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The bending analysis of functionally graded porous 
(FGP) plates using a four-node quadrilateral element 
connected to the C0-type of Reddy's third-order shear 
deformation theory and cell-based smoothed strains 
is presented in this paper. Reddy's theory surely uses 
the advantages and desirable properties of third-
order shear deformation theory. Moreover, FGP 
plates with advanced material properties are changed 
from the bottom to the top surface, respectively. Nu-
merical results and comparisons with other reference 
solutions indicate the accuracy and efficiency of the 
current element in the analysis of FGP plates. 

Keywords: quadrilateral element, C0-HSDT, FGP 
material, smoothed strains. 

Lan Hoang Ton-That 
tonthathoanglan.247@gmail.com 
ORCID: 0000-0002-3544-917X 

University of Architecture Ho Chi Minh City 
196 Pasteur, Vo Thi Sau Ward, District 3, Ho Chi Minh, Vietnam 

1. Introduction 
These days, excellent mechanical properties combined with multifunctionality and excellent struc-

tural implementation are of high demand. Valuable properties of functionally graded structures have been 
heavily utilized in various engineering applications. However, the internal cavities, or porosity, greatly re-
duce the stiffness of these structures. To boost the understanding of functionally graded porous structures, 
this paper is born. One can see many papers by different authors mentioning this type of structure. The pa-
per [1] was aimed to review the recent research advances in this field by centering on the adopted mechani-
cal analysis approaches, the obtained findings, and the application opportunities. The fundamental ideas of 
FG porous composites and the associated structural forms were first covered in detail by the authors. The 
widely employed theoretical analysis method was subsequently looked at, touching on the nanofiller rein-
forcement and followed by the details and examples for numerical modelling and mechanical tests. The re-
lated artificial intelligence assisted calculations were also discussed. The fabrication techniques of function-
ally graded porous specimens, e.g. additive manufacturing, and the foam, lattice, and honeycomb-based stud-
ies were strategically categorized. The later performance overview highlights the advantages originated from 
non-uniform cellular morphologies in the overall buckling, bending, vibration, and compressive energy ab-
sorption. In the literature, a scaled boundary finite element method framework was presented for the bending 
and free vibration analyses of functionally graded porous plates based on the 3D elastic theory [2]. Green's 
theorem and the virtual work principle were both used to derive the governing equation. Distributions of po-
rosity, both even and uneven, were carried out. By leaving the scaling center at infinity, the 3D plate geome-
try could be obtained by translating the 2D mesh along the radial direction. As a result, the computational 
efficiency was greatly increased while the spatial dimension of the model was decreased. Owing to its supe-
rior accuracy and convergence, the middle plane of the plate was discretized using the 2D high-order spectral 
element. Based on a four variable plate theory, the [3] sought to examine the free vibration and bending 
properties of Levy-type porous functionally graded plate with two opposing simply supported edges. The 
porosity term in the through-thickness direction was added to the mixture rule to define the material proper-
ties of the porous functionally graded plate. The Hamilton principle was used to derive the equations of mo-
tion. The porous functionally graded plate's governing equation was found using a state-space approach. 
Functionally graded plates with 3D random porosity were subjected to static bending and free vibration anal-
yses using a systematic spectral stochastic isogeometric analysis procedure, as described in [4]. The porosity 
was modeled as a Beta random field, represented compactly via the Karhunen-Loève expansion. A novel 
hierarchical locking-free quasi-3D shear deformation theory, called spectral displacement formulation, was 
proposed to approach exact 3D solutions and reflect more realistic effects of the random porosity field. Iso-
geometric analysis was utilized to meet the C1-continuity requirement of the spectral displacement formula-
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tion. The response surfaces of the porous functionally graded plates were constructed non-invasively by the 
spectral collocation method. A new spectral stochastic post-processing process was developed to evaluate the 
probability characteristics of the responses and exclude the adverse convergence-in-probability property. Us-
ing a commercial finite element program called Ansys, the two-directional graded structure was created in 
paper [5], and the ensuing deflection responses were discovered. The porosity within the graded structure 
taking into account an even distribution pattern was also included in the model. Using the batch input tech-
nique, this model was created by following the basic steps that are available in the Ansys platform. Accord-
ing to the comparative analysis, this simulation model's efficiency allowed it to determine the deflection re-
sponses while maintaining accuracy and exhibiting negligible variation from the available data. The bending 
responses of porous functionally graded thick rectangular plates were studied using a high-order shear de-
formation theory, as stated in [6]. Since this theory took into account both the effects of shear strain and 
normal deformation, it did not require a shear correction factor. The porous functionally graded plates were 
used to derive the equilibrium equations. Next, Navier's technique was applied to derive the solution to the 
problem. In [7], the propagation properties of flexural edge waves in a thermally-exposed functionally grad-
ed poroelastic plate were studied. In order to examine the dynamics of edge waves bending, a transversely 
isotropic, functionally graded porous material plate supported by a Pasternak elastic foundation was intro-
duced. The displacement field and temperature distributions on the plate were studied using the Moore-
Gibson-Thompson thermoelasticity theory and Kirchhoff plate theory, respectively. This study compared 
edge wave behavior in various porous structures, etc., by testing seven different porosity models. Besides the 
traditional finite element method, the smoothed finite element method has shown many outstanding features 
described in the literature [8–10], especially the smoothed element related to the cell-based smoothed strate-
gy that will be presented in this paper. This strategy is easily implemented in the finite element procedure by 
smoothing the strains on the sub-domains. Moreover, the elements and their sub-domains can be found using 
this method with little computational overhead.  

Returning to FSDT with explicit mentions, the weak-form equations require only the first derivative 
of the displacement field, whereas the finite element formulation requires only C0 continuous shape func-
tions. However, shear locking can be managed with reduced integration and happens when the plate's thick-
ness-to-length ratio progressively approaches zero. We understand that the higher-order shear deformation 
theory (HSDT) is widely utilized because it provides precise transverse shear stresses without the need for 
shear correction factors. However, the requirement of C1-continuous approximation for the displacement 
fields in the higher-order shear deformation theory causes some obstacles when dealing with low-order finite 
elements, like four-node quadrilateral elements. The HSDT is changed from C1 to C0 continuity for dis-
placement fields (C0-HSDT) in order to address these flaws. This strategy only requests the first derivative of 
transverse displacements and adds two more variables. For the aforementioned reasons, a smoothed element 
with four nodes and seven degrees of freedom per node associated with cell-based smoothed strains and the 
C0-type of Reddy's third-order shear deformation theory is provided for the FGP plate analysis. The obtained 
results are completely dependable and free of any undesirable phenomena, as they are based on the applica-
tion of the C0-type and high-order shear deformation theory. 

This paper is organized as follows: Section 2 provides a brief introduction to the C0-type of Reddy's 
third-order shear deformation theory [11, 12], the finite element formulation for plates, and the material 
properties of functionally graded porous (FGP) plates. In Section 3, a number of numerical examples are 
thoroughly examined to demonstrate the usefulness of this element in analyzing the bending behavior of FGP 
plate structure. In Section 4, conclusions are finally drawn. 

2. Formulations 
Presenting a FGP plate with the geometry shown in Fig. 1 will start the analysis. The symbols "m" 

and "c" are metallic and ceramic phase. The mid-plane of the plate is xy-plane, while the z-axis is perpendic-
ular to the xy-plane. 
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Fig. 1. Configuration of FGP plate 

    

Fig. 2. The modification of E 

The modification of E for porosity effect is shown in Fig. 2, which can be expressed as 
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where Pc and Pm are material properties of ceramic and metallic, n is power-index, and e is porosity. Let Ω 
be the domain in R2 occupied by the mid-plane of the plate. The displacement field with 7 unknown varia-
bles can be expressed as follows in terms of Reddy’s theory C0-type 
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It is possible to provide the strain-displacement relations in matrix form 
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The constitutive equations 
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The following matrix form can be used to display the normal and shear forces, bending moments, 
higher-order values of moments and shear forces 









































































































































)2(

)0(

)3(

)1(

)0(

)2(

)0(

)3(

)1(

)0(

ˆˆ

ˆˆ 2

1

D0

0D

DB000

BA000

00HFE

00FDB

00EBA

R

Q

P

M

N

  

with 

dzzDzz m

h

h

)(),,1(),,(
2/

2/

2


DBA ; dzzDzzz m

h

h

)(),,(),,(
2/

2/

643


HFE ; dzzDzz s

h

h

)(),,1()ˆ,ˆ,ˆ(
2/

2/

42


DBA . 

A weak form of the plates can be provided for the static analysis as 
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where p is the transverse loading per unit area. The bounded domain Ω of plates can be discretized into Nc 
elements, where Nn represents the total number of nodes. The quadrilateral element with four nodes in the 
standard FEM's displacement field u can be roughly represented by 
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The nodal degrees of freedom of u connected to the ith node are represented by the shape function, 
Ni, and the displacement vector, qi. Rewriting the strain is possible in the following way 
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From the cell-based smoothed 
strains strategy [8–10], which transforms the 
numerical integration from the surfaces to 
boundary lines of the sub-domains, a quadri-
lateral element domain ΩC is further divided 
into nC smoothing cells as in Fig. 3. The gen-
eralized strain field is smoothed by a 
weighted average of the original generalized 
strains using the strain smoothing operation 
for each smoothing cell 

 

Fig. 3. A quadrilateral element's division into nC=1 or 2 cells and  
the shape function values at nodes 
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The divergence theorem-based smoothed strain can be obtained with 
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xG and lC are the Gauss point and the length of each line segment of the boundary. 
The smoothed element stiffness is then given 
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For static analysis 
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3. Numerical results 
The current element is used for simply supported FG plate bending analysis. The simply supported 

boundary conditions for this procedure: 000  b
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x
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Table 1 displays the various values. The accuracy of the current analysis is verified by comparing it to other 
numerical case studies. The following material qualities should be present in the aluminum and alumina FG 
plate: (aluminum, Al): Em=70 GPa; ν=0.3 and (alumina, Al2O3): Ec=380 GPa; ν=0.3. The normalized parame-
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various values of the volume fraction n, the following values are considered for the square FG plate (a/h=10 
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and a/b=1). Comparisons are made between the current predictions and those derived from the high-order 
(HSDT), parabolic (PSDT), sinusoidal (SSDT), and first-order (FSDT) shear deformation theories [6]. Table 1 
and Fig. 4 demonstrate that, even for thicker plates, the current results are satisfactory when compared to alter-
native solutions. 

As an additional illustration, Tables 2, 3, and 4 provide the results of deflections, axial stresses, and 
transverse shear stresses for porous FG plates (e=0.1, 0.2, and 0.3), respectively. For varying values of the 
volume fraction graded factor n, the porosity parameter increases the deflections and transverse shear stress-
es while decreasing the axial stress. 

Table 1. Comparison of the normalized parameters  
of the FG plate for different n values with e=0 

Theory n w  x  xz  

FSDT Ceramic 0.07791 1.97576 0.15915 
PSDT  0.07791 1.99432 0.23857 
SSDT  0.07790 1.99550 0.24618 
HSDT  0.08122 1.99550 0.24618 
Article  0.08040 1.99540 0.24616 
FSDT 1 0.19609 0.93765 0.26880 
PSDT  0.19604 0.94370 0.33433 
SSDT  0.19604 0.94407 0.34103 
HSDT  0.19603 0.94407 0.34103 
Article  0.19604 0.94405 0.34102 
FSDT 2 0.28661 1.36934 0.34892 
PSDT  0.28490 1.37662 0.40919 
SSDT  0.28479 1.37702 0.41426 
HSDT  0.28479 1.37702 0.41426 
Article  0.28480 1.37700 0.41424 
FSDT 5 0.38402 1.83097 1.83097 
PSDT  0.38116 1.83989 0.57337 
SSDT  0.38090 1.84026 0.57591 
HSDT  0.38090 1.84026 0.57591 
Article  0.38104 1.84019 0.57575 
FSDT 10 0.40768 1.94564 1.94564 
PSDT  0.40799 1.95075 0.69891 
SSDT  0.40790 1.95096 0.70450 
HSDT  0.40703 1.95703 0.75376 
Article  0.40744 1.95669 0.75311 
FSDT Metal 0.41919 1.97576 1.97576 
PSDT  0.42164 1.98354 0.19984 
SSDT  0.42172 1.98392 0.20359 
HSDT  0.42290 1.99550 0.24618 
Article  0.42198 1.99540 0.24616 

 

Table 2. Effects of n and e on the normalized  
deflections in a square FG plate 

n e=0.1 e=0.2 e=0.3 
Ceramic 0.08120 0.08481 0.08874 

1 0.21875 0.24747 0.28500 
2 0.33573 0.40904 0.52404 
5 0.47779 0.64169 0.97969 

Metal 0.34623 0.29313 0.25410 
 

Table 3. Effects of n and e on the normalized  
axial stresses in a square FG plate 

n e=0.1 e=0.2 e=0.3 
Ceramic 1.99540 1.99540 1.99540 

1 0.82121 0.66569 0.46258 
2 1.26607 1.10627 0.85583 
5 1.80178 1.73702 1.60413 

Metal 1.99540 1.99540 1.99540 
 

Table 4. Effects of n and e on the normalized  
transverse shear stresses in a square FG plate 

n e=0.1 e=0.2 e=0.3 
Ceramic 0.24616 0.24616 0.24616 

1 0.34762 0.35540 0.36467 
2 0.42860 0.44644 0.46954 
5 0.61220 0.65851 0.72178 

Metal 0.24616 0.24616 0.24616 

 

 

Fig. 4. The comparison of the normalized  
deflections in a FG plate (a/b=1, a/h=10, e=0 
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4. Conclusion 
A simple model based on the Reddy’s theory of high-order shear deformation and cell-based 

smoothed strains is developed for FGP plates. This theory satisfies the nullity of the stresses at the upper and 
lower surfaces of the plate without using the shear correction factor. The law of the modified mixture cover-
ing the porosity phases provides a rough description of the variations with porosity in the properties of FG 
plates. The flexion of FGP plates is studied as a function of several parameters, such as gradient index n and 
porosity e. Examples are given, and the current model predicts the static analysis of FGP plates with good nu-
merical results. 
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Поведінка функціонально-градієнтної пористої пластини при згині  
із використанням згладженого елемента  

L. H. Ton-That 

Архітектурний університет Хошиміна 
196 Pasteur, Vo Thi Sau Ward, District 3, м. Хошимін, В'єтнам 

У цій статті описується аналіз згину функціонально-градієнтних пористих (ФГП) пластин із викорис-
танням чотирикутного елементу з чотирма вузлами, пов’язаного з C0-типом теорії деформації зсуву третього 
порядку Редді та комірчастими згладженими деформаціями. Теорія Редді використовує переваги та бажані вла-
стивості теорії деформації зсуву третього порядку. Більше того, пластини ФГП з покращеними властивостями 
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матеріалу змінюються з нижньої поверхні на верхню відповідно. Чисельні результати і порівняння з іншими ста-
ндартними розчинами вказують на точність й ефективність поточного елементу при аналізі пластин ФГП. 

Ключові слова: чотиригранний елемент, C0-ТДЗВП, матеріал ФГП, згладжені деформації. 
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