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Abstract. The buckling of elastic circular plates with an internal elastic ring support and
elastically restrained edges against rotation and simply supported is concerned. The classical
plate theory is used to derive the governing differential equation. This work presents the
existence of buckling mode switching with respect to the radius of internal elastic ring sup-
port. The plate may buckle in an axisymmetric mode in general, but when the radius of the
ring support becomes small, the plate may buckle in an asymmetric mode. The cross-over
ring support radius varies from 0.09891 to 0.1545 times the plate radius, depending on the
rotational stiffness of the elastic restraint at the edges and elastic restraint of the ring. The
optimum radius of the internal elastic ring support for maximum buckling load is also de-
termined. Extensive data is tabulated so that pertinent conclusions can be arrived at on the
influence of rotational restraint, translational restraint of internal elastic ring support, Pois-
son’s ratio, and other boundary conditions on the buckling of uniform isotropic circular
plates. The numerical results obtained are in good agreement with the previously published
data.

Key words: buckling; circular plate; elastic ring support; rotational spring stiffness;
mode switching.

I. Introduction.

Buckling of plates is an important topic in structural engineering. The prediction of
buckling of structural members restrained laterally is important in the design of various en-
gineering components. In particular, circular plates with an internal elastic ring support find
applications in aeronautical (instrument mounting bases for space vehicles), rocket launch-
ing pads, aircrafts (instrument mounting bases for aircraft vehicles) and naval vessels (in-
strument mounting bases). Based on the Kirchhoff’s theory, the elastic buckling of thin
circular plates has been extensively studied by many authors after the pioneering work pub-
lished by Bryan [1]. Since then, there have been extensive studies on the subject covering
various aspects such as different materials, boundary and loading conditions. Also the buck-
ling of circular plates was studied by different authors Wolkowisky [2] and Brushes [3].
However, these sources only considered axisymmetric case, which may not lead to the cor-
rect buckling load. Introducing an internal elastic ring supports may increase the elastic
buckling capacity of in-plane loaded circular plates significantly. Laura et al. [4] investi-
gated the elastic buckling problem of the aforesaid type of circular plates, who modeled the
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plate using the classical thin plate theory. In their study only axisymmetric modes are con-
sidered.

Kunukkasseril and Swamidas [5] are probably the first to consider elastic ring supports.
They formulated the equations in general, but presented only the case of circular plate with a
free edge. Wang and Wang [6] studied the fundamental frequency of the circular plate with
internal elastic ring support. They have considered the four basic boundary conditions.

Although the circular symmetry of the problem allows for its significant simplification,
many difficulties very often arise due to complexity and uncertainty of boundary conditions.
This uncertainty could be due to practical engineering applications where the edge of the
plate does not fall into the classical boundary conditions. It is accepted fact that the condi-
tion on a periphery often tends to be part way between the classical boundary conditions
(free, clamped and simply supported) and may correspond more closely to some form of
elastic restraints, i.e., rotational and translational restraints Kim and Dickinson [7], Wang et
al. [8], Wang and Wang [9], Ashour [10], Rdzanek et al. [11], and Andrei Zagrai and
Dimitri Donskoy [12]. In a recent study, Wang et al. [8] showed that when the ring support
has a small radius, the buckling mode takes the asymmetric mode. Wang and Wang [9]
showed that the axisymmetric mode assumed by the previous authors might not yield the
correct buckling load. In certain cases, an asymmetric mode would yield a lower buckling
load. But they have studied only the circular plate with rigid ring support and elastically
restrained edge against rotation. Recently, Wang [13] studied the buckling of a circular plate
with internal elastic ring support by considering only the classical boundary conditions. The
purpose of the present work is to complete the results of the buckling of circular plates with
an internal elastic ring support and elastically restrained edge against rotation and simply
supported by including the asymmetric buckling modes, thus correctly determining the
buckling loads.

I1. Definition of the problem.

Consider a thin circular plate of radius R, uniform thickness/%, Young’s modulus
E and Poisson’s ratio v and subjected to a uniform in-plane load, N along its boundary, as
shown in Fig. 1. The circular plate is also assumed to be made of linearly elastic, homoge-
neous and isotropic material. The edge of the circular plate is elastically restrained against
rotation and simply supported and supported by an internal elastic ring support, as shown in
Fig. 1. The problem at hand is to determine the elastic critical buckling load of a circular
plate with an internal elastic ring support and elastically restrained edge against rotation and
simply supported.
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Fig. 1
Buckling of a Circular plate with an internal elastic ring Support and Elastically Restrained
edge against Rotation and Simply Supported.

II1. Mathematical formulation of the problem.

The plate is elastically restrained against rotation and simply supported at the edge of
radius R and supported on an internal elastic ring of smaller radius bR as shown in Fig. 1.
Let subscript I denote the outer region » <7 <1 and the subscript Il denote the inner re-
gion0<7 <b. Here, all lengths are normalized by R . Using classical (Kirchhoff’s plate
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theory), the following fourth order differential equation for buckling in polar coordi-
nates (7,6) .

DV*w+ NV2w=0, (1)

where w is the lateral displacement, N is the uniform compressive load at the edge. After
normalizing the lengths by the radius of the plate R , Eq. (1) can be written as

DV*%+k*V*w=0, )

2 2

where V2 :a—2+éi_ %6—2 is the Laplace operator in the polar coordinates » and 6.
or- ror r°o0

Where 7 is the radial distance normalized by R . D= Eh* /12(1-v?)is the flexural rigid-

ity, w=w/R, is normalized transverse displacement of the plate. k> =R>N/D is non-
dimensional load parameter. Suppose there are znodal diameters. In polar coordinates
(r,0) set

w(r,0) =u(r)cos(nd) . 3)
General solutions (Yamaki [14]) for the two regions are
log7
u;(r)=CJ,(kr)+ CY, (kF)+ Cy7" + C,4 ; 4
?—n
iy (r)=CsJ, (kr)+Cgr", (5)

where top form of the Eq. (4) is used for n=0and the bottom form is used forn=0,
C.,C,,C5,C,,C5 & Cg are constants, J,(.)&Y,(.) are the Bessel functions of the first and
seconds of order n, respectively. Substituting Eq. (4) and (5) into Eq. (3) yields the follow-
ing:

log7
w,(7,0)=| C\J,(kr)+ C,Y,(kF)+ C37" + C,4 {__ Hcos(n@) ; (6)
r
W, (7,0) = [CSJ,, (k) + C " ]cos(na) . )

The boundary conditions at outer region of the circular plate in terms of rotational stiff-
ness (Kp;) is given by the following expressions

M, (r)=Kgu; '(F) ; (3
w,(7)=0. ©)
The radial moment at outer edge is defined as follows
e D 7 WoT = Y3 e vy
Mr(r):—F[ul )+ v (7@ @ -, (@) | (10)
Egs. (8) and (10) yield the following
N ey S 1) S
) ey ( - () | =2, ). ()

Therefore, the boundary conditions are as follows
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GGG IR T AGE (12)
u(r)=0, (13)

K p R
D
Apart from the elastically restrained edge against rotation and simply supported edge,
there is an internal elastic ring support constraint and the continuity requirements of slope
and curvature at the support, i.e. at 7 =b

where R, =

up(b) =y (b); (14)
up'(b) =uy ‘() ; (15)
iy "(b) =i, "(b) ; (16)
iy "(b) =1ty "(b) = Tyt (), (17)

KR

where T,, = . The prime (') denotes the differentiation with respect to7 . The non-

trivial solutions to Egs. (12), (13), (14) — (17) are sought. The lowest value of k is the square
root of the normalized buckling load. From Egs. (4), (5), (12), (13) and (14) — (17) we get
the following.

2 2
{%PZ +§(V+R11)Pl —(%+Vn2JJn (k)}q +

2

2
+{k_Qz +§(V+R11)Q1 —£%+V”2Jyn(k)}cz +

+{n((n=DA-v)+R,)]C; +

V+R)-1
+ Cy=0; (18)
n((n+1)(1-v)-Ry))

0
[Jn(k)]cl+x,(k)cz+1c3+{ }C4 =0; (19)
1
logb
Sy (kb)C, +Y, (kb)Cy +b"Cs + Cy=J,(kb)Cs =b"Cs = 0; (20)
b—}'l
1
%a'cl+§gl'c2+nb"—lc3+ b q-%a'cs —nb"C=0; 1)

_nb7”71

136



K K> 5 iz
7 (B = 27,(NC +7-(0 = 2Y, (kb)C, +n(n—1)b">Cy =4 b Gy (22)

n(n+1)b™"2

2 ’
=R 2, (00 Cs == =0

2
kz ' ' kz ' ' "3 b_3
+§(Ps -3AR )C1+§(Q3 —0)C +n(n—1)(n-2)b""Cy + Cy—
—n(n+D(n+2)b™">
kz

o (B =3B)=Td, (k) |Cs = [m(n - Dn-2p" ~Tp" ]G =0 (23)
Pl = Jn—l(k) - Jn+1 (k)9P2 = ‘]n—Z(k) + ‘]n+2 (k)9P3 = Jn—3(k) - Jn+3(k);
O =Y, (k)=Y,,(k);0, =Y, ,(k)+Y,,(k); 05 =Y, 5(k)—Y,5(k);

1)1 = Jn—l (kb) - Jn+1 (kb)a PZ = Jn—2 (kb) + Jn+2 (kb)’ P3 = Jn—3 (kb) - Jn+3 (kb)7

O =Y, (kD) =Y, (kD) 0, =Y, 5 (kD) + Y, .o (kDY; 0y =Y, (kD) — Y, 5 (kD).

The top forms of Eqs. (17) — (23) are used for n=0 (axisymmetric buckling) and the
bottom forms are used for n # 0 (asymmetric buckling).

IV. Solution.
For the given values of n,v,R,,,T,, &b the above set of equations, gives exact charac-

teristic equation for non-trivial solutions of the coefficients C,,C,,C;,C,,Cs & C; . For non-
trivial solution, the determinant of [C ] 6 MUSE be removed. The value of k&, calculated from

the characteristic equation by a simple root search method. Using Mathematica, computer
software with symbolic capabilities, solves this problem.

V. Results and discussions.

The influence of rotational spring stiffness parameter on buckling load for a given trans-
lational spring stiffness parameters of an elastic ring support is shown in Figs. 2 — 5. Figs. 2
— 5, show the variations of buckling load parameter & , with respect to the internal elastic
ring support radiush, for various values of rotational spring stiffness parameters
(R;;=0,0.5,10,100 & ) by keeping translational spring stiffness parameter of an internal

elastic ring support constant (7,, =100000) . It is observed from Figs. 2 — 5, that for a given
value of R, and by keeping T,, constant, the curve is composed of two segments. This is

due to the switching of buckling modes. For a smaller internal elastic ring support radiusb ,
the plate buckles in an asymmetric mode (i.e.,n =1) . In this segment (as shown by dotted
lines in Figs. 2 — 5) the buckling load decreases as b decreases in value. For larger internal
elastic ring support radius b , the plate buckles in an axisymmetric mode (i.e.,n = 0) . In this
segment (as shown by continuous lines in Figs. 2 — 5) the buckling load increases as b de-
creases up to a peak point corresponds to maximum buckling load and thereafter decrease as
b decreases in value.

The cross over radius varies from 5=0.09891 for R, =0&T,, =100000 to b = 0.1545

for R, = &T,, =100000 as shown in Figs. 2 and 5 respectively. The major interest in the
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design of supported circular plates is the optimal location of the internal elastic ring support
for maximum buckling load. The optimal solutions for this case are presented in Table 1. It
is observed that the optimal ring support radius parameter decreases with increase in rota-
tional spring stiffness parameter and also the optimal buckling load capacity increases with
rotational spring stiffness parameter. Introducing internal elastic ring support, when placed
at an optimal position increases the elastic buckling capacity significantly, and the percent-
age of increase in buckling loads is presented in Table 1. It is observed that the percentage
increase in buckling load parameter decreases with increase inR;,. This is due to the

amount of increase in buckling load without elastic ring support with R, is more than that

of increase in buckling load with elastic ring support with R, .

6

Buckling Load Parameter, k

——A——R11=0.5,T22=100000[n=0]
- - F - R11=0.5T22=100000[n=1]

0,2

0,4 0,6 0,8 1
Internal Elastic Ring Support, b

Fig. 2

Buckling Load Parameter & , versus internal elastic ring Support Radius b , for various val-

Buckling Load Parameter, k

ues

of R, =0.5&T,, =100000.

—2——R11=10,T22=100000(n=0)

=« [F = R11=10,T22=100000(n=1)

0,2

0,4 0,6 0,8 1
Internal Elastic Ring Support, b

Fig. 3

Buckling Load Parameter & , versus Internal elastic ring Support Radius b , for various val-
ues of R, =10&T,, =100000 .
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Buckling Load Parameter, k

—4A——R11=100,T22=100000[n=0]

- IF - R11=100,T22=100000[n=1]
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0,4

0,6

0,8

Internal Elastic Ring Support, b

Fig. 4

Buckling Load Parameter & , versus internal elastic ring Support Radius b ,
for various values of R;; =100 & 75, =100000 .
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Fig. 5

Buckling Load Parameter & , versus internal elastic ring Support Radius b ,
for various values of R, = & T,, =100000 .

Optimal Location of an Internal Elastic Ring Supportb,,
Parameter k,, and Percentage Increase in Buckling Load Parameter.

¢

Table 1.

the corresponding Buckling Load

Ty, =100000
Ry, 0 0.5 10 100 o
by 0.4998 0.4010 0.3001 0.2982 0.2966
Kope 53669 5.4571 6.4333 6.9313 6.9989
% 161.95 135.52 84.39 82.71 82.66
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The influence of translational spring stiffness parameter of an elastic ring support on
buckling load for a given rotational spring stiffness parameter is shown in Figs. 6 — 8. Figs.
6 — 8, show the variations of buckling load parameter £ , with respect to the internal elastic
ring support radiusb , for various values of translational spring stiffness parameter of an
internal elastic ring support (T, =1000,100000 & ) by keeping rotational spring stiffness
parameters constant (R;; =1000). It is observed from Figs. 6 — 8, that for a given value of
T,, and by keeping R, constant, the curve is composed of two segments. This is due to the
switching of buckling modes. For a smaller internal elastic ring support radius b , the plate
buckles in an asymmetric mode (i.e.,n=1) . In this segment (as shown by dotted lines in
Figs. 6 - 8) the buckling load decreases as b decreases in value. For larger internal elastic
ring support radius b, the plate buckles in an axisymmetric mode (i.e.,n =0). In this seg-
ment (as shown by continuous lines in Figs. 6 — 8) the buckling load increases as b de-
creases up to a peak point corresponds to maximum buckling load and thereafter decrease as
b decreases in value.

The cross over radius varies from b =0.2333 for 7,, =1000& R;; =1000to 5 =0.1518
for T,, =0 & R;; =1000 as shown in Figs. 6 and 8 respectively. The optimal solutions for

this case are presented in Table 2.

Introducing internal elastic ring support, when placed at an optimal position increases
the elastic buckling capacity significantly, and the percentage of increase in buckling loads
is presented in Table 2.

» ~
T T
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Buckling Load Param eter, k
i
T

N
T

—A——T11=1000, R11=1000[n=0]

[EY
T

- - {F - - T22=1000,R11=1000[n=1]

0,2 0,4 0,6 0,8 1
Internal Elastic Ring Support, b

o

o

Fig. 6
Buckling Load Parameter & , versus internal elastic ring Support Radius b ,
for various values of 7,, =1000 & R;; =1000
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Buckling Load Parameter, k
D

—2&——T22=100000,R11=1000[r=0]
- - {F - -T22=100000,R11=1000[n=1]

0 0,2 0,4 0,6 0,8 1
Internal Elastic Ring Support, b
Fig. 7
Buckling Load Parameter & , versus internal elastic ring Support Radius b ,
for various values of 7,, =100000 & R;; =1000.

Buckling Load Parameter, k
D

——A——T2=1nf R11=1000[r=0]

1F - - OF - T22=InfR11=1000[n=1]

0 0,2 04 0,6 0,8 1
Internal E lastic Ring Support, b

Fig. 8
Buckling Load Parameter k , versus internal elastic ring Support Radius b ,
for various values of 7,, =0 & R;; =1000.

Table 2.
Optimal Locations of Internal Elastic Ring Supportb,,,, the corresponding Buckling Load

Parameter k,, and Percentage Increase in Buckling Load Parameter.

Ry =1000

Ty, 1000 100000 o
By 0.2999 0.2987 0.2984
ko 6.9857 6.9898 6.9901
% 82.49 82.60 82.61
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Table 3.

Comparison of Buckling Load Parameter k , with Wang et al. [17] for various Rotational
Stiffness Parameters R,; and Poisson’s ratio = 0.3.

R, 0 0.1 5 10 100 w
Wang et al. 4.198 4.449 10.462 12.173 14.392 14.682
Present 4.19766 4.44864 10.46134 12.17242 14.39200 14.6814
Table 4.

Comparison of Buckling Load Parameter k , with Laura et al. [4], Wang et al. [17] and
Bhaskara Rao and Kameswara Rao [16] for Rotational stiffness Parameter

R,=0&v=03.
Laura et al Wang et al. Present
Ring support radius, b Bhaskara Rao and Kameswara Rao [16]
(4] [17]
0.1 4.5244 4.5235 4.52341 4.52341
0.2 4.7718 4.7702 4.77018 4.77018
0.3 5.0725 5.071 5.07091 5.07091
0.4 5.3301 5.3296 5.32964 5.32964
0.5 5.3666 5.3666 5.36659 5.36659
0.6 5.1284 5.1261 5.12606 5.12606
0.7 4.7789 4.7727 4.77266 4.77266
0.8 4.4249 4.4215 442141 4.42141
0.9 4.1122 4.1063 4.10629 4.10629

Table 5. Comparison of Buckling Load Parameter k , with Laura et al. [4] and

Bhaskara Rao and Kameswara Rao [16] for Rotational stiffness Parameter

R;i=0&v=03.
Bhaskara Rao and
Ring support radius, b Laura et al [4] Kameswara Rao Present
[16]
0.1 6.772 6.50105 6.50105
0.2 6.9649 6.95592 6.95592
0.3 6.9964 6.99485 6.99485
0.4 6.6693 6.66257 6.66257
0.5 6.0852 6.07454 6.07454
0.6 5.4845 5.4755 5.4755
0.7 4.9588 4.95263 4.95263
0.8 4.5277 4.51266 4.51266
0.9 4.1509 4.14357 4.14357

The results of this kind were scarce in the literature. However, the results are compared
with the following cases. (i). For any value of R, and as 7,, - andb —1, all the curves
converge to k£ =3.83165 which is of the clamped plate and it is agree with those of Wang et
al. [9]. (i1). When R, »> & T,, =10, or clamped support with internal elastic ring support,
the optimum location is at a radius of »=0.290, with a buckling load of £ =4.20875, and
also as b — 1, the buckling load, k£ =3.83163, these results are in well agreement with the
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of Wang [6]. (iii)). When R;;, > 0&7,, =10, or simply supported edge plate with internal
elastic ring support, the optimum location is at a radius of »=0.417, with a buckling load
of k=2.69104, and also as b — 1, the buckling load, k& =2.04882 , these results are in well
agreement with the of Wang [6]. (iv).

Table 3, presents the buckling load parameters & , for a circular plate with simply sup-
ported edge and rotational restraint with 7,, =0 (i.e., with no ring support), against those
obtained by Wang et. al. [15]. (v). When R; - 0 &T,, — o, or rotationally restrained and
simply supported circular plate with internal rigid support, the optimum location is at a ra-
dius of b=0.265, with a buckling load of £ =7.01554 that agree with the results of Wang
et al [15]. (vi).

Tables 4 and 5, presents the buckling load parameters & , for a circular plate with an in-
ternal ring support (7,, — o, i.e., rigid ring support) and elastically restrained edge against
rotation and simply supported, against those obtained by Laura et al. [4], Wang et al. [17]
and Bhaskara Rao and Kameswara Rao [16].

VI. Conclusions.

The buckling problem of thin circular plates with an internal elastic ring support and elasti-
cally restrained edge against rotation and simply supported has been solved. The buckling
loads are given for various rotational restraints [ R, ] and translational restraints of internal
ring support [ 75, ]. It is observed that the buckling mode switches from an asymmetric mode
to an axisymmetric mode at a particular ring support radius. The cross-over radius is deter-
mined for different values of rotational restraints and translational restraints of elastic ring
support. The optimal ring support is affected by the rotational stiffness parameters and trans-
lational spring stiffness parameters of an internal elastic ring support. The optimum location
increases with decreasing 7,, , whereas the bucking load decreases with7,,. The optimum
location increases with decreasing R,; , whereas the bucking load decreases with R;, . How-
ever, it is observed that the influence of rotational restrains on buckling load is more pre-
dominant than that of translational restraints of internal elastic ring support. In this paper the
characteristic equations are exact; therefore the results can be calculated to any accuracy.
These exact solutions can be used to check numerical or approximate results. The tabulated
buckling results are useful to designers in structural design and vibration control.

Nomenclature:
w(r,0) — Transverse deflection of the plate;

h — Thickness of a plate;
R — Radius of a plate;
b —Non-dimensional radius of ring support;
v — Poisson’s ratio;
E —Young’s modulus of a material;
D — Flexural rigidity of a material;
K, — Translational Spring Stiffness of Internal elastic ring;

Ky, —Rotational spring stiffness;
R, —Non-dimensional rotational spring stiffness Parameter;
T,, — Non-dimensional translational spring stiffness parameter of internal elastic ring;

N — Uniform in - plane compressive load;
k — Non-dimensional Buckling Load Parameter.

PE3IOME. Po3risHyTo BUMy4yBaHHS MPYXKHOI KPYIJIOi IUIACTUHKH 3 BHYTPILIHIM KPIMJICHHSIM Y
BUIJISIIII IPYXKHOTO KiJIbLIS 1 30BHILIHBOIO TPAHMLICHO, SKa 00MEXY€E MPY)KHE 00EPTaHHS 1 € BUIBHO OIEPTOIO.
BuBezneHo audepeHIiianbHi piBHSAHHSI, [0 OMUCYIOTh 33jady, IS 4Or0 BHKOPHCTAHO KJIACHYHY TEOPil0
IUIACTHHOK. 3aIllPONIOHOBAHO JOBEACHHS ICHYBaHHS MEPEMHUKAaHHS Ha MOJy BHUIyYyBaHHS B 3aJIe)KHOCTI Bij
pamiyca BHYTPIIIHBOTO Kiniblld. [l7acTMHKAa MOXE BHITYy4yBaTHCS, B3arajii KaxKydH, 3a OCECHMETPHUYHOIO
MOJIOI0, aJie JUIsl MaJloro pajiyca KiIbLsl IUIACTHHKA MOXKE BUITyYyBAaTHCS 332 HEOCECHMETPUYHOIO MOJIOI0.
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[epexinne 3HaYCHHS BiAHOLICHHS pajiyca KilbIisl 10 pajiyca IacTUHKYU 3MiHtoeThes Bia 0,9891 mo 0,1545
B 3aJIXKHOCTI BiJ1 Y)KOPCTKOCTI KiJIbLis 1 0OOMeXeHHs1 Ha 0OepTaHHs Ha 30BHIIIHIN MpaHUI MIaCTHHKU. Takox
BU3HAYEHO MaKCUMAIbHUI pajiiyc KibLis, MOB'I3aHMI 3 MAKCUMAIbHUM 3HAUYCHHSIM HaBaHTa)xeHHs. Yuncio-
Bl JJaHi 3rpyHOBaHi TAKHM YHHOM, IO BOHM JIO3BOJISIOTH 3pOOUTH BHCHOBKHM LIOJO BIUTUBY OOMEXCHHS Ha
obepTaHHs, OOMEXEHHsI Ha MOCTYHaIbHUIT PyX KilbIlst, KoedimienTa [lyaccoHa Ta iHIIMX TPAHUYHHUX YMOB
Ha BHUITy4YyBaHHS OJHOPIAHOI Kpyroi ruiacTMHKU. OTpUMaHI 4MCIIOBI Pe3yJibTaTH J00pe Y3TOKYIOThCS 3
JTaHUMH, OITy0JIIKOBaHMMH paHilIe.
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