І.В.Луцька, **В.А.**Максимюк

ДЕФОРМУВАННЯ ОРТОТРОПНИХ ТОРОЇДАЛЬНИХ ОБОЛОНОК СУПЕРЕЛІПТИЧНОГО ПОПЕРЕЧНОГО ПЕРЕРІЗУ

Інститут механіки ім. С.П.Тимошенка НАНУ, вул. Нестерова, 3, 03057, Київ Україна; e-mail: desc@inmech.kiev.ua

Abstract: The statical problems of thin orthotropic toroidal shells with superelliptical or supercircle cross sections are examined. The study is carried out following a procedure based on the variational-difference method, the method of Lagrangian multipliers, and the use of mixed functionals. This problem can complement some so-called pathological tests due to the presence of membrane locking.

Key words: thin shell theory, Lagrange multipliers, composite toroidal shell, membrane locking effect.

Вступ.

Серед тонкостінних резервуарів високого тиску різної форми тороїдальні оболонки завдяки своїй компактності займають особливе місце як паливні баки [17]. З метою збільшення компактності досліджують оболонки неколового поперечного перерізу: еліптичного [13], овального [16], косого еліптичного [12], параболічно-огівального (з гострими вершинами) [5], кусково-колового [7] та інших видів перерізів. Часто для проектування тороїдальних оболонок різного призначення використовують композитні матеріали [11, 14, 15].

Неколовий поперечний переріз викликає ряд особливостей у деформуванні циліндричних оболонок [2, 3, 6]. Так, еліптичний переріз у циліндричній оболонці деформується, як правило, з наближенням до колової форми [2]. В тороїдальних оболонках така особливість теж спостерігається [4, 8], але в меншій мірі. Можна очікувати, що в тороїдальних оболонках супереліптичного перерізу деформування матиме ряд нових особливостей.

Розрахунок напружено-деформованого стану (НДС) таких оболонок класичними чисельними сітковими методами ускладнюється через так зване явище мембранного замикання (membrane locking) [9]. Явище проявляється у сповільненій, але стійкій, збіжності класичних чисельних методів внаслідок значних згинів за невеликих розтягів. Очевидно, у випадку супереліптичного перерізу циліндричних, тороїдальних та інших оболонок розрахунок НДС ще більше ускладниться. Щодо оболонок колового перерізу, то в розрахунках за внутрішнього тиску мембранне замикання зазвичай не спостерігається. Проте, якщо переріз матиме форму суперкола (supercircle), то мембранне замикання може проявитися, коли суперколо наближатиметься до квадрата з заокругленими краями, де очікуються великі згини.

1. Постановка задачі.

Супереліпс (superellipse, крива Ламе) є плоскою кривою, що задається в декартових координатах рівнянням

$$\left|\frac{x}{a}\right|^{n} + \left|\frac{y}{b}\right|^{n} = 1, \quad n > 2.$$
(1)

При a = b = R крива (1) стає суперколом (supercircle, squircle). Зі збільшенням n супереліпс наближатиметься до прямокутника із закругленими краями зі сторонами a і

ISSN0032–8243. Прикл. механіка, 2021, **57**, № 6

b, а суперколо – до квадрата зі стороною R.

Нехай серединна поверхня замкненої тороїдальної оболонки утворена обертанням навколо осі *Оу* супереліпса (рис. 1)

$$F(x, y) = \left|\frac{x-c}{a}\right|^n + \left|\frac{y}{b}\right|^n - 1 = 0, \quad n > 2,$$
(2)

де с – відстань від центру поперечного перерізу супереліпса до осі обертання.

Серединну поверхню віднесемо до криволінійної системи координат (s, θ, γ) , у якій координата γ спрямована по нормалі до поверхні, а s – довжина дуги еліпса, яка вимірюється від точки A(x = c + a, y = 0) до точки E(x = c - a, y = 0) проти годинни-кової стрілки.

Осі ортотропії матеріалу збігаються з координатними лініями прийнятої системи координат. У точках A і E, тобто в площині y = 0, задавалися умови симетрії. Під дією рівномірно розподіленого внутрішнього тиску p НДС оболонки буде осесиметричним.

Прийнято, що НДС розглянутих оболонок описується лінійними геометричними рівняннями теорії тонких оболонок і фізичними рівняннями теорії пружності анізотропних середовищ [1]. Базову систему рівнянь отримано на основі варіаційнорізницевого методу (ВРМ). Геометричну частину гіпотез Кірхгофа – Лява реалізовано методом множників Лагранжа. Для зменшення впливу мембранного замикання [9] та покращення збіжності у змішаному функціоналі додатково варіюється меридіональна деформація ε_s^f [8]. Дискретизацію супереліпса виконано за алгоритмом типу дотичної [4].

2. Числові результати. Супереліптичний переріз.

Геометричні параметри оболонки товщиною h такі: a/h = 100, b/h = 110, c/h = 200, n = 4, довжина половини дуги супереліпса $s_k/h = 369$. Характеристики ортотропного матеріалу: $E_s = 15\Gamma\Pi a$; $E_{\theta} = 12\Gamma\Pi a$; $v_s = 0,12$. Навантаження – p = 0,1МПа.

Половина дуги супереліпса розбивалася на ряд вузлових точок з рівномірним кроком. У табл. 1 для характерних точок тора $\tilde{s} = s/s_k$ наведені дотичні переміщення $\tilde{u} = u/h$ й прогини $\tilde{w} = w/h$ серединної поверхні, а також віднесені до тиску p меридіональні (σ_s^+, σ_s^-) і колові ($\sigma_{\theta}^+, \sigma_{\theta}^-$) напруження на зовнішній (+) і внутрішній (-) поверхнях оболонки.

Поблизу «діагональних» точок *B* і *D* супереліпса ($\tilde{s} = 0,35;0,65$) і в «діаметральних» точках $C(\tilde{s} = 0,5)$ виникають значні моменти. Максимальними є меридіональні напруження (σ_s^+) на зовнішній поверхні поблизу точки *C*. Там же має місце максимальний прогин. Поблизу «діагональних» точок *B* і *D*, у яких моменти досягають локальних максимумів, переріз розгинається.

Таблиця 1

Точка	ŝ	ũ	ŵ	σ_s^+	σ_s^-	$\sigma^+_ heta$	$\sigma_{ heta}^-$
Α	0	0	0,728	101	64	300	298
В	0,35	1,719	1,762	- 1393	1860	- 680	- 555
С	0,5	0,071	28,05	2869	- 2235	221	- 246
D	0,65	- 1,126	- 0,130	- 1783	2528	640	1297
Ε	1,0	0	0,095	157	149	- 100	- 99

Ці розгини викликають значний прогин в точці C за порівняно невеликих деформацій (табл. 2). Точка C і область поблизу неї зміщуються як жорстке ціле, віддаляючись від центру супереліпса, на відміну від випадку еліптичного перерізу [4]. В точках A і E подібне жорстке зміщення відсутнє, оскільки вони утримуються не тільки меридіональними, а й коловими нитками матеріалу тора.

		Таблиця 2
γ/h	$\varepsilon_s \cdot 10$	$\varepsilon_{ heta} \cdot 10^3$
0,5	0,189	- 0,447
-0.5	-0.147	- 0.269

Отже, тороїдальна оболонка супереліптичного поперечного перерізу під внутрішнім тиском деформується так, що її переріз намагається набрати еліпсоподібну форму (рис. 2).

За використання у ВРМ функціонала без додаткового варіювання меридіональної деформації ε_s^f для досягнення точності до трьох значущих цифр у максимальних величинах необхідно було розбити половину дуги супереліпса (n = 4) на 2000 вузлових точок, тоді як у випадку еліпса (n = 2) достатньо було

200 точок [4], що є проявом мембранного замикання. Додаткове варіювання меридіональної деформації ε_s^f , як і в [8], значно покращує збіжність.

3. Суперколовий переріз.

Для порівняння в табл. З наведено аналогічні результати для тороїдальної оболонки суперколового поперечного перерізу з параметрами: R/h = 100, c/h = 200, n = 4, $s_k/h = 351$. Матеріал та навантаження такі ж, як і у випадку супереліпса.

Точка	\tilde{s}	ũ	ŵ	σ^+_s	σ_s^-	$\sigma^{\scriptscriptstyle +}_{ heta}$	$\sigma_{ heta}^-$
Α	0	0	0,727	106	58	300	297
В	0,35	1,731	- 2,02	- 1318	1674	- 1152	- 916
С	0,5	0,807	30,64	2997	-2332	227	-260
D	0,65	- 1,174	1,370	- 1803	2617	432	1202
Ε	1,0	0	0,095	159	148	- 99	- 99

Таблиця 3

Як і в попередньому випадку, поблизу «діагональних» точок *B* і *D* суперкола $(\tilde{s} = 0, 25; 0, 75)$ та в «діаметральних» точках $C(\tilde{s} = 0, 5)$ виникають значні моменти. Також наявне жорстке зміщення області поблизу точки *C*. Деформуючись, поперечний переріз витягується вздовж вісі обертання *Oy* і намагається набрати еліпсоподібну форму.

Висновок.

Порівняно невелика (b/a = 1, 1) еліптичність поперечного перерізу супереліпса (n = 4) оболонки приводить до незначного перерозподілу моментів поблизу «діагональних» точок. А максимальні напруження (точка *C*) дещо зменшуються, на відміну від випадку простого (n = 2) колового [10] й еліптичного [4] перерізів за інших рівних параметрів. З погляду механіки оболонок можна стверджувати, що у впливі параметрів супереліптичного перерізу на характер деформування показник кривої відіграє першочергову роль порівняно з еліптичністю. Дана вісесиметрична задача може доповнити ряд так званих патологічних тестів.

Наукові дослідження, результати яких опубліковані в даній статті, виконано за рахунок коштів бюджетної програми «Підтримка пріоритетних напрямків наукових досліджень» (КПКВК 6541230).

Р Е З Ю М Е. Досліджено проблеми статики тонких ортотропних тороїдальних оболонок із супереліптичним або суперколовим перерізами. Дослідження проведено відповідно до процедури, основаної на варіаційно-різницевому методі, методі множників Лагранжа та використанні змішаних функціоналів. Ця задача через наявність мембранного замикання може доповнити ряд так званих патологічних тестів.

КЛЮЧОВІ СЛОВА: теорія тонких оболонок, множники Лагранжа, композитні тороїдальні оболонки, явище мембранного замикання.

- 1. Механика композитов (под общей ред. Гузя А.Н.): в 12-и томах. Т. 7. Гузь А.Н., Космодамианский А.С., Шевченко В.П. и др. Концентрация напряжений. – Киев: «А.С.К.», 1998. – 387с.
- Abrosov Yu. Yu., Maximyuk V.A., Chernyshenko I.S. Physically Nonlinear Deformation of a Long Orthotropic Cylindrical Shell with Elliptic Cross-Section // Int. Appl. Mech. – 2021. – 57, N 3. – P. 282 – 289.
- Akgün G., Kurtaran H. Geometrically nonlinear transient analysis of laminated composite super-elliptic shell structures with generalized differential quadrature method // Int. J. Non-Linear Mech. – 2018. – 105. – P. 221 – 241.
- Chernyshenko I.S. Maksimyuk V.A. On the Stress-Strain State of Toroidal Shells of Elliptical Cross Section Formed from Nonlinear Elastic Orthotropic Materials // Int. Appl. Mech. 2000. 36, N 1. P. 90 97.
- Enoma N., Zingoni A. Buckling of an externally pressurised toroidal shell of revolution with a doublysymmetric parabolic-ogival cross-section // Int. J. of Pressure Vessels and Piping. – 2020. – 183. –e104106.
- Grigorenko Ya.M., Rozhok L.S. Stress Analysis of Hollow Orthotropic Cylinders with Oval Cross-Section // Int. Appl. Mech. – 2021. – 57, N 2. – P. 160 – 171.
- Kartal F., Kisioglu Y. Fatigue Performance Evaluations of Vehicle Toroidal Liquefied Petroleum Gas Fuel Tanks // J. Pressure Vessel Technol. – 2017. – 139, N 4. – e041402.
- Lutskaya I.V., Maksimyuk V.A, Chernyshenko I.S. Modeling the Deformation of Orthotropic Toroidal Shells with Elliptical Cross-Section Based on Mixed Functionals // Int. Appl. Mech. – 2018. – 54, N 6. – P. 660 – 665.
- 9. *Maksimyuk V.A.* Locking Phenomenon in Computational Methods of the Shell Theory // Int. Appl. Mech. 2020. 56, N 3. P. 347 350.
- Maksimyuk V.A., Chernyshenko I.S. Nonlinear Elastic State of Thin-Walled Toroidal Shells Made of Orthotropic Composites // Int. Appl. Mech. – 1999. – 35, N 12. – P. 1238 – 1245.
- 11. *Patiño-Pérez D., Corz-Rodríguez A.* Optimum design of a toroidal pressure vessel of composite material for gas (CNG) powered vehicles // Dyna. 2019. **94**, N 5. P. 546 553.
- Sun B.H. Geomtry-induced rigidity in elastic torus from circular to oblique elliptic cross-section // Int. J. of Non-linear Mech. – 2021. – 135. – e103754.
- Sutcliffe W.J. Stress analysis of toroidal shells of elliptical cross-section // Int. J. Mech. Sci. 1971. 13, N 11. – P. 951 – 958.
- Tizzi S. A free vibration analysis of toroidal composite shells in free space // J. of Sound and Vibration. 2015. – 337. – P. 116 – 134.
- Vick M.J., Gramoll K. Finite Element Study on the Optimization of an Orthotropic Composite Toroidal Shell // J. of Pressure Vessel Techn. – 2012. – 134, N 5. – e051201.
- Zhan H.J., Redekop D. Static and dynamic loading of an ovaloid toroidal tank // Thin-Walled Struct. 2009. – 47, N 6-7. – P. 760 – 767.
- 17. Zingoni A. Liquid-containment shells of revolution: A review of recent studies on strength, stability and dynamics // Thin-Walled Struct. 2015. 87. P. 102 114.

Надійшла 28.02.2020

Затверджена до друку 24.06.2021

48