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Abstract. By the method of combining the matrix-valued Lyapunov functional and 
comparison theorem, connected Lyapunov stability and practical stability of large scale de-
lay system are studied deeply. A series of new sufficient conditions are proposed. These 
results are not only of theoretical but also of practical value. 
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1. Designations. 

Let 0 0([ , 0], ), [ , ), 0nC C R J t t     . For any C  the norm 
0

sup ( )
s

s


 
  

  is 

used. For nx R , max rx x , 1, 2,...,r n . If 0([ , ), )nx C t R   , then tx C is de-

termined as ( ) ( )tx s x t s  , 0s   . We designate  :H
nC C H    , where 

0H   or H   . 

2. Description of the system and decomposition. 
Consider the large scale system modeled by functional differential equation 

0 0( , ), ,H
t t n

dx
f t x x C

dt
                                                  (1) 

where : H n
nf J C R  . Provided that the vector-function f  maps the bounded sets into 

the bounded sets, for each 0t J  and 0
H
nC   there exists a unique solution 

00( , )( )tx t x t determined on some interval 0[ , ]t t  , 0  , and if 1H H  is such that 

0 0 1( , ( )x t t H  , then    . 

The system (1) is decomposed into m  interconnected subsystems 

1( )
( , ) ( , , , ),

i
i m

i t i t t

dx t
f t x g t x x

dt
                                            (2) 

where  1, 2,...,mi I m  , ( , )i i

i

H n
i nf J C R  , ( , )inH

i ng C J C R   and i
i

n n . We 

assume that the functions ( , )i tg t x depend on m m -matrix of interconnections [ ]ij
t tE e , 

1 1 2 2( , ) ( , , , , ),i i im m
i t i t t t t t tg t x g t e x e x e x                                           (3) 
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when mi I , where the elements ([ ,0],[0,1])ij
te C    depend in general case on the delay 

( ) ( ), [ ,0].ij ij i
t te x e t x t         

We designate by tE  the fundamental matrix of interactions with the elements 1
ij

te   if 

jx  is contained in ( , )i tg t x ; 0
ij

te   if jx  is not contained in ( , )i tg t x . 

For 0tE   we get from system (2) the independent subsystems of functional differen-

tial equations of smaller dimensions 

0 0

( )
( , ), ,

i
i i i

i t t

dx t
f t x x C

dt
                                                    (4) 

where in
ix R and i i

i

H n
i nf J C R   . Moreover, we assume ( ,0) 0if t   and for subsys-

tems (2) ( ,0) ( ,0) 0i if t g t   for all t J and mi I , i.e. the state 1 ... 0mx x x     is the 

unique equilibrium state of system (1) and subsystems (2). 
For subsystem (2), whose functions ( , ), 1, 2,...,i tg t x i m , depend on the matrix of in-

teractions tE , the problem on practical stability of motion is reduced to the establishment of 

conditions under which the solution
00( , ) ( )tx t x t of system (2) possesses certain qualitative 

properties for given estimates of initial and subsequent deviations on the infinite interval. 

3. Matrix-valued functional. 
For system (2) we construct the matrix-valued functional 

( , ) [ ( , )], ,ij mU t t i j I                                                (5) 

with the elements satisfying the following conditions. 

1H . The elements ( , ) ( , )i i

i

H mi
ii nt C J C R    , 1 i im n  , ( ,0) 0,ii t   are locally 

Lipschitz in i ; 

2H .The elements ( , , ) ( , ),i jI I

i i

m mH Hi j
ij n nt C J C C R       are locally Lipschitz in i  

and j  for all ( ) mi j I  . 

By means of the real vector , 0mR   , we construct the functional  

( , , ) ( , ) ,TV t U t                                                      (6) 

which is continuous and definite on the set H
nJ C  by conditions 1 2H H . The upper de-

rivative of functional (6) along solutions of system (2) is determined by the formula 

( , , ) ( , ) ,TD V t D U t                                                  (7) 

where ( , )D U t    
0

1
lim sup ( , ( , )) ( , ) .tU t x t U t


  
 


   Note that ( , )D U t   is com-

puted element-wise. 

4. Definitions of connected stability of system (2). 
Taking into account the results of paper [3] we shall cite the definitions of stability no-

tion incorporated in this paper. 
Definition 1. The equilibrium state 0x   of system (1) is called 

a) connectedly stable if for every 0   and 0 0t   there exists 0( , ),t    such that 

0( , )( )x t t   whenever 0[ , ]nC t t    for all t tE E ; 

b) uniformly connectedly stable if in definition (a) the value   does not depend on 0t ; 
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c) asymptotically connectedly stable if it is connectedly stable and for any 0 0t   there 

exists 0  such that 0( , ( ) 0,x t t   as ,t   whenever ,nC  for all t tE E ; 

d) uniformly asymptotically connectedly stable if it is uniformly connectedly stable and 
there exists some 0   and for every 0   there exists 0   such that 0( , ( ) ,x t t   

whenever 0 0[ , ]nC t t   for all t tE E . 

5. Conditions of connected stability of system (2). 
Using matrix-valued functional (5) and its derivative (7) and applying the theorems of 

comparison principle for functional-differential equations (see [1]) we shall set out a series 
of sufficient conditions for connected stability of the equilibrium state 0x   of system (1). 

Theorem 1. Let system of functional-differential equations (1) be such that 

1) there exists the matrix-valued functional ( , ) ( , )H m m
nU t C J C R   , ( ,0) 0U t   for 

all t J  and ( , )U t   is locally Lipschitz in   for every t J ; 

2) there exist m m  constant matrices 1( )A   and 1( )B  , real vector mR  , 0   

and comparison functions 1 2( (0) ), ( ),i i
i i mu u i I   , of Hahn class K  so that 

1 1 1( (0) ) ( ) ( (0) )Tu A u  
, 1

( , )
m

i j ij
i j

u t 


  2 1 2( ) ( ) ( )Tu B u    for all t J  and H
nC  ; 

3) there exists the comparison function ( , )W C J R R   such that 

( , , ) ( , ( , , ))D V t W t V t                                                (8) 

for all ( , ) H
nt J C    and all matrices of interaction t tE E . Then the certain type of sta-

bility of zero solution to the comparison equation 

0 0( , ), ( ) 0
du

W t u u t u
dt

                                                (9) 

and the restrictions on the matrices 1 1( ), ( )A B   imply the corresponding type of connected 

stability of the equilibrium state of system (1) with decomposition (2). 
Proof. Provided that the matrices 1( )A   and 1( )B   are positive definite, functional (6) 

is positive definite and decreasing. Further, we apply Theorem 4.4.3 from [1] and determine 
certain type of connected stability of system (1). 

Corollary 1. Let 
1) conditions (1) and (2) of Theorem 1 be satisfied; 
2) the matrix 1( )A   be positive definite, the matrix 1( ) 0B    and the comparison func-

tion ( , ( , , )) 0W t V t    . 

Then the equilibrium state 0x   of system (1) with decomposition (2) is connectedly 
stable. 

Corollary 2. Let 
1) conditions (1) and (2) of Theorem 1 be satisfied; 
2) the matrices 1( )A   and 1( )B   be positive definite and the comparison function 

( , ( , , )) 0W t V t    . 

Then the equilibrium state 0x   of system (1) with decomposition (2) is uniformly 
connectedly stable. 

Corollary 3. Let 
1) conditions (1) and (2) of Theorem 1 be satisfied; 
2) the matrices 1( )A   and 1( )B   be positive definite; 

3) the zero solution of comparison equation (9) be uniformly asymptotically stable. 
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Then the equilibrium state 0x   of system (1) with decomposition (2) is uniformly as-
ymptotically connectedly stable. 

 
Theorem 2. Let system of functional differential equations (1) be such that  
1) conditions (1) and (2) of Theorem 1 are satisfied; 

2) there exist a constant m m  matrix 1( ), , 0mC R     and functions 3 ( )i
i tu x , 

3iu  is of class K  for all mi I , such that 3 1 3( , , ) ( ) ( ) ( )T
t tD V t u x C u x     for any 

( , ) H
nt J C    and any matrices of interactions t tE E , where 3 ( )T

tu x = 

31 3( ( ),..., ( ))l m
t m tu x u x ; 

3) the matrices 1( )A   and 1( )B   are positive definite and the matrix 1( )C   is negative 

definite. 
Then the equilibrium state 0x   of system (1) with decomposition (2) is uniformly as-

ymptotically connectedly stable. 

Theorem 3. Let in system of equations (1) the vector function ( , )f t   be bounded in   

and 
1) conditions (1) and (2) of Theorem 1 are satisfied; 

2) there exist a constant m m  matrix 2 ( ), , 0mC R     and functions 4 ( )i
i tu x  of 

class K  for all mi I  such that 4 2 4( , , ) ( ) ( ) ( )T
t tD V t u x C u x     for all ( , ) H

nt J C    

and any matrices of interconnections t tE E ; 

3) the matrices 1( )A   and 1( )B   are positive definite and the matrix 2 ( )C   is negative 

definite. 
Then the equilibrium state 0x   of system (1) with decomposition (2) is uniformly as-

ymptotically connectedly stable. 

6. Matrix-valued function on space product. 
For system (4) we construct the matrix-valued function 

( , , ) [ ( , , )], , 1, 2,...,t ij tU t x x v t x x i j m   ,                             (10) 

with the elements satisfying the following conditions. 

3H . The elements ( , ), ( , 0, 0) 0i

i

H
ii iinv C J C C R v t     are locally Lipschitz in ix ; 

4H . The elements ( , ),ji

i j

HH
ij n nv C J C C C C R      ( , 0, 0, 0) 0ijv t   are locally 

Lipschitz in ,i jx x  for all ( ) mi j I  . 

By means of the real vector , 0mR   , we construct the function 

( , , , ) ( , , ) ,T
t tV t x x U t x x                                           (11) 

which is definite on the space product nR C  and locally Lipschitz in x , providing condi-
tions of assumptions 3H  and 4H  are satisfied. Further we define 

( , , , ) ( , , ) ,T
t tD V t x x D U t x x                                    (12) 

where  

( , , ) lim sup ( ,tD U t x x U t    1( , ), ( )) ( , , )] :t t h tx f t x x U t x x  
   0  .   (13) 

Note that when formula (12) is properly applied, ( , , )tD U t x x  is computed element-wise. 

7. Conditions of connected practical stability of system (2). 
In view of the results from [1, 4] we shall formulate the following definitions. 
Definition 2. System (2) is called 
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a) connectedly practically stable, if given estimates of ( , ), 0A A   , the condition 

0 nC   implies 0 0( , )( )x t t A   for all 0t t  and all t tE E ; 

b) connectedly asymptotically practically stable, if conditions of definition (a) are satis-
fied and 0 0lim ( , )( ) 0

t
x t t


 . 

The other definitions of connected practical stability can be formulated in terms of 
Definition 2. 

Theorem 4. Let system of functional differentional equations (1) be such that 

1) there exists a matrix-valued function ( , )H m m
nU C J C C R    , ( ,0,0) 0U t   for all 

t J  and ( , , )tU t x x  is locally Lipschitz in x  for ( , , ) ( ) ( )tt x x J S A C A   ; 

2) there exist a real vector , 0R   , constant m m  matrices ( )A   and ( )B   and a 

comparison function 1 2( ), ( ( ) ), 1, 2,...,i i tu x u x i m  , 1 2,i iu u K , such that 1 1( ) ( ) ( )Tu x A u x   

, 1

( , , )
m

i j ij t
i j

v t x x


     2 2( ) ( ) ( )T
t tu x B u x   for all ( , , ) ( ) ( )tt x x J S A C A   ; 

3) there exists a comparison function ( , )W C J R R   such that ( , , , )tD V t x x    

( , ( , , , ))tW t V t x x   for all ( , , ) ( ) ( )tt x x J S A C A    and all matrices of interactions 

t tE E ; 

4) the matrices A and B are positive definite and ( ) ( ) ( ) ( )M mB a A b     where 

( )m A  is the minimal and ( )M B  is the maximal eigenvalues of the matrices A and B re-

spectively and ,a b  are of class K . 
Then the certain type of practical stability of zero solution to the equation 

0 0( , ), ( ) 0
du

W t u u t u
dt

                                             (14) 

implies the certain type of connected practical stability of system (2). 
Proof. Note first that under conditions (1) and (2) of Theorem 4 for the function 

( , , )tV t x x  determined by (11) the estimate 

( ) ( ) ( , , ) ( ) ( ( ) )m t M tA b x V t x x B a x                               (15) 

is true. This follows from the fact that for function 1 2, , 1, 2,...,i iu u K i m  , there exist 

functions ( ( ) )ta x   and ( )b x  of class K  such that 1 1( ) ( ) ( )Tb x u x u x  and 

2 2( ( ) ) ( ( ) ) ( ( ) ).T
t t ta x u x u x     Further we have from condition (3) of Theorem 4 for the 

function 
0 00 0( ) ( , ( , )( ), ( , ))t tm t V t x t x t x t x  ( ) ( , ( ))D m t W t m t   which together with the 

condition
00 0( , , )tV t x x u  yield the estimate 

0 00 0 0 0( , ( , )( ), ( , )) ( , , ),t t tV t x t x t x t x r t t u 0t t                            (16) 

according to the comparison principle (see[1] Theorem 4.1.1). Let the zero solution of equa-
tion (14) be practically stable. Given ( ( ) ( ), ( ) ( ))M mB a A b A   , we have  

0 0( , , ) ( ) ( )mu t t u A b A ,                                           (17) 

provided that 

0 ( ) ( )Mu B a  .                                                  (18) 
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Let  

0x   and 
0
( )tx   .                                               (19) 

We shall demonstrate that 
00( , )( )tx t x t A  for all 0 .t t  

Assume that this is not true and that there exists 1 0t t  such that for the solution 

00( , ) ( )tx t x t  with initial condition (19) the correlations 
00 1( , ) ( )tx t x t A  and 

00( , ) ( )tx t x t A  hold for 0 1t t t  . 

Estimate (15) yields 

0 1 01 0 1 0( , ( , )( ), ( , )) ( ) ( )t t t mV t x t x t x t x A b A                                (20) 

Let 
0 0 00 0 0 0 0( , ( , )( ), ( , ))t t tu V t x t x t x t x . Then for all 0 1t t t  , estimate (16) is valid, 

where 0 0( , , )r t t u  is the maximal solution of equation (14). Since 0 2( ) T
Mu B u   

0 02( ( ) ) ( ( ) )t tx u x   ( ) ( ),M B a   we find by the comparison principle and inequalities (15). 

 1 0 1 0( ) ( ) ( ) ( ) ( )T
m mA b A A u x u x    

0 1 01 0 1 0( , ( , )( ), ( , ))t t tV t x t x t x t x 1 0 0( , , ) ( ) ( )mr t t u A b A  .               
(21)

  

The obtained contradiction shows that 1t J  and therefore system (2) is connectedly practi-

cally stable. 
 
 
Р Е ЗЮМ Е .  Методом об‘єднання матрично-значних функціоналів Ляпунова і теореми порів-

няння досліджено зв‘язну стійкість за Ляпуновим і практичну стійкість великих систем з запізнен-
ням. Запропоновано ряд нових достатніх умов. Результати мають не лише теоретичний сенс, але 
також практичне значення. 
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