer is represented as a physically nonlinear material with anisotropic characteristics.
This is well suited for a stochastic structure or for a layer with a large amount of reinforcement [2]. However,
this approach significantly complicates the design with variable geometric characteristics of the composite or
variable boundary conditions. Taking the above into account, in most papers the composite is considered as a set
of conjugated elements. In view of this, when solving problems with composites, analytical, analytical-numerical
or numerical methods are used, sometimes these methods are combined with each other and with tests.
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As experience shows, most often when solving such problems, numerical methods [3] and computer
programs based on them [4] are useful. Thus, in paper [5], the finite element method was applied to the prob-
lem for a half-space reinforced with a shell and a vertical cylindrical cavity. However, numerical methods
give approximate values of the stress-strain state, which does not add confidence when a highly accurate re-
sult is required. This forces us to look for other methods or additional approaches.

Classical analytical methods [6, 7] are considered accurate. They are based on the Fourier series ex-
pansion of solutions. However, classical methods do not allow to solve spatial problems when the model
contains more than three boundary surfaces, which is typical for composites.

There are a number of papers [8—11], which consider problems for composites taking into account
the nonlinearity of the model.

Thus, in the study [8], the problem of determining the dynamic stress state for two rods of different
lengths connected in an overlap, and with a longitudinal load applied to one of the rods, was solved. The
Holland-Reisner model was used to model the adhesive joint, in which the support layers are considered as
beams in the Bernoulli approximation, and the adhesive layer is considered as an elastic Winkler base.

In [9], a multilayer structure under the action of dynamic transverse loading was analyzed. The solu-
tion consisted in using a two-dimensional discrete structure, and the displacement vector was expanded into
a power series. The solution is correlated with the results of an experimental study.

In the paper [10], a method for calculating the thermo-stressed state of an aircraft double-glazed
window was proposed. In this case, the double-glazed window was considered as a cylindrical laminated
open shell of constant thickness under the action of convection heat transfer. Similarly to the previous study,
the results correspond to the experimental data.

In [11], a method for analyzing the stress-strain state of a laminated composite during a collision with a
bird and the action of internal excess pressure was presented. The model of a laminated double-glazed window
is based on a theory that takes into account transverse shear deformations, thickness reduction and inertial phe-
nomena. The mathematical pressure model that reproduces the bird strike is based on experimental studies.

At the same time, the methods used in [8—11] do not allow for cylindrical cavities or inclusions to be
taken into account.

In [12-17], cylindrical inhomogeneities located perpendicular to the layer boundaries are considered.

Thus, in [12], the problem is solved by assuming ideal contact conditions at the upper and lower
boundaries of the layer. In [13], a similar approach is used, but on the condition that the lower surface of the
layer is rigidly clamped. The problem of a layer with a cylindrical inclusion or cavity running parallel to the
layer boundaries cannot be solved by the methods proposed in these papers, since the use of integral Laplace
transforms and integral sine and cosine Fourier transforms to the boundary conditions and equations of mo-
tion creates a one-dimensional vector inhomogeneous boundary value problem that can provide solutions
only for wave diffraction problems.

For a perforated plate, stress analysis using the genetic algorithm (GA), gravity search algorithm
(GSA) and Bat algorithm (BA) was applied in [14], but the proposed approach is also approximate.

In [15], the torsion of an elastic half-space with a vertical cylindrical cavity and a coaxial die was
considered. The problem was solved by two innovative methods that reduced the solution to ordinary inte-
gral equations of the second kind. At the same time, the solution is quite approximate and has some discrep-
ancies with the solution of the Reisner-Sagoci problem.

In [16], an analytical solution based on the layer-beating method was developed for composite lami-
nated perforated plates. The reliability and accuracy of the proposed method were confirmed by comparison
with finite element calculation. In [17], the problem of torsional vibrations of a flat circular die conjugated to
the upper boundary of a multilayer elastic base containing a vertical cylindrical cavity with an axis perpen-
dicular to the boundary of the layers was solved. The Weber integral transformation and pair integral equa-
tions are used for the solution. The methods discussed in the studies [16, 17] are not suitable for solving
problems with inhomogeneities located parallel to the layer.

The aim of this paper is to create a high-precision method for solving the problem of the theory of
elasticity for a layer with two longitudinal cylindrical thick-walled pipes. The stresses are given on the sur-
faces of the layer and on the inner surfaces of the pipes. The layer and pipes are rigidly conjugated.

ISSN 2709-2984. Ipobnemu mawunobyoyeanns. 2024. T. 27. Ne 4 41



DYNAMICS AND STRENGTH OF MACHINES

The most effective method that allows to obtain accurate results of the specified model is the analytical-
numerical generalized Fourier method [18]. Its main advantage is that it allows to obtain a solution for a group of
bodies, each of which has its own coordinate system. At the same time, using the transition functions between the
basic solutions of the Lamé equation, it is possible to apply different types of coordinate systems simultaneously.

Using the generalized Fourier method, solutions were obtained for an elastic cylinder with cylindrical
cavities [19, 20] and cylindrical inclusions [21], as well as for a half-space with a spheroidal cavity [22]. The
solution is presented as a superposition of the exact basic solutions of the Lamé equation for a cylinder in coor-
dinate systems referred to the centers of the boundary surfaces of the body.

A further development of the method is the application of the formulas for the transition of the basic
solutions between the cylindrical and Cartesian coordinate systems. The following developments can be an
example: in [23] such formulas are proposed for a half-space with a cylindrical cavity, in [24] — for a layer
with a cavity on the surface of which stresses are given, in [25] a solution for a layer with a cylindrical inclu-
sion is shown. However, a general drawback of the papers [23-25] is the presence of only two independent
coordinate systems: Cartesian for a layer or half-space and cylindrical for inhomogeneity. In this case, the
formulas for the transition between local cylindrical coordinate systems are not used, which does not allow to
solve a problem with several inhomogeneities.

The increase in the number of bodies taken into account in the calculation model is discussed in [26—
28]. Moreover, in [26], the situation is considered when Cartesian coordinate systems are used for two bodies
(layer and half-space), and cylindrical coordinate systems are used for inhomogeneity. Problems in which the
layer is fixed on two supports are solved in [27], and for a layer with two cylindrical inclusions having mixed
boundary conditions — in [28]. However, the approach used in [26—28] does not allow for inclusions in the form
of thick-walled pipes to be taken into account. The approach that takes thick-walled pipes into account is im-
plemented in [29, 30], where a layer with one thick-walled pipe is considered. This approach, as mentioned
above, allows for more accurate modeling of the support itself and the conditions of attachment to it, but the
disadvantage of these papers is, as for papers [23-25], the lack of formulas for transition between cylindrical
coordinate systems in which the origin points do not coincide. The application of such formulas and considera-
tion of problems where supports are modeled in the form of several pipes is the subject of this study.

Problem statement "x.2)
The model is a composite in the form of an elastic '
layer with two cylindrical thick-walled pipes located parallel
to its boundaries (Fig. 1).
The boundary conditions are presented in the form of
stresses on the flat surfaces of the layer and the inner surfaces
of the pipes. The outer radii of the pipes are indicated by R,

and internal ones — by R, , where p — pipe number. The layer 7

was considered in the Cartesian coordinate system (x, y, z),
pipes — in local cylindrical coordinate systems (pp, ¢p, Z). Fig. 1. Layer with two cylindrical

Distance to layer boundaries: y=h and y= - h. thick-walled pipes
To solve the problem, it is necessary to find a solution to the Lamé equations in the form
Aii +(1-26) ' Vdivii =0 .
The stresses are given at the upper and lower boundaries of the layer, as well as on the inner surfaces of
the pipes FU(x, Z)\y=h = Fho (x, z) , FU(x, z)‘y?; = 1350 (x, z) , FU((pp, Z}p,, &, = FU(()P)((pp, z) respectively,

where U is the displacement in a layer; FU =2-G- [1 O ji-divU+ ai U+ % (ﬁ xrotU )} is the stress operator;
— . G n

F(x,z)= r(y@éx +G(h)ey +’E(yz) e,

Fio(x z)= ( % +c ( )e +r( ) — known functions. (1)

yx X yz €.,

FU(P)((pp, ) G(p)e +T( )e +ﬂc( )

p Pe ¢ pz 2
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The layer is rigidly connected to each pipe where the conjugation conditions are met

UO ((p9z)‘p=Rp = Up ((P’Z)‘p=R[, H (2)

FﬁO((p’Z)‘p:Rp :FUp((p’Z)‘p:Rp ) (3)

where U, 0 ((p, z) is the solution for the layer; U » ((p, z) is the solution for the pipes.
All given functions will be considered to be rapidly decreasing from the origin along the axis z and axis x.

Solution method
When solving the problem, the displacement in the layer was represented in the form proposed in the
paper [28]

2 3 9 « _
l_jO :Z;ZJ. zBlgf)m()\’)'Sk,m(ppa(PpaZ;k)dk+
p=

3 <2 ~
+Z J. I(Hk(k,u)-ﬁ,£+)(x,y, z;k,u)+Hk(X,u)-ﬁ,gf)(x,y,z;k, u))dud?».

k=1 —oo-o0

(4)

The form of the displacement function in the pipes was presented in the form proposed in the paper [30]

> AN (1) Ry (0101, 2:0)+ AL (1) S, (0101, 232 )R,
)
DAL (1) Ry (202, 2:0)+ A2 (1), (920 @20z A ),

m=—o0

where H, (A,p), H, (A1), B,gf’,,), (), A,gl,)n (), Z,Sl,)n (), A,gz,l (), ~,§2 (1) are unknown functions that should

m

be found from the boundary conditions (1).
Basic solutions of the Lamé equation Jlame Sk n (pp,(pp,z k) km(pp,(pp,z k) i )(x,y,z;x,u),

ﬁ,g’)(x,y, zZ\, u) is presented in the form [18]

N il

ljiki('x y’Z.}\f M)_ e
Ry (0,9, 2:0.)= NI (np)etmo);
S inct) A ) ) ko2

1 N 4 o 1 c 1
Nf"):xv; Ngl)zx(v—l)ez(l)anV(y-); N3(!) 7Lrot( & ); Nf”:xv;

Nﬁ”)=%{V(p§j+4(v—1){V—é§z)§ﬂ; ng)=%rot(é3(2) s y=AR 41, —eo<hp<on,
) 2z

where v is the Poisson's ratio; 7,(x), Kn(x) are modified Bessel functions.

As a result, an infinite system of integro-algebraic equations with 8 unknowns was obtained. Four
equations of this system were obtained from the boundary conditions (1) and four more — from the conjuga-
tion conditions between the layer and the pipes (2) and (3). The known functions (1) were previously repre-
sented through the double Fourier integral for the layer, and for the inner surfaces of the pipes through the
Fourier series and integral. After that, the right and left sides of the equations were freed from the Fourier
integrals and series. Since the above equations are presented in different coordinate systems, the transition
formulas between the basic solutions were used to reduce them to one coordinate system [18]:

— from external solutions for the cylinder S 4. 1o solutions for the layer u il by (at y>0) and u ii! o (at y<0)
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m efiw’cpivf/p .ﬁ@).@, k=1, 3;

k

S (pp,(pp,z A=

2 Y
52 iK%, 115, g ©
S, (pp,q)p,zx = (im-u——i?»zyj ® 1225+ ap(1 - o)l )—“
2 Y ¥
where vy =22 +|.t2 , a);(k,u)zuT-T_Y ,m=0+142 ...;
— from the solutions of the layer L?,E+) and ﬁ,g_) to the internal solutions of the cylinder Iék’m
()(x v,z ) M, i(i.m_) Ry s ( k=1, 3)
" (7
()(x ¥,z Pt Z[l ‘05 ) A m u+yp kz) R, iY'l_éz,m"'Af“(l_G)jé;m)] R
= = i(m(p +7»z)' = - ' . -~ n - .
where B, =by (1) "7 B (p0)=¢, -In(Kp)+l‘In(lp)-(e(pk—+ezj,
p

A I IEMES IR VA e A IR AT

173,,, (p.1)= —{ép -1, (Kp)xip +é, i1, (Xp)} ; €,, €,, €. are unit vectors in a cylindrical coordinate system;
— from the cylinder solutions with the number p to the cylinder solutions with the number ¢

SimlPy0,02:0)= Zbk’”;q( et k=12, 3

5 o, )= (1)K, nwpq)-e*m Db by )
b, (0,

b o, )= (1Y K, 00, ) " 1); (8)

bzm;’lq( )= (_ 1)” {Izm—n (}\'qu) bZ,n (pq’}“) }2\:[[,(1 [ m—n+l (}\‘K ) m —n-| 1(7\.( )] b] n(pq’}\‘)} e’(’”*")(lm’

where 0, is the angle between the axis x, and a segment {,,, K, (x)=(sign(x))" -K,, (|x|)

Thus, after using the formulas for the transition of basic solutions between coordinate systems (6)—(8),
each equation was written in its local coordinate system. As a result of the transformations, an infinite system
of linear algebraic equations of the second kind was obtained, to which the reduction method was applied. Ful-
fillment of boundary conditions during numerical study showed high accuracy and convergence of results dur-
ing its solution.

Numerical studies of the stressed state
The elastic isotropic layer has two thick-walled cylindrical tubes with an outer radius of
Ri=R,=16 mm, internal radius of §1=§2=11 mm (Fig. 1). Physical characteristics of the layer: aluminum

alloy D16T, Poisson's ratio vo=0.3, modulus of elasticity Eo=7.1x10* MPa. Physical characteristics of pipes:
steel SHKH135, Poisson's ratio vo=0.28, modulus of elasticity £i=2.16x10> MPa. Geometric parameters of the

model: h=h =32 mm, o>=0. The distance between the pipes is chosen in two options: /=50 mm and
[1=100 mm.
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At the upper and lower boundaries of the layer, normal stresses are given in the form of a unit wave
R _
G(yh)(x, z) = c;yh )(x, z) =-10%. (22 +10° Tz . L(x - %} + IOZJ and zero tangential  stresses  are

= = ’E(;) = r(z) =0. Zero stresses are set on the inner surfaces of the pipes GE,”) = TE,{’p) = ’Eg) =0.

yx yz yx yz

The infinite system was truncated by the parameter m=>5 (the number of terms of the Fourier series
and the order of the system of equations).

The accuracy of fulfilling the boundary conditions at the specified m and given geometric parameters
is not less than 10 with values from 0 to 1.

Fig. 2 shows the stresses G, on the inner surface of the left pipe depending on the distance between
the pipes.

Stresses graph o, (Fig. 2) shows the inverse dependence of the magnitude of the stresses on the dis-
tance between the supports, i.e. as the distance between the inclusions decreases, the stresses increase. Also,
at angles close to ¢=n/3 and @=27/3, on the graphs for the distance between pipes of /;,=50 mm, a clearly
expressed maximum of positive stresses is observed, which is absent when increasing distance. The maxi-
mum stresses are negative at ¢=0 and are equal to Gymaxy=0.5069 MPa.

In addition, from the comparisons of the graphs of circumferential stresses (Fig. 2) at /;,=50 mm, and
at /17=100 mm it is seen that depending on the distance between the pipes not only the values of the stresses
change, but also the character of the diagram, and the sign of the stresses can change to the opposite.

Fig. 3 shows the stresses o. on the inner surface of the left pipe depending on the distance between
the pipes.

Stresses o, on the inner surface of the pipe (Fig. 3), as well as stresses o, (Fig. 2), have an inverse
dependence of the stresses magnitude on the distance between the supports. At angles close to ¢=n/3,
¢=27/3, and with the distance between the pipes of /=50 mm clearly maximum stresses o. values are ob-
served, which, when increasing distance, decrease significantly, and the maximum stresses shift to ¢=0.

On the verge of conjugation, stresses G are attenuated.

0.2 0.2
2
s 0.15
£ 0 =#£—XS T T=A =T £ 1
= o S o1 |\ />
g-02 3 /X \
2 / Y \ ©0.05 47
§-0.4 Z f TN ---//\
wn +~
0.6 £.0.05 2
0 w4 w2 3m/4 n Sm/4 6m/dTn/4 2w 0 w4 w22 3W/4 n 5m/4 6m/4Tn/4 2w
Rotation angle, rad Rotation angle, rad
Fig. 2. Stresses o on the inner surface of the pipe: Fig. 3. Stresses o on the inner surface of the pipe:
1 — distance /;>=50 mm, 2 — distance /=100 mm 1 — distance /;>=50 mm, 2 — distance /;=100 mm

Fig. 4 shows the stresses o, at the conjugation between the pipe (p=1) and layer (in the pipe body) de-
pending on the distance between the pipes.

On the inner surface of the pipe, stresses o, are set to zero. However, the outer surface of the pipe (the
conjugation surface) is compressed and these stresses increase significantly. Compression at the conjugation sur-
face is physically correct because the layer is compressed by loads at the upper and lower boundaries of the layer.

As the distance between the pipes increases, the stresses G, at the conjugation surface decrease signifi-
cantly. The maximum compressive stresses at /;,=50 mm are equal to 6,= -0.084 MPa (Fig. 4), at /;,=100 mm —
c,=-0.013 MPa.

Stresses G, at /1>=50 mm on the inner and outer surfaces of the pipe p=1 are shown in Fig. 5.

Comparing stresses o, on the inner and outer surfaces of the pipe (Fig. 5), we can conclude that, un-
like the stress o), stresses o, decrease at the conjugation surface (in the pipe body). Also, these stresses be-
come permanently compressed.
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Fig. 4. Stresses o) on the outer surface of the pipe: Fig. 5. Stresses op:
1 — distance /=50 mm, 2 — distance /;,=100 mm 1 — on the inner surface of the pipe, 2 — on the outer surface

At the conjugation surface (in the pipe body) at /;,=100 mm nature of stress o, distribution remains
similar to that shown in Fig. 5, but with smaller values.

Conclusions

An analytical-numerical method for solving the problem for a layer with two thick-walled pipes at
given stresses on the surfaces of the layer and the internal surfaces of the pipes has been created. The prob-
lem takes into account the conditions of the conjugation of the layer and pipes - a rigid connection, in which
the displacements and stresses along the surface of the connection in the layer are equal, respectively, to the
displacements and stresses in the pipes.

For the first time, the solution for a layer with cylindrical pipes has been written in analytical form.

The problem is reduced to an infinite system of linear algebraic equations, which allows the applica-
tion of the reduction method to it, after which it was solved using the analytical-numerical generalized Fouri-
er method. This made it possible to obtain a solution to the problem with a given accuracy.

A numerical analysis of the stress state with a variation of the distance between the pipes has been
performed. Graphs of the distribution of internal stresses in the pipes and the layer have been obtained. The
results show an inverse relationship between the magnitude of the stresses and the distance between the
pipes: with increasing distance, the magnitude of the stresses decreases. Moreover, in addition to the magni-
tude, changes in the nature of the diagrams and the sign of the stresses are possible.

The proposed solution method makes it possible to obtain the results of the stress-strain state for
most pipes, as well as to evaluate the influence of geometric parameters on the magnitude and distribution of
stresses in structures, which can be represented in the form of models similar to the one under consideration.

In the future, when studying the specified topic, it is necessary to consider models where pipes are
combined with other types of inhomogeneities (cavities, supports, etc.).
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Ilepia ocHOBHA 3a1a4ya Teopii MPY:KHOCTI I APy KOMIIO3UTY 3 IBOMA TOBCTOCTIHHUMH TPyoaMu
0. 10. Jlenbmukos, B. II. Ileaux, 51. B. I'pedeniok, B. FO. MipoinikoB

Hamionansauii acpokocMigHmi yHiBepcUTeT iM. M. €. JKyKoBCbKOTO «XapKiBChKUN aBialliitHUHN IHCTHTYTY,
61070, Ykpaina, M. XapkiB, ByJ. Baguma Maunbka, 17

Po3ss’szana npocmopoea 3adava meopii npyscHocmi Ot BOIOKHUCIOZ0 KOMNO3UMY Y 6U2NA0L wapy 3 060mMa yu-
JHHOPUYHUMU MOoGcmocminnumu mpyoamu. Ha ninockux nosepxusix wapy i Ha 6HympiuwHill nogsepxui mpy6 3a0ani Hanpy-
Jicenns. 3aoaua npedcmaegiena y 6ueisioi po3e sa3Kie pieHsns Jlame @ pisHux cucmemax Koopounam, oe wap po3esioacmscs
6 Oexapmogiti cucmemi, mpyou — y JTOKATbHUX YUTTHOPUUHUX. [ NOEOHANHA OA3UCHUX PO36 S3KI8 Y PIZHUX CUCMEMAX KO-
OpouHam 3acmocosyeEmvca y3azanvhenuil memoo Pyp’e. 3a0080MbHAIOYU SPAHUYHUM YMOBAM i YMOBAM CAPANCEHHS MidHC
wapom i mpyoamu, GopmMyemvbcs HeCKIHUeHA cucmema inmegpo-aneeOpaiyHux pisHsHb, K 3600MbCs 00 TIHIUHUX aneed-
PaiuHux pigHsHb Opy202o pooy i GUKOPUCTNIOBYEMbCS Memo0 pedykyii. 1Ticasn 3Haxo0cenHs HegiOOMUX MONCHA OMPUMAmU
HanpyiceHo-0epopmosanutl cman y 6y0b-sKill Moyl APYICHUX NOEOHAHUX Mi. 3a01 ybo2o 00 6A3UCHUX PO38 513Ki6 3a0a-
ui MAKoJAC 3aCmMocogyemucs y3azanvhenui memoo @yp’e. 1o pesynbmamax yucenbHux 00CHONCEHb MONCEMO CIMBEPOHCY-
samu, Wo 3a0auy MOJICHA PO36 A3aMu i3 3a0AHOI0 MOYHICMIO, KA 3ANeXHCUNb 60 NOPAOKY cucmemu pieHsaHb. Qucrosuil
AHATI3 HANPYJICEHO20 CIMAHY PO32SIHYMO 3 éapiayieio siocmani mioe mpyoamu. Ompumani epapixu po3nooileHHs 6Hympi-
WHIX Hanpydcenv y mpyoax i wapi. Pezynomamu nokasyrome 360pOmMHY 3a1eACHICMb MINC 8EIUMUHOIO HANPYICEHD [ 8I0C-
manHo midc mpyoamu. Kpiv abcomomuoi eenunuuny HanpyjiceHb, MOJXCIUGL 3MIHU 6 Xapakmepi eniop i 3HaKy. 3anponoxo-
BAHULL MeMOO PO36 SA3aHHSL MOdICe OYMU BUKOPUCAHULL IO 4aAC NPOEKMYBAHHS 0emaell | Mexaniamie, po3paxyHKo8a Mo-
0efb AKUX NPeOCmasisic codol0 wap i3 YUIHOPUYHUMU mMPYyoamu, 8 Mauwuno- i asiabyoysanmi. OmpumaHuii HAanpPy’ceHo-
depopmosanuti cman 0ae 3mo2y nonepeorboi OYinKu ceomempudni napamempu koncmpyxyii. Tlooanvuiutl po3zensio memu
00CTiONHCEHHS HeoOXIOHUL 071 MoOei, 0e mpyou KOMOTHYIOMbCA 3 THUUMU MURAMU HEOOHOPIOHOCHELI.

Knrouosi cnosa: sonoxnucmuii komnosum, ysazanvienut memoo @yp’e, pisuanns Jlave.
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