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Abstract. By the method of combining the matrix-valued Lyapunov functional and
comparison theorem, connected Lyapunov stability and practical stability of large scale de-
lay system are studied deeply. A series of new sufficient conditions are proposed. These
results are not only of theoretical but also of practical value.
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1. Designations.
Let C=C([-7, 0], R"), J =[t,, ©), t, 20 . For any ¢ € C the norm ||(/)|| = sup |g0(s)| is
—7<s<0

used. For xe R", x| =max|x,|, r=1,2,.. n If xeC([t,~7,0), R"), then x, € Cis de-
termined as x,(s)=x(t+s), —7<s<0. We designate Cf = {(p eC: ||(p|| < H} , Where
H>0 or H=0.

2. Description of the system and decomposition.
Consider the large scale system modeled by functional differential equation

dx
E:f(t’xt)’xto :(pOECr{I’ (1)

where f:JxC"” — R". Provided that the vector-function f maps the bounded sets into

the bounded sets, for each f#,eJ and ¢, eC! there exists a unique solution
x(fy, x, )(t) determined on some interval [f,,f+a],a>0, and if H; <H is such that

|x(t0, ?, (t)| <H, ,then o =c0.

The system (1) is decomposed into m interconnected subsystems

dx' (t)

dt =]"l.(t,x,")+g,.(t,xt1,---,x,'”), (2)

where iel,A{l,2,...,m}, f,e(IxC",R"), g eC(UxC,, R") and D n,=n. We
assume that the functions g, (,x,) depend on m x m -matrix of interconnections E, =[e’],

gi(t’xt):gi(t’etilxtl’etl'thZ,_”’etimxtm), (3)
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when i eI, where the elements ¢’ € C([-7,0],[0,1]) depend in general case on the delay
e/x, =e’ (t+0)x' (t+6),0 e[-1,0].

We designate by E, the fundamental matrix of interactions with the elements e_tij =1if

. L —ij . . L
x; is contained in g,(7,x,); ¢, =0 if x, is not contained in g;(7,x,) .

For E, =0 we get from system (2) the independent subsystems of functional differen-
tial equations of smaller dimensions

dx' (1)

7 = f(t.x), x, =peC, 4)

where x, e R" and f, €J fo’ — R™ . Moreover, we assume f;(z,0)=0 and for subsys-

tems (2) f(¢,0)+g,(¢,0)=0 forall teJand i, ,i.e.thestate x=x' =..=x" =0 is the
unique equilibrium state of system (1) and subsystems (2).
For subsystem (2), whose functions g,(¢,x,),i =1, 2,..., m , depend on the matrix of in-

teractions £, , the problem on practical stability of motion is reduced to the establishment of
conditions under which the solution x(z,,x, ) (¢) of system (2) possesses certain qualitative
properties for given estimates of initial and subsequent deviations on the infinite interval.

3. Matrix-valued functional.
For system (2) we construct the matrix-valued functional

Ut,p)=lv;t.9)], i,j€l, ©)

with the elements satisfying the following conditions.

H,. The elements v, (¢, ¢') € C(.]fo’, R™), 1<m,<n,, v,(t0)=0, are locally
Lipschitz in ¢';

H, .The elements v, (t,¢', ¢’) € C(J x CHI’[’ X C,:I’ , R™™), are locally Lipschitz in ¢
and ¢’ forall (i=j)el, .

By means of the real vector 77 € R, >0, we construct the functional
Vit o, m=n"UG, o), (6)

which is continuous and definite on the set JxC! by conditions H, — H, . The upper de-
rivative of functional (6) along solutions of system (2) is determined by the formula

D'V(t, o, n)=n"DU(, @)1, (7

where D'U(t,¢) = lim supl Ui+06,x,, 5, 9)-Ul(t, ¢)}. Note that D'U(¢,p) is com-
550 S t+o

puted element-wise.

4. Definitions of connected stability of system (2).

Taking into account the results of paper [3] we shall cite the definitions of stability no-
tion incorporated in this paper.
Definition 1. The equilibrium state x =0 of system (1) is called

a) connectedly stable if for every £ >0 and ¢, 20 there exists J = (¢, ¢,), such that
||x(t0, (p)(t)" < & whenever [p € Cf, t>t,] forall E, CE, ;

b) uniformly connectedly stable if in definition (a) the value o does not depend on ¢, ;
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c) asymptotically connectedly stable if it is connectedly stable and for any #, >0 there
forall £, E ;

d) uniformly asymptotically connectedly stable if it is uniformly connectedly stable and
there exists some 77 >0 and for every y >0 there exists 7 >0 such that ||x(t0, go(t)" <y,

t>ty]forall E, CE, .

5. Conditions of connected stability of system (2).

Using matrix-valued functional (5) and its derivative (7) and applying the theorems of
comparison principle for functional-differential equations (see [1]) we shall set out a series
of sufficient conditions for connected stability of the equilibrium state x =0 of system (1).

Theorem 1. Let system of functional-differential equations (1) be such that

1) there exists the matrix-valued functional U(t,p) e C(JxC”, R™") ,U(t,0)=0 for

n

exists A > 0such that ||x(t0, ¢)(t)|| — 0, as ¢ — o, whenever ¢ € C*

n?

whenever [¢, € C°

n?o

all teJ and U(¢, @) is locally Lipschitz in ¢ forevery teJ;

2) there exist mxm constant matrices A4 (77) and B,(7), real vector ne R, n>0

and comparison functions uh.(|go"(0)|), u,(|¢'|),iel,, of Hahn class K so that

u ([p(O)) 4, (17) u,(p(0)]) < i g, (t, ) <u; (|lo)B,(u, (@]) forall 1€ and p e cr,

i,j=1

3) there exists the comparison function W € C(J xR, ,R) such that
DV, o, m) SW V(L. ¢, 1)) ®)

for all (¢, @) € JxC}" and all matrices of interaction E, Et . Then the certain type of sta-
bility of zero solution to the comparison equation

W, u), u(ty) =1, 2 0 ©)
dt

and the restrictions on the matrices 4,(77), B,(r7) imply the corresponding type of connected
stability of the equilibrium state of system (1) with decomposition (2).

Proof. Provided that the matrices 4,(r7) and B,(7) are positive definite, functional (6)
is positive definite and decreasing. Further, we apply Theorem 4.4.3 from [1] and determine
certain type of connected stability of system (1).

Corollary 1. Let

1) conditions (1) and (2) of Theorem 1 be satisfied;

2) the matrix 4,(77) be positive definite, the matrix B,(77) =0 and the comparison func-
tion W,V (t, p,n))=0.

Then the equilibrium state x =0 of system (1) with decomposition (2) is connectedly
stable.

Corollary 2. Let
1) conditions (1) and (2) of Theorem 1 be satisfied;

2) the matrices A4,(r7) and B,(77) be positive definite and the comparison function
WV, ¢,m)=0.

Then the equilibrium state x =0 of system (1) with decomposition (2) is uniformly
connectedly stable.

Corollary 3. Let
1) conditions (1) and (2) of Theorem 1 be satisfied;
2) the matrices 4,(n7) and B,(77) be positive definite;

3) the zero solution of comparison equation (9) be uniformly asymptotically stable.
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Then the equilibrium state x =0 of system (1) with decomposition (2) is uniformly as-
ymptotically connectedly stable.

Theorem 2. Let system of functional differential equations (1) be such that
1) conditions (1) and (2) of Theorem 1 are satisfied;
2) there exist a constant mxm matrix C,(17), 7€ R, >0 and functions u;,(

i

X

)’

u,, is of class K for all iel, , such that D'V (t, ¢, ) <u; (||xt||) C (n)u, (||xt ||) for any

i m?

(t, p)e JxCY and any matrices of interactions E, C E , where ] ("xt ||):

= (uy, ("xtl ||)77 U, ( )
3) the matrices 4,(n7) and B,(7) are positive definite and the matrix C,(77) is negative

definite.
Then the equilibrium state x =0 of system (1) with decomposition (2) is uniformly as-
ymptotically connectedly stable.

m
xt

Theorem 3. Let in system of equations (1) the vector function f(¢,¢) be bounded in ¢

and
1) conditions (1) and (2) of Theorem 1 are satisfied;

2) there exist a constant mxm matrix C,(17), 7€ R, n>0 and functions u,, (|xf |) of
class K for all iel, such that D'V (t, ¢, ) <uy (x,))C,(u,(x,|) for all (1,p)eJxC)

and any matrices of interconnections E, C E ;
3) the matrices A4,(77) and B,(77) are positive definite and the matrix C, () is negative

definite.
Then the equilibrium state x =0 of system (1) with decomposition (2) is uniformly as-
ymptotically connectedly stable.

6. Matrix-valued function on space product.
For system (4) we construct the matrix-valued function

U(t7xﬂx[):[vlj([7‘x’x[)]7 i’j:]‘727"‘) m b (10)
with the elements satisfying the following conditions.
H, . The elements v, € C(J x Cf" xC,R,), v,;(¢, 0,0)=0 are locally Lipschitz in x; ;
H,. The elements v, e C(Jfo' X C,ff xCxC,R), v;(0,0,0)=0 are locally
Lipschitzin x,, x; forall (i j)el,.

By means of the real vector 7 € R)",77 >0, we construct the function
V(t) x’ x[’ 77):77TU(I7 x’ x[)’]) (11)

which is definite on the space product R" xC and locally Lipschitz in x, providing condi-
tions of assumptions /, and H, are satisfied. Further we define

DV (t, x, x,,m)=n" DU, x, x,)1, 12)
where
D'U(t, x, x,) = lim{sup[U(t—i-H, x+0f( x,), x,,,())-Ut, x, x)0": 0> 0*} . (13)
Note that when formula (12) is properly applied, D*U(z, x, x,) is computed element-wise.

7. Conditions of connected practical stability of system (2).
In view of the results from [1, 4] we shall formulate the following definitions.
Definition 2. System (2) is called
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a) connectedly practically stable, if given estimates of (4, 4), 0 <A < A4, the condition
®, € C:“ implies |x(t0, ¢)0)(t)| <A forall t2¢, and all E, c E;
b) connectedly asymptotically practically stable, if conditions of definition (a) are satis-
fied and lim|x(4,, ¢, )(1)|=0.
[

The other definitions of connected practical stability can be formulated in terms of
Definition 2.

Theorem 4. Let system of functional differentional equations (1) be such that

1) there exists a matrix-valued function U € C(J xC xC,R™"), U(t,0,0)=0 for all
teJ and U(t, x, x,) is locally Lipschitz in x for (¢, x, x,) € J, x S(4)x C(A4) ;

2) there exist a real vector 77 € R*, 7 >0, constant mxm matrices A(r) and B(r7) and a
)’ u2i( X, ()

comparison function u,,(|x ),i=1,2,..,m, u;,u, €K ,such that ulT (|x|)A(77)u1 (|x|) <

< Z 11, (tx,x,) < g (|x,O)]) Bapuy (|x,()]) forall (2,x,x,) € J x S(4)x C(4) ;

i,j=1
3) there exists a comparison function W e C(JxR,,R) such that D'V (¢,x,x,,17) <
SW, V(e x, x,,n)) for all (¢, x, x,) € JxS(A)xC(4) and all matrices of interactions
E c E ;
4) the matrices A and B are positive definite and A4,,(B) a(4) < 4,(4) b(4) where
A, (A) is the minimal and A, (B) is the maximal eigenvalues of the matrices A and B re-

spectively and a,b are of class K .
Then the certain type of practical stability of zero solution to the equation

%:W(t, u), u(ty)=u, 20 (14)

implies the certain type of connected practical stability of system (2).
Proof. Note first that under conditions (1) and (2) of Theorem 4 for the function
V(t,x,x,) determined by (11) the estimate

A, (A) b(x) <V (2, x, x,) < Ay, (B) a(|x,())) (15)
is true. This follows from the fact that for function u,,, u,, € K, i=1, 2,..., m, there exist
functions a(|x,())) and b(|x) of class K such that b(x|)<u/ (x| (x)) and
a(|x,())) = u3 (x,()u, (x, (). Further we have from condition (3) of Theorem 4 for the
function m(¢) =V (z, x(t,, x, )(?), x(ty, x, ) D m(t) <W(t, m(¢t)) which together with the

condition V'(z, x,, x, ) Su, yield the estimate

V(1 Xt %, N3,y %, ) < Lottty )s £ 2 1, (16)

according to the comparison principle (see[1] Theorem 4.1.1). Let the zero solution of equa-
tion (14) be practically stable. Given (4,,(B) a(4), 4, (A4) b(A4)), we have
u(t, ty,u,) < A,(4) b(4), a7

provided that
uy, <A, (B) a(l). (18)
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Let
x| <4 and |x,0 (-)| <A. (19)
We shall demonstrate that |x(t0, x, )(t)| <4 forall t>¢,.

Assume that this is not true and that there exists # >#, such that for the solution
x(ty, x, )(r) with initial condition (19) the correlations |x(4,, x, )( )| =A4 and
|x(t0, X, )(t)| < 4 hold for #, <t <t,.

Estimate (15) yields

Vi, x(ty, x, )(4,), x, (1, x, ) 2 4,,(4) b(A4) (20)

Let u, =V (1), x(t, x, ), X, (¢, X, )) - Then for all 7, <¢<¢, estimate (16) is valid,

where r(t,7,,u,) is the maximal solution of equation (14). Since u, <A, (B)ul x

x(x, () s (

X, (-)|) < Ay, (B)a(A), we find by the comparison principle and inequalities (15).

A (ADb(A) < 4, (A (0 )uey (x5, ]) <

21
SV, x (G, x, (@), x, (4, X, ) <7(t,1,uy) <4, (A)b(A) . @D

The obtained contradiction shows that # ¢ J and therefore system (2) is connectedly practi-
cally stable.

PE3IOME. Meronom 006‘eqHaHHS MAaTpUYHO-3HAYHUX (YHKIiOHANIB JIAIIyHOBA 1 TEOpEeMH MOpiB-
HSTHHSL JOCII/KEHO 3B‘SI3HY CTIHKICTH 32 JIAMYHOBUM 1 MPaKTHYHY CTIHKICTh BEIMKUX CHCTEM 3 3aIli3HEH-
HAM. 3ampornoHOBAaHO PsJ HOBHMX AOCTAaTHIX yMOB. Pe3yibTaTv MaioTh HE JIMIIE TEOPETUUHHIl CEHC, ale
TaKOX IPAKTUYHE 3HAYCHHSL.
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