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Abstract. The buckling analysis of anti-symmetric cross-ply laminated composite
plates under different boundary conditions is examined by using a refined higher order ex-
ponential shear deformation theory. The theory, which has strong similarity with classical
plate theory in many aspects, accounts for a quadratic variation of the transverse shear
strains across the thickness and satisfies the zero traction boundary conditions on the top and
bottom surfaces of the plate without using shear correction factors. The number of inde-
pendent unknowns in the present theory is four, as against five in other shear deformation
theories. In this investigations, the equations of motion for simply supported thick laminated
rectangular plates are derived and obtained through the use of Hamilton’s principle. The
closed-form solutions of anti-symmetric cross-ply and angle-ply laminates are obtained us-
ing Navier solution. Numerical results for critical buckling loads anti-symmetric cross-ply
laminated composite plates is presented. The validity of the present study is demonstrated
by comparison with other higher-order solutions reported in the literature. It can be con-
cluded that the proposed theory is accurate and simple in solving the buckling behaviors of
anti-symmetric cross-ply laminated composite plates under different boundary conditions.

Key words: Laminated composite plates, higher-order shear deformation theory, buckling,
theoretical solutions, various boundary conditions.

1. Introduction.

Plate elements are commonly used in civil and mechanical structures. The consideration of buck-
ling loads for laminated composite plates are essential to have an efficient and reliable design. In order
to static and dynamic analysis of laminated composite plates structures, a number of plate theories are
available based on considering the transverse shear deformation of plate. The classical plate theory in
which the transverse shear deformation effects are neglected and the normal to the mid-plane remains
straight and normal to the middle surface during the deformation. As a result, the classical plate theory
usually underestimates deflection and overestimates the buckling loads for thick plates. Some short-
comings of the classical plate theory are modified by a number of shear deformable plate theories the
simplest of which is the first-order shear deformation theory (FSDT). The FSDT yields a constant
value of transverse shear strain through the thickness of the plate and requires shear correction factors
to account for the deviation of the actual transverse shear strain from the constant one. These shear
correction factors are sensitive to the geometric parameters of plate, boundary conditions and loading
conditions. A number of shear deformation theories have been proposed to date. The first such theory
for laminated isotropic plates was apparently [1]. This theory was generalized to laminated anisotropic
plates in [2]. It was shown in [3, 4], the FSDT violates equilibrium conditions at the top and bottom
faces of the plate, shear correction factors are required to rectify the unrealistic variation of the shear
strain/stress through the thickness. To overcome the drawbacks of the FSDT, various higher-order
plate theories have been proposed by assuming higher-order displacement fields. For instance, Reddy
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[5, 6] developed a simple higher-order shear deformation plate theory by using third-order polynomial
in the expansion of the displacement components through the thickness of the plate. In order to over-
come the limitations of FSDT, higher-order shear deformation theories HSDT are used. Since which
involve higher-order terms in Taylor’s expansions of the displacements in the thickness coordinate,
were developed by Librescu [7], Ren [8], Kant and Pandya [9], and Mohan et al. [10]. A good review
of these theories for the analysis of laminated composite plates is available in Refs. [11 — 15]. Applica-
tions to the laminated composite plates for problems of buckling of thick plates have been discussed
by a number of authors. Reddy and Phan [16] have used the Navier solution in order to analyze the
free vibration and buckling of isotropic, orthotropic and laminated rectangular plates with simply sup-
ported edge condition according to the laminated composite plates of Reddy [5]. Hanna and Leissa
[17] have developed a completely higher order shear deformation plate theory, including energy func-
tional, equation of motion and boundary condition. They have used Rayleigh — Ritz method for free
vibration solution of fully free rectangular plate. Doong [18] have used the average stress method in
order to develop high order plate theory in which an arbitrary initial stress state is included. The gov-
erning equations are obtained using a perturbation technique. He has presented the Navier solution for
natural frequencies and buckling loads for simply supported rectangular plate. Stability analysis have
been performed for simply supported plate by Navier method. A broad literature survey on the vibra-
tion analysis of shear deformable plates also have been done by Liew et al. [19].

In this work, a refined exponential theory of plates is presented and applied to the investigation
of buckling analysis of anti-symmetric cross-ply laminated composite plates under different boundary
conditions. The governing equations of anti-symmetric cross-ply laminated composite plates are given
based on the exponential shear deformation plate theory. The equations of motion are derived using
Hamilton’s principle. The fundamental frequencies are found by solving an eigenvalue equation. The
results obtained by the present method are compared with solutions and results of the other higher-
order theories. The influences of several parameters are discussed.

2. Refined plate theory for laminated composite plates.

2.1. Basic assumptions.

Consider a rectangular plate of total thickness h composed of n orthotropic layers with the coordi-
nate system as shown in Figure 1. Assumptions of the refined plate's theory are as follows:

The displacements are small in comparison with the plate thickness and, therefore, strains in-
volved are infinitesimal.

The transverse displacement w includes three components of bending w, and shear w,. These
components are functions of coordinates x and y only.

W(x’yvz):Wb(x’y)+wY(x9y)' (1)

The transverse normal stress o, is negligible in comparison with in-plane stresses o, and o,.

The displacements U in x-direction and V in y-direction consist of extension, bending, and shear
components :

U=u+tu,+u,, V=v+v,+v,. 2)

The bending components u#;, and v, are assumed to be similar to the displacements given by the
classical plate theory. Therefore, the expression for u, and v, can be given as:
ow, ow

, =z b 3a
ox i : (32)

Uy =—z
b ay

The shear components u; and v, give rise, in conjunction with w,, to the parabolic variations of

shear strains y,., . and hence to shear stresses 0, ,

o, through the thickness of the plate in such
a way that shear stresses o, , o, are zero at the top and bottom faces of the plate. Consequently, the

expression for u, and v, can be given as:

us = f(2)

ow, 0
x

WS
o v, = [f(2) P (3b)
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Figure 1.
Coordinate system used for a typical laminated plate.

2.2. Kinematics

Based on the assumptions made in the preceding section, the displacement field can be obtained
using Egs. (1) — (3) as:

u(x,y,z) = u(x,y)—z%+f(z)%;
8)( ax
ow, ow

V(6 p,2) =v(xy) -z f(2)
oy Oy

W(xs%z):Wb(xay)"‘ws(x’J’)a (4a)

where u and v are the mid-plane displacements of the plate in the x and y direction, respectively;
w, and w, are the bending and shear components of transverse displacement, respectively, while
f(z) represents shape functions determining the distribution of the transverse shear strains and

stresses along the thickness and is given as the present model; the function f(z) is an exponential
shape function (Exponential Shear Deformation Theory):

]
2
f()=z-ze* " (4b)
It should be noted that unlike the first-order shear deformation theory, this theory does not require
shear correction factors. The strains associated with the displacements in Eq. (4) are:
.=l +z kb + 1 kS,

_ .0 b s,
e, =, +zky+ [k

0 b s .
7xy:7/xy+2kxy+kay’

Yy =8 Vs ®)
Y=g Vs
e, =0,

where:
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2 2
80_614 kb:_ﬁ Wb ks__@ WS 80:— k},:_

x_a’ X 6x2 ’ x axz ’ Yy ay’ Y ayZ ’ Yy ayZ ’

2 2
78 :a_“+@, kf :—2%, K :_2%’ 7SZ=%, 7;22%; ©
Yooy oo Y oxoy xy a7 oy p”
ar
g =1-112) and fi)=LE,

2.3. Constitutive equations
Under the assumption that each layer possesses a plane of elastic symmetry parallel to the x-y
plane, the constitutive equations for a layer can be written as

o, _ (e
O O O 0 0 x
%y O, Opn O 0 0 ||¢
(o} Xy =/ 0 0 Q66 0 0 V. xy (» (7)
Gyz 0 0 0 Q44 0 }/ yz
0 0 0 0 Oslly
O_xz = = Xz

where O are the plane stress-reduced stiffnesses, and are known in terms of the engineering con-

stants in the material axes of the layer:

E E. v, E
Ql1 _#, sz _#) le :M’
1=vipvy 1=vivy 1=vvy
O =Gizs Ouu=0n3, Os5s=G3. (®)

Since the laminate is made of several orthotropic layers with their material axes oriented arbitrar-
ily with respect to the laminate coordinates, the constitutive equations of each layer must be trans-
formed to the laminate coordinates (x, y, z). The stress-strain relations in the laminate coordinates of
the k™ layer are given as

(k)

o A A A 70 ®
' O On O 6 0 0 Ex
o -z =
Y On On O 0 0 y
Oyy =106 O O O 0 Vxy ) )

c 0 0 0 944 945 Vyz
0 0 0 Os Os| |y

where Q[/ are the transformed material constants given as

Ql =0 cos* O+ 2(0, + 2Q66)sin2 Ocos’ 6+ 0O sin* @ ;
01, = (0 + 0y, —4044)sin” Ocos” 0+ O, (sin* 0+ cos* 0) ;
sz =0, sin* @+ 20, + 2Q66)sin2 Ocos’ O+ 0 cos*;
Oi6 = (01 — 01y =204 )sin Hcos® 6+ (0O, =0y + 2Q66)Sin3 fcosd;
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056 = (011 — O — 2046 )sin” Ocos 0+ (0, — O, +20g4)sinfcos’ 4 ; (10)
Oss = (01 + 09y —20,, —20q¢)sin” Ocos” @ + O (sin* @+ cos* 9) ;
Q44 =0u cos’ 0 + Oss sin? 6 ;
Oys =(Qs5 —044)cos Osin O ;

st =Oss cos® 0+ Ous sin? @,
in which @ is the angle between the global x-axis and the local x-axis of each lamina.

2.4. Governing equations
The strain energy of the plate can be written as

1 1
U :EIV O'ygijdV :E-[V (0.8, + 0,8, + 0V T0,.7 + 0V )dV. (11)

Substituting Eqs. (5) and (9) into Eq. (11) and integrating through the thickness of the plate, the

strain energy of the plate can be rewritten as
1 0 0 0 bpb o apbrbh o agb b
v=3 jA{Nng + N, )+ Ny + MEKE + MOkD + MEKD;
(12)
M4 MKS 4 MK + 03,77 + QL | dudy,

where the stress resultants N, M, and Q are defined by

N
h/2 Zpa
(NN, Ny = [0 (0.0,.0)dz=3 [ (0,.0,.0,)dz:
k=1

0y,)zdz; (13)

x>Yy»

b oash asb~_ [M2 _Nzk+l
(M2, M), M2)= J_h/z(ax,ay,axy)de—; j (0,0
MMM = [« == [ )iz

oMy My)=| . (0,,0,.0, z—k_1 ., (0x:0,,04)fdz;

s s (h2 i e y
(szﬂQyz) - J-—h/Z (O-xz’o-yz)g z= ]éjzk (O—xz’o-yz)g -

Substituting Eq. (9) into Eq. (13) and integrating through the thickness of the plate, the stress re-
sultants are given as

B r | 3 S S ] 0

N, Ay Ay A By By B By B Big Ex

, , , 0

N, Ay Ay Ay By, By By B, By B &y

N, 45 4w Ass | | Bis s Ao By By B 7/,?y

b - - - b

M B, B, Bg| [D, D, Dg| |DPi Di Dis ky

b s b
My r=||By By By| |Dn Dy Dy D, Dy D ky ¢r- (14a)

M )’?y | Bis 4y Ass| [Die Dy Des| | Dy Ds; D kfy

M: B, By Bi| |Dy D Dy| |Hy Hp Hi i

M; B, By By| |Dih Dy Dy| |Hy, Hj Hiyg k;

M ;y | _Blsé By B ) _Dls s Dy Dis ] Hyg Hys Heg | k;y
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Q;Z — [A24 AES:I }/;Z (14b)

S s s s
(0 Ays Ass || 7y

where Ay S etc., are the plate stiffness, defined by

7

h/2

(4,.B,.D;. B}, D5, H ) = J/ZQJ(LZ,ZZ, F@2f (@), f22)dz (i j)=(1,2,6); (15a)

2 2

4= [ Ole@] = (.)=(45). (15b)

—h/2

The work done by applied forces can be written as

2 2
V:lJ' N)?ﬁ(wb:ws)JrN;)@(wb;rw) 2N° a(wb+w) dxdy, (16)
274 ox dy oxdy

where N. )(c) , Ng and N. Sy are in-plane distributed forces.

The virtual work principle is used here in order to derive the equilibrium equations appropriate to
the displacement field and the constitutive equation. The principle can be stated in analytical form as

U+V =0, a7
where O indicates a variation with respect to x and y.

Substituting Eqgs.(12) and (16) into Eq. (17) and integrating the equation by parts, collecting the
coefficients of Su ,6v, dw, and oOw,, the equilibrium equations for the laminate plate are obtained

as follows:
ON
Su :—aNx +—2 =0
Ox oy
ON
1) Y Y=
ox oy

2 b aZMb aZMb
é'wb:a A/g" +2 Y4 L+ N(w)=0; (18)
Ox Ox0y o

2 s aZMS aZMS s 6 N
5wY:aA/2[x+2 2+ 2y+5sz+ QyZ+N(w)=O,
Toox Ox0Oy oy Ox oy

where N(w) is defined by

N(W) ]v()a (Wb+w) ]v()a (Wb:—w) 2N0ya (Wb+W) (19)
ox? oy OxQy

Eq. (18) can be expressed in terms of displacements (u , v, w, , W, ) by substituting for the stress
resultants from Eq. (14). For homogeneous laminates, the equilibrium equations (18) take the form

’u a %y %y %y
A,—+24 + +A +(A4, + —+ Ayg—;
1502 167 A66 1652 (Ai, + Age) xay 252
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3 3 3
—By, ow =3By ow - (B, +2366) ik Wb — By Gil3 M;b ;
ax Ox 5y xOy* oy
Ow, Ow, O, *w,
-B; 6x3‘ —3Bys Oxzéy — (B, +2Bg6)—8x6 5 56 _6y3‘ =0; (20a)
o%u o%u 0%u 0%y 0%y o%v
Ag—+ (4, + —+ Ay —+ +24 + Ayy —;
16752 (4, A66)axay 26 6)}2 Agg o 2 2500 Y 22 6y2
63 o*w o*w
-B — (B, +2B b _3B b ;
16 (B> 66) 20 266 6y2 o
63w  OPw = Ow 0w
-B’ B, +2B ) ——=-3B}, —=—-B5,—3%=0; 20b
1673 o —(B, + 66)6x26y 26 6x8y2 22 8y3 (20b)
3 3 3 3
By, O'u +3B16 62u +(B12+2366) O'u +Bz6a—1:+
"ox® Ox“0y axoy? oy
o’y o’y RY o’y
+B¢—5+ (B, +2Bs)——+3B,s——+B -
16 PYE 12 66 o a 26 2 22 8y3
o*w, o*w, o*w o*w,
-D. -4D, —2(Dy, +2D, ) 4D, —L - D), —
11 P 4 16 5 3~ P ay 12 66 25 2 26 axay3 22 ay4
84w 84w 84w 84w o*w
-D;, — 4D166 P —2(D}, +2D5y) e 4D266 ~ - D5, ay; +N(w)=0; (20¢)
d*u du du d*u
B’ +3B; +(B}, +2B +B +
1123 o 168 o (B, + 66) y 266 3
v v oy v
+B’ —+ B, +2B, +3B; +By, ——
1653 (B, 66) 6y 26 6x6y2 22 6y3
o*w, o*w, o*w, - o'w, o*w,
-Df —4D¢ -2(DS, +2D 36 -Dj b _
1164 16aay (Drs 56) 5= 7 262 863 2264
64w 64w 84w ' 64w 64w
-H? —4H; -2(H}, +2H —4H5, -Hj +
11 =2 o 16a oy (Hi, 66) 6y2 265, oy 3 22 o 2
2 2 2
+ALs aaw +A44aaw +2A45(;g £ N(w)=0. (20d)
X Yy xXoy

3. Exact solution for antisymmetric cross-ply laminates
For anti-symmetric cross-ply laminates, the following plate stiffnesses are identically zero:

Ag = Az = Dyg = Dog = Dig = Dyg = Hig = Hyg =0 ;
By ==By; By =-Bj; @n

Blz:B26:B16:B66:B52:B1562B256 :BgﬁzAjSZO'
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The exact solution of equations (20) for the anti-symmetric cross-ply laminated plate under vari-
ous boundary conditions can be constructed according to [20]. The boundary conditions for an arbi-
trary edge with simply supported and clamped edge conditions are:

Clamped (C):
u:V:Wb:WS:%:%:%:%:O at x=0,a and y=0,b; (22)
ox 0Oy Ox Oy
Simply supported (S):
v:wb:wsz%:%zo at x=0,a; (23a)
dy oy
u=w, =w, :%:%: at y=0,b. (23b)

The boundary conditions in Eq. (22) and (23) are satisfied by the following expansions
u =U,, X, () Y, (»);
Vv =V X, () Y (3);
Wy = Won X0 (%) ¥, (1)
We = Wopn X (0) ¥, (1),

24

where U, Vi Womn and W, unknown parameters must be determined. The functions X, (x) and

Y, () are suggested here to satisfy at least the geometric boundary conditions given in equations (22)

and (23) and represent approximate shapes of the deflected surface of the plate. These functions, for

mr nr
the different cases of boundary conditions, are listed in Table 1, with &« =—— and S = 7 .
a

Table 1. The admissible functions X,,(x) and Y, ()

Boundary conditions The functions X,,(x) and Y, ()
At x=0, a At y=0, b X (%) Y,(»)

X,,(0)=X},(0)=0 Y,(0)=1,(0)=0 sin(ax) sin(4y)
SSSS

Xp(a)=X,(a)=0 Y,(0)=Y](6)=0

X,,(0)= X;,(0)=0 Y,(0)=¥(0)=0 sin(ax)[cos(@x) 1] sin(8y)
CSSS

Xy(a)= X} (a)=0 Y,(b)=Y(6)=0

X,0=X,0=0  LO=X0=0  sin@nfcos@x-1 FosBN=
CSCS

X,,(a)= X}, (a)=0 Y, (b)=Y,(b) =0

X,(0)=X,,(0)=0 Y, (0)=Y(0)=0 sin?(ax) sin(f y)
CCSS

Xp(a)=X,(a)=0 Y, () =Y (b)=0

X,(0)=X,(00)=0 %,(0)=Y,(0)=0 sin®(ax) sin?(By)
cccce

X, (a)=X,,(a)=0 Y,(b)=Y,(b)=0

X;,(0)=X,(0)=0 Y,(0)=Y,(0)=0 cosz(a x)[sinz(a x)+1] sinz(ﬂy)
FFCC

Xp@)=Xp@)=0  ¥,(b)=Y;(b)=0

() denotes the derivative with respect to the corresponding coordinates.
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Substituting Egs. (24) and (21) into Eq. (20), the exact solution of anti-symmetric cross-ply lami-
nates can be determined from equations

S S12 S13 S14 Uy 0

S21 S» 523 S24 Vo _ 0 (25)
S31 Sy Stk sy k|| Wy, 0

S Sy Sy Tk Sagtk (W, 0

where

ab
Sy = IJ-(AIIX;;Yn +A66X;11Y1:)X;nYndXdy )
00

(AIZ +A66)X YXmYndXdyv

J”

II
o —x
Se—>

S13= _ﬁ[BnX:nYn +(BIZ + ZBéé)Xr'nYr;:|X;nYndXdy’
00
Si4 :_T]Z[BISIX:nYn +(Bf2+ZBg6)X;nK:]X,'nK,dxdy > $21 = ]I-}JZ (Aip + Age )XY, X, w¥pdxdy |
0 00

522 (AZZXmYn +Ag6 X Y, )XmYndxdy ,

S t—2
S t—>

ﬁ[BZZX Y, + (B + 2B ) X, Y, X, Ydxdy,
00
ab " . .
524 :—“[stszYn +(Blsz +2B(§6)XmYn:|XmYndXdy ’
0

s = [ BuXpY, +(Bpy +2B4g) X0, X, %, dvdy

S =
O —_

[ By, Yy +(Biy +2Big) X,y X, X, dxdy

532

(=R N
O —_—

ab
= [[-[ D XY, +2(Dy +2Dg ) X, X + D X, Y, X, Y, dxdy (26)
00

O'—.Q

b
=[]~ [Dl XY, +2(Dfy +2D3 ) X, Y, + D3, X, X, }XmYn dxdy,
0

o'—,e

b
= [{[ B, + (B + 285 ) X0, X, Y, dxdy,
0

134



s = B (2 0 e s

Sq3 =

(=R SN

b
J-_|:D1S1X;:;Yn +2(D1S2 +2Dé6)Xr“nYn" +D§2Xer;m:|XmY;l dxdy ,
0

S44

S

b
[ HXY, +2( Hiy 4 2H3 )Xo Y, 4 H X, Y = 455X, = 43X, XY, dvdy,
0

k :Ncr]{ (71X;;1Yrt +72XmYI:)XmYndxdy
0

S —_

and N? =N

cr?

Ny =7,N,, ,and Ny, =0. (27)

4. Numerical results

In this study, a buckling of anti-symmetrically cross-ply laminated composite plates by using the
present shear deformation theory for laminated plates is suggested.

For the verification purpose, the results obtained by present model are compared with those of the
CLPT, FSDT, HSDT, and exact solution of three-dimensional elasticity. In all examples, a shear cor-
rection factor of 5/6 is used for FSDT. Unless sited otherwise, and for validation purposes, the follow-
ing lamina properties used according to [23] as: E| = 40E,, G, = Gi3 = 0,6E,, Go3= 0,5E;, vi;=
0,25, a/h=10, a/b=1.

For convenience, the following dimensionless formula is used in presenting the numerical results

in graphical and tabular forms:
N=N, . (28)
cr E2h3

Table 2. Dimensionless uniaxial buckling load of simply supported (SSSS) anti-symmetric cross-
ply (0/90), square laminates.

Number of layers Theory N
Present Theory 22.5790
Exact [21] 21.2796
(0/90), Reddy [5] 22.5790
FSDT [22] 22.8060
CLPT 30.3591
Present Theory 24.4596
Exact [21] 23.6689
(0/90)3 Reddy [5] 24.4596
FSDT [22] 24.5777
CLPT 33.5817
Present Theory 25.4225
Exact [21] 24.9636
(0/90)s Reddy [5] 25.4225
FSDT [22] 25.4500
CLPT 35.2316
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Table 3. Stacking sequence effect on the variation of the critical buckling load N of a simply
supported (SSSS) anti-symmetric cross-ply (0/90), square laminates.

alh
Number of layers
5 20 50 100
(0/90), 8,7694 12,5770 12,8949 12,9416
(0/90), 12,8466 27,9451 29,9449 30,2545
(0/90), 13,5747 30,7097 33,0862 33,4564
(0/90), 13,8389 31,6757 34,1852 34,5770
(0/90)5 13,9630 32,1227 34,6939 35,0956
(0/90)g 14,0990 32,6069 35,2449 35,6575
(0/90),¢ 14,1650 32,8397 35,5098 35,9276
(0/90)3, 14,1815 32,8979 35,5761 35,9951

A simply supported anti-symmetric cross-ply (0/90), (n =2, 3, 5) square laminate subjected to
uniaxial compressive load is considered. Table 2 shows a comparison between the results obtained us-
ing the various models and the three-dimensional elasticity solutions given by Noor [21].

The results clearly indicate that the present model gives more accurate results in predicting the
buckling loads when compared to Reddy [S], and indicates that Reddy's theory is closer to the present
model. Compared to the three-dimensional elasticity solution, the buckling loads predicted by present
model, Reddy [5], and FSDT [22] are 6 % to 7 %, respectively, for four-layer anti-symmetric cross-ply
(0/90/0/90) square laminates.

The effect of side-to-thickness ratio on buckling load of simply supported four-layer (0/90/0/90)
square laminates is also presented in Fig. 2.

Table 4. The effect of modulus ratio on the variation of the critical buckling load N of a simply
supported (SSSS) anti-symmetric cross-ply (0/90), square laminates.

E\/E,
Number of layers
5 10 20 30 40 50
(0/90), 5.2597 6.2721 8.1151 9.8695 11.5625 13.2019
(0/90), 6.4394 9.2315 14.2543 18.6671 22.5790 26.0724
(0/90), 6.6599 9.7762 15.3518 20.2010 24.4596 28.2310
(0/90), 6.7374 9.9672 15.7361 20.7378 25.1176 28.9866
(0/90)5 6.7732 10.0557 15.9141 20.9864 25.4225 29.3368
(0/90)g 6.8122 10.1517 16.1071 21.2559 25.7530 29.7167
(0/90)6 6.8309 10.1979 16.2000 21.3856 259121 29.8996
(0/90)3, 6.8677 10.2270 16.2190 21.3998 25.9248 29.9131
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Table 5. The stacking sequence effect on the variation of the critical buckling load N of an anti-

symmetric cross-ply (0/90), square laminates.

Number of layers SSSS CSSS CSCS CCSS CCccc FFCC
(0/90), 11.5625 15.6796 23.8302 21.6053 32.5819 40.4980
(0/90), 22.5790 28.0782 40.2425 36.4605 50.1704 58.7157
(0/90), 24.4596 30.1404 42.9808 38.9277 53.1913 61.9980
(0/90), 25.1176 30.8669 43.9520 39.8040 54.2816 63.2002
(0/90)5 25.4225 31.2046 44.4046 40.2127 54.7933 63.7675
(0/90)4 25.7530 31.5715 44.8974 40.6578 55.3531 64.3902
(0/90),4 25.9121 31.7485 45.1353 40.8728 55.6242 64.6927
(0/90);, 25.9248 31.8484 45.1835 40.9699 55.6993 64.7282

The critical buckling loads N have been tabulated in Tables 3 — 5 of an anti-symmetric cross-ply
(0/90)n square laminates. These results are obtained for various boundary conditions and loading con-
ditions, some power of laminate plate and different thickness-side and aspect ratios. we can say that,
according to Tables 3; 4 and 5, it is observed that for some boundary conditions by increasing the as-
pect ratio, the critical buckling load remains in the constant value, whereas the numbers of half waves
in the x direction of critical buckling mode shape increases.

The Numerical results are tabulated in Table 6 for the modulus ratio effect and in Table 7 for the

aspect ratio effect on the variation of the critical buckling load N of an anti-symmetric cross-ply
(0/90), square laminates for different boundary conditions. We can conclude that this model is not

only accurate, but also easy to predict the critical buckling loads of laminated plates. The effect of
modulus ratio on dimensionless uniaxial buckling load of simply supported multilayered anti-
symmetric cross-ply square laminates (Fig. 3), the critical buckling load of laminated square plates are
illustrated in Figs. 3 and 4, respectively. In light of the results obtained; we can see that increasing the
E1 / E2 ratio implies an increase in the critical buckling load, and the geometrical and mechanical
characteristics of the plate have a direct influence on the critical load buckling. Figures 5 and 6 show
the boundary conditions effect and the aspect ratio effect on the variation of the critical buckling load

N ofan anti-symmetric cross-ply (0/90), square laminates. As it is well known, the magnitudes of

buckling loads are over predicted in the case of the clamped boundary condition. It can be observed
that the influence of the ratio on the buckling loads for different boundary conditions. In addition, it
can be seen that both the buckling loads increase with the different boundary conditions.

5. Conclusion.

In this analytical , investigations on the buckling of anti-symmetric cross-ply laminated composite
plates under different boundary conditions is presented using the exponential shear deformation plate
theory. The theory allows for a square-law variation in the transverse shear strains across the plate
thickness and satisfies the zero-traction boundary conditions on the top and bottom surfaces of the
plate without using shear correction factors. The equations of motion were derived from Hamilton’s
principle. The accuracy and efficiency of the present model has been demonstrated for buckling be-
haviors of anti-symmetric cross-ply laminated composite plates under different boundary conditions,
and the results obtained by the present model are compared with other shear deformation theories be-
ing in literature. The conclusions of this theory are as follows:

The buckling load obtained using the present model with four unknowns and height order shear
deformation Reddy's theory [5] with five unknowns are in good agreement.
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The effect of side-to-thickness ratio on dimensionless uniaxial buckling load of simply supported
(SSSS) anti-symmetric cross-ply (0/90), square laminates.
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Table 6. The modulus ratio effect on the variation of the critical buckling load N of an anti-

symmetric cross-ply (0/90), square laminates for different boundary conditions.

E//E,
Number of layers a/h
5 10 20 30 40 50

5 5.5200 7.5135 10.3900 12.3759 13.8389 14.9687

10 6.7374 9.9672 15.7361 20.7378 25.1176 28.9866

SSSS 20 7.1319 10.8584 18.0830 25.0163 31.6757 38.0773
50 7.2509 11.1377 18.8729 26.5553 34.1852 41.7631

100 7.2683 11.1787 18.9915 26.7910 34.5770 42.3495

5 6.5195 8.6544 11.2871 12.8767 13.9638 14.7704

10 8.8330 13.2593 20.5219 26.2400 30.8669 34.6939

CSSS 20 9.6986 15.3157 25.9077 35.7243 44.8492 53.3541
50 9.9726 16.0128 27.9718 39.7736 51.4219 62.9201

100 10.0130 16.1176 28.2941 40.4292 52.5237 64.5781

5 9.4479 12.1736 15.3465 17.1897 18.4353 19.3614

10 13.6468 20.1364 30.3249 37.9773 43.9520 48.7592

CSCS 20 15.3672 24.1305 40.3893 55.1570 68.6330 80.9820
50 15.9307 25.5542 44.5520 63.2278 81.5908 99.6493
100 16.0146 25.7716 45.2187 64.5804 83.8583 103.0534

5 8.2534 10.8055 13.6761 15.3044 16.3947 17.2036

10 11.9149 18.0424 27.4861 34.4453 39.8040 44.0709

CCSS 20 13.4140 21.7258 37.0480 50.8586 63.3748 74.7731
50 13.9048 23.0475 41.0716 58.7635 76.1342 93.1929

100 13.9779 23.2497 41.7198 60.1007 78.3950 96.6038

5 11.4487 14.4464 17.5457 19.2425 20.3906 21.2677

10 18.2147 27.0472 39.5748 48.0838 54.2816 59.0281
cccce 20 21.413 34.7654 58.5509 79.1234 97.1033 112.9594
50 22.5230 37.7997 67.7187 96.8375 125.1918 | 152.8123

100 22.6912 38.2775 69.2715 100.0470 | 130.6103 | 160.9645

5 13.4242 16.6078 19.7489 21.4622 22.6507 23.5883

10 22.7620 33.4224 47.6390 56.7713 63.2002 68.0204
FFCC 20 27.6316 45.0962 75.3323 100.6289 | 122.1242 | 140.6297
50 29.3986 50.0162 90.1632 | 128.9493 | 166.4485 | 202.7261
100 29.6699 50.8092 92.7796 | 134.3724 | 175.5989 | 216.4655
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Table 7. The aspect ratio effect on the variation of the critical buckling load N of an anti-
symmetric cross-ply (0/90), square laminates for different boundary conditions.

a/h
Number of layers a/b
5 10 20 50 100
0.5 7.9349 13.5340 16.4795 17.5527 17.7177
SSSS 1 13.8389 25.1176 31.6757 34.1852 34.5770
2 49.3608 126.9579 216.5435 270.7636 280.8432
0.5 10.2174 23.2749 34.7466 40.3648 41.3213
CSSS 1 13.9638 30.8669 44.8492 51.4219 52.5237
2 35.0144 91.3392 158.7607 200.8747 208.8163
0.5 10.9704 24.8048 36.7766 42.5786 43.5625
CSCS 1 18.4353 43.9520 68.6330 81.5908 83.8583
2 58.9923 175.5266 396.8768 624.8799 681.2578
0.5 11.6624 29.8388 50.5470 62.9388 65.2308
CCSS 1 16.3947 39.8040 63.3748 76.1342 78.3950
2 40.8863 109.1107 195.9058 253.2013 264.2874
0.5 12.2768 31.4112 53.2116 66.2575 68.6706
Ccccce 1 20.3906 54.2816 97.1033 125.1918 130.6103
2 64.9499 196.4280 502.5786 929.7097 1060.1205
0.5 13.7037 38.2802 74.1242 101.1898 106.7882
FFCC 1 22.6507 63.2002 122.1242 166.4485 175.5989
2 71.7481 216.8627 560.7782 1055.1549 1209.5977

Compared to the three-dimensional elasticity solution, the present model gives more accurate re-
sults of buckling load than the height order shear deformation theory.

It can be concluded that the present model proposed is accurate in solving the buckling behaviors
of anti-symmetric cross-ply and angle-ply laminated composite.
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PE3IOME. IlpoBesneHO aHaii3 BTpaTH CTIHKOCTI aHTUCHMETPHYHO MEPEXPECHO apMOBaHOI LIapyBaTol
KOMITIO3UTHOI IUIACTUHKY IIPY Pi3HUX I'PAaHUYHHUX YMOBaX B paMKaX yTOYHEHOI Teopii BHIOTO MOPSAIKY, LIO
BpaxoBye 3cyBHi aedopmariii. I{s Teopis moxiOHa 10 KIaCHYHOI TEOpil MIACTHHOK y 0araTbox acreKkTax, ane
JIONAaTKOBO BPaxXOBYe€ KBaJpaTHYHy 3MiHY MONEPEYHMX 3CYBHHX Ae(opMaliif Mo TOBLIMHI i 3aJ0BOJBHSIE
HYJIbOBI TPaHMYHI YMOBH 34CIUICHHS HAa BEPXHil Ta HWKHIH CTOPOHAX IUIACTUHKH 0€3 BHUKOPHUCTAHHS MO-
MPaBOK III0JI0 3CyBY. UHCIIO HEBIZIOMHX Y Liii Teopii JOPIBHIOE YOTHPHOM SIK 1 B IHIIMX TEOPIisiX, 1[0 Bpaxo-
BYIOTb 3CYBHI JeopManii. PIBHIHHS pyXy IJI BITBHO OHepToi TOBCTOI INTACTHHKY OTPHMAHi 32 JOIIOMOTOX0
npuHuuny ['amineToHa. Po3B 130K y 3aMKHYTOMY BHUIJISIII OTPUMAHO 3 BUKOPUCTAaHHSAM piBHAHb HaB‘e mmst
QHTHCHMETPUYHO IIePeXPecHo (I pisHUMH KyTaMH) apMOBaHOI IIapyBaToi ITaCTHHKH. OTPHMaHO YHCIIOBI
pe3ysibTaTd MIOAO BTpaTH cTifikocTi. OOrpyHTOBaHICTh MiAXOAY JEMOHCTPYETHCS TMOPIBHSIHHSAM 3
PO3B‘A3KaMM, OTPUMAHUMH i OIyOIiKOBaHMMHM B paMKaxX iHIIMX TeOpiil BUILOTO nopsaky. ['onoBHuUi BUCHO-
BOK IIOJIAITA€ y TOMY, 1[0 3aIIPOIIOHOBAHUH IiX1/]] € TOYHUM 1 IIPOCTUM.
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