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1. Introduction

These days, excellent mechanical properties combined with multifunctionality and excellent struc-
tural implementation are of high demand. Valuable properties of functionally graded structures have been
heavily utilized in various engineering applications. However, the internal cavities, or porosity, greatly re-
duce the stiffness of these structures. To boost the understanding of functionally graded porous structures,
this paper is born. One can see many papers by different authors mentioning this type of structure. The pa-
per [1] was aimed to review the recent research advances in this field by centering on the adopted mechani-
cal analysis approaches, the obtained findings, and the application opportunities. The fundamental ideas of
FG porous composites and the associated structural forms were first covered in detail by the authors. The
widely employed theoretical analysis method was subsequently looked at, touching on the nanofiller rein-
forcement and followed by the details and examples for numerical modelling and mechanical tests. The re-
lated artificial intelligence assisted calculations were also discussed. The fabrication techniques of function-
ally graded porous specimens, e.g. additive manufacturing, and the foam, lattice, and honeycomb-based stud-
ies were strategically categorized. The later performance overview highlights the advantages originated from
non-uniform cellular morphologies in the overall buckling, bending, vibration, and compressive energy ab-
sorption. In the literature, a scaled boundary finite element method framework was presented for the bending
and free vibration analyses of functionally graded porous plates based on the 3D elastic theory [2]. Green's
theorem and the virtual work principle were both used to derive the governing equation. Distributions of po-
rosity, both even and uneven, were carried out. By leaving the scaling center at infinity, the 3D plate geome-
try could be obtained by translating the 2D mesh along the radial direction. As a result, the computational
efficiency was greatly increased while the spatial dimension of the model was decreased. Owing to its supe-
rior accuracy and convergence, the middle plane of the plate was discretized using the 2D high-order spectral
element. Based on a four variable plate theory, the [3] sought to examine the free vibration and bending
properties of Levy-type porous functionally graded plate with two opposing simply supported edges. The
porosity term in the through-thickness direction was added to the mixture rule to define the material proper-
ties of the porous functionally graded plate. The Hamilton principle was used to derive the equations of mo-
tion. The porous functionally graded plate's governing equation was found using a state-space approach.
Functionally graded plates with 3D random porosity were subjected to static bending and free vibration anal-
yses using a systematic spectral stochastic isogeometric analysis procedure, as described in [4]. The porosity
was modeled as a Beta random field, represented compactly via the Karhunen-Loéve expansion. A novel
hierarchical locking-free quasi-3D shear deformation theory, called spectral displacement formulation, was
proposed to approach exact 3D solutions and reflect more realistic effects of the random porosity field. Iso-
geometric analysis was utilized to meet the C'-continuity requirement of the spectral displacement formula-
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tion. The response surfaces of the porous functionally graded plates were constructed non-invasively by the
spectral collocation method. A new spectral stochastic post-processing process was developed to evaluate the
probability characteristics of the responses and exclude the adverse convergence-in-probability property. Us-
ing a commercial finite element program called Ansys, the two-directional graded structure was created in
paper [5], and the ensuing deflection responses were discovered. The porosity within the graded structure
taking into account an even distribution pattern was also included in the model. Using the batch input tech-
nique, this model was created by following the basic steps that are available in the Ansys platform. Accord-
ing to the comparative analysis, this simulation model's efficiency allowed it to determine the deflection re-
sponses while maintaining accuracy and exhibiting negligible variation from the available data. The bending
responses of porous functionally graded thick rectangular plates were studied using a high-order shear de-
formation theory, as stated in [6]. Since this theory took into account both the effects of shear strain and
normal deformation, it did not require a shear correction factor. The porous functionally graded plates were
used to derive the equilibrium equations. Next, Navier's technique was applied to derive the solution to the
problem. In [7], the propagation properties of flexural edge waves in a thermally-exposed functionally grad-
ed poroelastic plate were studied. In order to examine the dynamics of edge waves bending, a transversely
isotropic, functionally graded porous material plate supported by a Pasternak elastic foundation was intro-
duced. The displacement field and temperature distributions on the plate were studied using the Moore-
Gibson-Thompson thermoelasticity theory and Kirchhoff plate theory, respectively. This study compared
edge wave behavior in various porous structures, etc., by testing seven different porosity models. Besides the
traditional finite element method, the smoothed finite element method has shown many outstanding features
described in the literature [8—10], especially the smoothed element related to the cell-based smoothed strate-
gy that will be presented in this paper. This strategy is easily implemented in the finite element procedure by
smoothing the strains on the sub-domains. Moreover, the elements and their sub-domains can be found using
this method with little computational overhead.

Returning to FSDT with explicit mentions, the weak-form equations require only the first derivative
of the displacement field, whereas the finite element formulation requires only C° continuous shape func-
tions. However, shear locking can be managed with reduced integration and happens when the plate's thick-
ness-to-length ratio progressively approaches zero. We understand that the higher-order shear deformation
theory (HSDT) is widely utilized because it provides precise transverse shear stresses without the need for
shear correction factors. However, the requirement of C'-continuous approximation for the displacement
fields in the higher-order shear deformation theory causes some obstacles when dealing with low-order finite
clements, like four-node quadrilateral elements. The HSDT is changed from C' to C° continuity for dis-
placement fields (C°-HSDT) in order to address these flaws. This strategy only requests the first derivative of
transverse displacements and adds two more variables. For the aforementioned reasons, a smoothed element
with four nodes and seven degrees of freedom per node associated with cell-based smoothed strains and the
C’-type of Reddy's third-order shear deformation theory is provided for the FGP plate analysis. The obtained
results are completely dependable and free of any undesirable phenomena, as they are based on the applica-
tion of the C°-type and high-order shear deformation theory.

This paper is organized as follows: Section 2 provides a brief introduction to the C’-type of Reddy's
third-order shear deformation theory [11, 12], the finite element formulation for plates, and the material
properties of functionally graded porous (FGP) plates. In Section 3, a number of numerical examples are
thoroughly examined to demonstrate the usefulness of this element in analyzing the bending behavior of FGP
plate structure. In Section 4, conclusions are finally drawn.

2. Formulations

Presenting a FGP plate with the geometry shown in Fig. 1 will start the analysis. The symbols "m"
and "c" are metallic and ceramic phase. The mid-plane of the plate is xy-plane, while the z-axis is perpendic-
ular to the xy-plane.
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Fig. 1. Configuration of FGP plate Fig. 2. The modification of E

The modification of £ for porosity effect is shown in Fig. 2, which can be expressed as
1 zY e
P(z)=(P.-P ) —+—| +P ——(P.+P)),
( ) ( c ”1)(2 hj m 2( c m)

where P, and P,, are material properties of ceramic and metallic, n is power-index, and e is porosity. Let Q
be the domain in R? occupied by the mid-plane of the plate. The displacement field with 7 unknown varia-
bles can be expressed as follows in terms of Reddy’s theory C’-type

u(x,y,z) = uy + z—ﬁ ¢b—£¢x-
) 0 32 ) 3 Y

4z°) ., 47° h h
VX, V,Z)=Vy+| Z——5 - S,_—SZS—;
(x3:2) =¥y ( 3h2j¢y 3h2¢y 2 2
w(x,y,z)=w,.
It is possible to provide the strain-displacement relations in matrix form
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The following matrix form can be used to display the normal and shear forces, bending moments,
higher-order values of moments and shear forces

N A BE o o] e
M| (B DF o off" g
Pi=E F H 0 0[c? :B‘ l”s“)
Q| |0 0 0 A B|y© 2y
Rj [0 0 0 B Djj,® el
with
h/2 hl2 R hl/2
(A.B.D)= [(1.z,2)D,(2)d=; (B, F,H)= [(’,2*,20D,,(2)dz; (A.B,D)= [(1.2%,2)D,()dz .
—h/2 —-h/2 —h/2

A weak form of the plates can be provided for the static analysis as
j 5¢'D,edQ + j 5y D,ydQ = j SwpdQ),
Q Q

Q
where p is the transverse loading per unit area. The bounded domain Q of plates can be discretized into N,
elements, where N, represents the total number of nodes. The quadrilateral element with four nodes in the
standard FEM's displacement field u can be roughly represented by

N, O 0 0 0 0 0
0O N 0 0 0 0 0
w10 0 N 0 0 0 0
u=>10 0 0 N, 0 0 0|q,.
o 0 0 0 N, 0 0
0 0 0 0 0 N, 0
0 0 0 0 0 0 N,|

The nodal degrees of freedom of u connected to the i node are represented by the shape function,
N;, and the displacement vector, q;. Rewriting the strain is possible in the following way

3 5
SIMIES yh
i \j=1 i\ j=4
in which
N, 0 00000 00000N, O
B,=| 0 N, 0000 O[;B,=/00000 0 NI
N, N, 00000 00000 N, N,
4000N,.,x 0 N, ©
Bi=—27|0 00 0 N, 0 N,
000N, N, N, N,
[oo N, 00 0 N 4000 0 N O N
*loo N, 00N O] 7 A00O0N 0O N 0]
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From the cell-based smoothed 00,10 w0,01/2.1/00 010
strains strategy [8—10], which transforms the €0,0,0,1> ©.0,0.>
numerical integration from the surfaces to
boundary lines of the sub-domains, a quadri-
lateral element domain Q¢ is further divided
into n¢ smoothing cells as in Fig. 3. The gen-
eralized strain field is smoothed by a | <.00.®
weighted average of the original generalized
strains using the strain smoothing operation Fig. 3. A quadrilateral element's division into nc=I or 2 cells and
for each smoothing cell the shape function values at nodes
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(1/4,3/4,000>

B(xp) = j e(x)D(x - x.) dQ . (26)

QC
The divergence theorem-based smoothed strain can be obtained with
L | NGO 0 00000
E:Aiz 0 N,(x%n, 0 0 0 0 0]/
N.x%n, 0 0 0 0 0

4o 00 0 Nx%n, 0 N.(x%)n 0
133=—3h—2 00 0 0 N,(x)n, 0 N(x9)n, |1€.
1o 0 0 Nl.(xG)ny Nl.(xG)nX Nl.(xG)ny Nl.(xG)nX

x and [€ are the Gauss point and the length of each line segment of the boundary.

The smoothed element stiffness is then given
o ”c=1_ _ ng=2 _ _ _ _ _ _ _ _ - _ _ _ _
K= ZBEAB1 + Z(BITBBZ +B/EB,+B,BB,+B,DB, +B,FB, +B,EB, + B,FB, + B, HB,) +

C=1 C=1
+ I(BZAB4 +BBB. +B/BB, + BIDB,)dQ
Q¢
For static analysis
Eq =F
with
F= ijdQ.
Q¢

3. Numerical results
The current element is used for simply supported FG plate bending analysis. The simply supported
boundary conditions for this procedure: v, =w, =¢’ = d)l; =0 at x=0,a and u, =w, =¢' =9> =0 at y=0, b.

Table 1 displays the various values. The accuracy of the current analysis is verified by comparing it to other

numerical case studies. The following material qualities should be present in the aluminum and alumina FG

plate: (aluminum, Al): £,=70 GPa; v=0.3 and (alumina, Al,Os): E~380 GPa; v=0.3. The normalized parame-
10AE, 2

ters w = ORE, w ﬁ,é , G, = lgh . ﬁ,é’ﬁ ,and T, =erx(0,2,0j are used in this paper. First, for
aq, 22 aq, 222 aq, 2

various values of the volume fraction n, the following values are considered for the square FG plate (a/h=10

X
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and a/b=1). Comparisons are made between the current predictions and those derived from the high-order
(HSDT), parabolic (PSDT), sinusoidal (SSDT), and first-order (FSDT) shear deformation theories [6]. Table 1
and Fig. 4 demonstrate that, even for thicker plates, the current results are satisfactory when compared to alter-
native solutions.

As an additional illustration, Tables 2, 3, and 4 provide the results of deflections, axial stresses, and
transverse shear stresses for porous FG plates (e=0.1, 0.2, and 0.3), respectively. For varying values of the
volume fraction graded factor », the porosity parameter increases the deflections and transverse shear stress-
es while decreasing the axial stress.

Table 2. Effects of n and e on the normalized
deflections in a square FG plate

Table 1. Comparison of the normalized parameters
of the FG plate for different n values with e=0

Theory n W G, T, n e=0.1 e=0.2 e=0.3
FSDT | Ceramic | 0.07791 | 1.97576 | 0.15915 Ceramic | 0.08120 | 0.08481 | 0.08874
PSDT 0.07791 | 1.99432 | 0.23857 1| 021875 | 0.24747 | 0.28500
SSDT 0.07790 | 1.99550 | 0.24618 21033573 | 0.40904 | 0.52404
HSDT 0.08122 | 1.99550 | 0.24618 5__ | 047779 | 0.64169 | 0.97969
Atticle 0.08040 | 1.99540 | 0.24616 Metal | 0.34623 | 0.29313 | 025410
£§g¥ ! 8}3282 ggi;% gggiig Table 3..Eﬁ"ects of n and e on the normalized
SSDT 0.19604 | 0.94407 | 034103 axial stresses in a square FG plate
HSDT 0.19603 | 0.94407 | 0.34103 n e01 | 02 | =03
Article 0.19604 | 0.94405 | 0.34102 Ceramic | 1.99540 | 1.99540 | 1.99540
FSDT 2 0.28661 | 1.36934 | 0.34892 1 0.82121 | 0.66569 | 0.46258
PSDT 0.28490 | 1.37662 | 0.40919 2 1.26607 | 1.10627 | 0.85583
SSDT 0.28479 | 1.37702 | 0.41426 5 1.80178 | 1.73702 | 1.60413
HSDT 0.28479 | 1.37702 | 0.41426 Metal | 1.99540 | 1.99540 | 1.99540
Article 0.28480 | 1.37700 | 0.41424
FSDT 5 0.38402 | 1.83097 | 1.83097 Table 4. Effects of n and e on the normalized
PSDT 038116 | 1.83989 | 0.57337 transverse shear stresses in a square FG plate
SSDT 0.38090 | 1.84026 | 0.57591 n e=0.1 | e02 | 03
HSDT 0.38090 | 1.84026 | 0.57591 Ceramic | 0.24616 | 0.24616 | 0.24616
Article 0.38104 | 1.84019 | 0.57575 1 0.34762 | 0.35540 | 0.36467
FSDT 10 | 040768 | 1.94564 | 1.94564 2 0.42860 | 0.44644 | 0.46954
PSDT 0.40799 | 1.95075 | 0.69891 5 0.61220 | 0.65851 | 0.72178
SSDT 0.40790 | 1.95096 | 0.70450 Metal | 0.24616 | 0.24616 | 0.24616
HSDT 0.40703 | 1.95703 | 0.75376
Atticle 0.40744 | 1.95669 | 0.75311 -
FSDT | Metal | 0.41919 | 1.97576 | 1.97576
PSDT 042164 | 1.98354 | 0.19984 o
SSDT 042172 | 1.98392 | 0.20359 o}
HSDT 0.42290 | 1.99550 | 0.24618 T BN TV il T R WO .
Atticle 042198 | 1.99540 | 0.24616 5 '

£ ool R0 T W W . N 1K -

/ : : | ——ss0T
BREAS ," : : . HSOT 1
/ : : P e Aticle

0.0s ;
o 1

Fig. 4. The comparison of the normalized
deflections in a FG plate (a/b=1, a/h=10, e=0
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4. Conclusion

A simple model based on the Reddy’s theory of high-order shear deformation and cell-based

smoothed strains is developed for FGP plates. This theory satisfies the nullity of the stresses at the upper and
lower surfaces of the plate without using the shear correction factor. The law of the modified mixture cover-
ing the porosity phases provides a rough description of the variations with porosity in the properties of FG
plates. The flexion of FGP plates is studied as a function of several parameters, such as gradient index » and
porosity e. Examples are given, and the current model predicts the static analysis of FGP plates with good nu-
merical results.
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Kniouosi cnosa: vomupuzpannuii enemenm, C*-TI[3BII, mamepian PITI, 32nadoiceni dechopmayii.

Jliteparypa

L.

2.

Chen D., Gao K., Yang J., Zhang L. Functionally graded porous structures: Analyses, performances, and applications
— A Review. Thin-Walled Structuresio 2023. Vol. 191. Article 111046. https://doi.org/10.1016/j.tws.2023.111046.

Yin Z., Gao H., Lin G. Bending and free vibration analysis of functionally graded plates made of porous materials
according to a novel the semi-analytical method. Engineering Analysis with Boundary Elements. 2021. Vol. 133.
P. 185-199. https://doi.org/10.1016/j.enganabound.2021.09.006.

Demirhan P. A., Taskin V. Bending and free vibration analysis of Levy-type porous functionally graded plate using
state  space  approach.  Composites  Part B:  Engineering.  2019. Vol. 160. P.661-676.
https://doi.org/10.1016/j.compositesb.2018.12.020.

Sun X., Gao R., Zhang Y. Spectral stochastic isogeometric analysis of bending and free vibration of porous func-
tionally  graded  plates.  Applied  Mathematical =~ Modelling. ~ 2023.  Vol.116.  P.711-734.
https://doi.org/10.1016/j.apm.2022.12.017.

Ramteke P. M., Mahapatra B. P., Panda S. K., Sharma N. Static deflection simulation study of 2D Functionally
graded porous structure. Materials Today: Proceedings. 2020. Vol.33. Part8. P.5544-5547.
https://doi.org/10.1016/j.matpr.2020.03.537.

Merdaci S., Belghoul H. High-order shear theory for static analysis of functionally graded plates with porosities.
Comptes Rendus Mécanique. 2019. Vol. 347. No. 3. P. 207-217. https://doi.org/10.1016/j.crme.2019.01.001.
Kumari T., Som R., Althobaiti S., Manna S. Bending wave at the edge of a thermally affected functionally graded po-
roelastic plate. Thin-Walled Structures. 2023. Vol. 186. Article 110719. https://doi.org/10.1016/1.tws.2023.110719.
Ton-That H. L. Four-node quadrilateral CO-element based on cell-based smoothed strains strategy and third-order
shear deformation theory for functionally graded carbon nanotube reinforced composite plates. Rakenteiden Mekaniik-
ka — Journal of Structural Mechanics. 2023. Vol. 56. No. 1. P. 1-23. https://doi.org/10.23998/rm.119608.

Ton-That H. L., Nguyen-Van H., Chau-Dinh T. Static and buckling analyses of stiffened plate/shell structures using
the quadrilateral element SQ4C. Comptes Rendus Meécanique. 2020. Vol.348. No.4. P.285-305.
https://doi.org/10.5802/crmeca.7.

10. Nguyen-Van H., Mai-Duy N., Karunasena W., Tran-Cong T. Buckling and vibration analysis of laminated com-

posite plate/shell structures via a smoothed quadrilateral flat shell element with in-plane rotations. Computers &
Structures. 2011. Vol. 89. Iss. 7-8. P. 612—625. https://doi.org/10.1016/j.compstruc.2011.01.005.

11.Reddy J. N. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics. 1984.

Vol. 51. Iss. 4. P. 745-752. https://doi.org/10.1115/1.3167719.

12. Phan N. D., Reddy J. N. Analysis of laminated composite plates using a higher-order shear deformation theory. In-

58

ternational Journal for Numerical Methods in Engineering. 1985. Vol.21. Iss.12. P.2201-2219.
https://doi.org/10.1002/nme.1620211207.

ISSN 2709-2984. Journal of Mechanical Engineering — Problemy Mashynobuduvannia, 2024, vol. 27, no. 4



