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Abstract. The thermo-elastic damping is a dominant source of internal damping in mi-
cro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). The 
internal damping cannot neither be controlled nor minimized unless either mechanical or 
geometrical properties are changed. Therefore, a novel FGMNEM system with a controlla-
ble thermo-elastic damping of axial vibration based on Eringen nonlocal theory is consid-
ered. The effects of different parameter like the gradient index, nonlocal parameter, length 
of nanobeam and ambient temperature on the thermo-elastic damping quality factor are pre-
sented. It is shown that the thermo-elastic damping can be controlled by changing different 
parameter. 

Key words: FGM nanobeam, Eringen nonlocal theory, axial vibrations, thermoelastic 
damping. 

 
1. Introduction. 
Nowadays MEMS and NEMS industries are playing important roles in scientific and 

engineering communities. There are a lot of advantages that make MEMS and NEMS com-
mercialization attractive. Ink jet printer heads, micropumps, airbag accelerometers and mi-
cro sensors are a few examples of devices which these systems have successfully replaced 
more conventional systems [1]. 

There are different kind of loss mechanism in MEMS and NEMS which classified into 
the two categories: extrinsic and intrinsic losses. [2]. internal damping cannot neither be 
controlled norminimized unless either mechanical or geometrical properties are changed 
[3]TED is a dominant source of intrinsic damping in MEMS. [4] and NEMS. [5] working 
under vacuum condition. [6]. It has been identified as one of important loss mechanisms in 
NEMS and MEMS [7]. From the other hand development of low-power, high performance 
MEM and NEM systems are of great importance [8] so TED is a very active research ap-
proach [7]. Lifshitz and Roukes [9] derived an analytical expression for the QF of TED in-
micro-beams and studied the effect of different geometrical parameters. Saeedi vahdat et al. 
[4] study the effects of axial and residual stresses on thermoelastic damping in capacitive 
micro-beam. Lepage et al. [10] studied thermoelastic effects in a vibrating beam acceler-
ometer that modelled using finite elements. Nayfeh and Younis [11] presented ananalytical 
expression for the QF of micro-plates of general shapes and boundary conditions due to 
TED. Rezazadeh et al. [6] studied thermoelastic damping in a micro-beam resonator using 
modified couple stress theory and also thermoelastic damping in capacitive micro-beam 
resonators using hyperbolic heat conduction model [12]. 

As can be seen there are a lot of work has been done on the TED of transverse vibration 
but investigations about longitudinal vibrations are few in comparison with it. These vibra-
tions are quite different [13]for example, the natural frequencies in transversal vibration are 
much lower than that of longitudinal vibration [13]and probably can achieve high QF. [14]. 
TED of the longitudinal vibration of micro beams is studied by maroofi et al. [14] and they 
showed increasing of the ambient temperature and length of micro beam increases the QF. 
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In the present work, by considering the coupled equations of motion and heat conduc-
tivity, TED of nano FGM beam’s axial vibration based on nonlocal theory has been pre-
sented and has been proposed a novel FGMNEM system, with a controllable thermo-elastic 
damping of axial vibration.  

The Material properties of the FGM beam vary continuously along the beam thickness 
according to the power law distribution. The coupled equations is solved by Galerkin 
method for a clamped-clamped boundary condition and finally, the effects of different pa-
rameters like gradient index, nonlocal parameter, length of nano beam and ambient tempera-
ture has been presented on the QF. 

2. Formulation. 
Consider functionally graded clamped nanobeam of length ,L  width b, and thickness h. 

Material properties of the beam vary continuously along the beam thickness are functions of 
z according to the power law distribution [15]: 
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where subscripts u and l refer to material properties of the upper and lower surfaces respec-
tively. m is a non-negative number that dictates the material variation profile through the 
thickness of the beam. The general strain field results from both mechanical and thermal 
effects [16, 17] 
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where   is passion’s ratio, E  is young modulus,   is coefficient of the linear thermal expan-
sion and 0T  is equal to the ambient temperature so the stress-strain relation is as follow [16]: 
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For both plane strain and plane stress condition we have [18]: 
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2.1 Nonlocal theory. According to Eringen [19 – 21], the stress field at a point x in an 
elastic continuum not only depends on the strain field at the point but also on strains at all 
other points of the body. Eringen attributed this fact to the atomic theory of lattice dynamics 
and experimental observations on phonon dispersion. Thus, the nonlocal stress tensor com-
ponents σij at point x are expressed as: 
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where tij(x) are the components of the classical macroscopic stress tensor at point x and the 
kernel function ( , )k x x  represents the nonlocal modulus, x x   being the distance (in 

Euclidean norm) and τ is a material constant that depends on internal and external character-
istic lengths (such as the lattice spacing and wavelength, respectively). It is possible (see 
Eringen [20]) to represent the integral constitutive relations in an equivalent differential 
form as: 
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where a is an internal characteristic length and 0e  is a constant. Now based on the Eringen 

nonlocal theory Eq. (4) changes to following form. 
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The equation for the axial motion of the beam in the absence of external force can be 
obtained as. [16]: 
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where ( , )u x t  is the axial displacement, ( )z  is the mass per unit length, N  is the axial 

force per unit length and I is as bellow, 
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where A  is the cross-sectional area of the beam. Integrating Eq. (6) with respect to area 
gives the following relation: 
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Using Eqs. (7) – (9), the equation of axial vibration can be found in terms of displace-
ment 
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where 0   Eq. (10) reduces to the classic form. 
In the other hand the heat conduction equation without any thermal source is. [16]: 
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where k  and c are thermal conductively and specific heat constant at a constant volume. Eq. (11) 
in the form of displacement obtained as: 
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By using the following non-dimensional parameters: 
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The dimensional-less form of coupled Eqs. (10), (12) obtains as bellow: 
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where D  and C  coefficients are as: 
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3. Numerical solution. 
To solve the coupled equation Galerkin method has been used. Based on the Galerkin 

method: 
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where ˆ( )n x , ˆ( )m x  are the suitable shape functions and ˆ( )na t , ˆ( )mb t  are time dependent 

coefficients. The shape functions satisfy the both end clamped boundary conditions of our 
problem so the form of they is as bellow: 
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Substituting Eq. (15) into Eq. (14) and multiplying Eq. (14a) into ˆ( )i x  and Eq. (15) 

into ˆ( )j x  and integrating outcome from 0 to 1 and also considering first mode shape of 

displacement and second one of thermo leads to: 
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So the natural frequencies of the system obtain by solving Eq. (18). The D and C  coef-
ficients are as bellow: 
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4. Results. 
In this section the numerical results has been presented. According to the power-law 

distribution of a material’s property, as an example, variation of the elastic modulus and 
thermal conductivity through the thickness with different material-variation profile parame-
ter m is shown in Fig. 1. As can be noticed, the variation of a material property can be en-
hanced via manipulating the control parameter m. The FGM nano beam has been composed 
of Nickel and silicon nitride. Its property varying through the thickness based on the power 
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low. Its bottom and upper surface is pure nickel and pure silicon nitride respectively. Mate-
rials properties have been presented in Table 1. 

  
 
Fig. 1. Variation of the elastic modulus and thermal conductivity through the thickness 

with different material-variation profile parameter m. 
Geometrical and material properties. 

Table 1                       

Material Nickel [14] Silicon nitride [22] 

Density (kg/m3) 8900 2300 

Thermal conductivity (w/mk) 92 30 

Young modulus(Gpa) 210 310 

Thermal expansion (1/k)× 10-6 13 3.4 

Specific heat at constant volume (j/kgk) 438 680 

Poisson’s ratio 0,31 0,27 

 
According to the complex frequency approach, quality factor of thermo-elastic damping 

(QTED) can be achieved as [6, 23]: 
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.
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
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To validate our results a comparison has been made with the results of Maroofi et al. 
[14] in Table. 2 for silicon micro beam where 200μm, 169Gpa, 150 w / mk,L E k    

3695 j / kgk, 2300 kg / m , 0,28c      and 62,6 10 .    As it can be seen there is a 

good agreement between them. 
A comparison between quality factor (QTED×106) in longitudinal vibration for silicon 

beam. 
Table 2                                         

Temperature (T0) Maroofi et al. [47] present 

300 K 2,861 3,107 

400 k 2,146 2,331 

 
In Fig. 2 the effects of gradient index ( 0 40)m    for three value of nonlocal parameter 

2( 0,  24 nm )   have been showed. As it can be seen increasing of gradient index increases 
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the quality factor in the nonlocal and classic theory. For gradient index between 0 – 10 the 
variation of the TEDQ  is large but as the gradient index increases the diagram will be linear. 

Note that 0   presents classic theory and where 0m   the beam is pure nickel and by 

increasing gradient index the silicon bromide’s present increases. Fig. 3 shows the effects of 
nonlocal parameter on the quality factor. As there is no value has been introduced for the 
FGM beam so here the nonlocal parameter has been chosen between 0 – 4 nm2. As it is visi-
ble increasing of   causes increase in the TED.Q  Comparison of Fig. 3, a and Fig. 3, b 

shows that variation of   for 20 nmL   has lower effects than 10nmL   on the TED.Q  This 

is means that increasing of the length decreases the effects of nonlocal parameter on the TED.Q  

 
 
Fig. 2. Effects of gradient index on the thermo-elastic damping quality factor where 

010nm, 300 K.L T   

 
 
Fig. 3. Effects of nonlocal parameter on the thermo-elastic damping quality factor a: 

0 010 nm, 300 kb : 10 nm, 300 K.L T L T     
 
Effects of length variation have been showed in Fig. 4, where length varies from 10 – 100 

nm and gradient index is 0, 2, 4,10.m   As expected decreasing of length causing decrease 

in TED.Q  As it can be seen increasing of the gradient index decreases this variation. In other 
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hand it can be found that length variation’s effects on the TEDQ  decreases as the silicon-

nitride’s present of the FGM beam increases. 
In Fig. 5 ambient temperature versus TEDQ  is showed for nickel nano beam based on 

classic and Eringen nonlocal theory ( 0, 0 and 0, 2)m m      and the FGM nano 

beam based on classic and Eringen nonlocal theory ( 2, 0 and 2, 2).m m      It is 

visible by increasing of ambient temperature the QTED decreases. Also it can be seen that by 
increasing of T0 the effects of gradient index and nonlocal parameter on the TEDQ  de-

creases. In table 3 TEDQ  in the 0 200T   and 500 K and also the difference of this two qual-

ity factor ( TED1Q  – TED2Q ) has been showed. This table shows that by increasing of gradi-

ent index and nonlocal parameter the effects of ambient temperature’s variation on the 

TEDQ  increases. 

 
Fig. 4. Length variation versus thermo-elastic damping quality factor (μ=0). 

 
Fig. 5. Ambient temperature versus thermo-elastic damping quality factor ( 10 nm).L   
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TEDQ  of 0 200 & 500T   for different values of gradient index and nonlocal parameter. 

Table 3                            

m  2(nm )  
TED1Q  

0( 200K)T   

TED2Q  

0( 500K)T   
TED1Q  – TED2Q  

0 1456 582,5 873,5 

2 1586 634,5 951,5 0 

4 1706 682,5 1023,5 

0 1818 727,1 1090,9 

2 1950 779,8 1170,2 2 

4 2074 829,4 1244,6 

0 2116 846,2 1269,8 

2 2253 901 1352 4 

4 2383 953,1 1429,9 

 
5. Conclusion. 
Thermoelastic damping of axial vibration of the FGM nano beam has been presented 

based on the Eringen nonlocal theory. It has been composed of Nickel and silicon nitride. Its 
property varying through the thickness based on the power low. Its bottom and upper sur-
face is pure nickel and pure silicon nitride respectively. The effects of gradient index, 
nonlocal parameter, Length of the beam and ambient temperature has been presented on the 
thermo-elastic damping quality factor. In the other word a FGMNEM system, with a con-
trollable thermo-elastic damping of axial vibration based on Eringen nonlocal theory has 
been presented and has been showed that increasing of gradient index (increasing of silicon 
bromide’s present), nonlocal parameter and length of the nano beam, increases the quality 
factor and increasing of ambient temperature decreases it. Also is showed that by increasing 
of ambient temperature decreases the effects of gradient index and nonlocal parameter and 
increasing of the gradient index decreases the effects of the nano beam’s length variation, on 
the TED.Q  The achieved results can be used as a design implement for the designers to con-

trol TED. 
 
 
РЕЗЮМЕ .  Термопружне демпфування є головним джерелом внутрішнього демпфування в мік-

роелектромеханічних і наноелектромеханічних системах. Внутрішнє демпфування не може бути ні 
кероване, ні мінімізоване, поки механічні і геометричні властивості матеріалу не є змінними. Тому 
розглянуто осьові коливання балки з нового матеріалу – функціонально градієнтного матеріалу з 
врахуванням наноелектромеханічних явищ – в рамках нелокальної теорії Ерінгена. Розглянуто вплив 
різних параметрів – показника градієнтості, параметрів нелокальності, довжини нанобалки, темпера-
тури навколишнього середовища – на коефіцієнт термопружного демпфування. Показано, що термо-
пружне демпфування може бути кероване зміною цих параметрів. 
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