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Abstract. A plane strain problem is investigated for the local stress and displacement
fields near the angular point of the polygonal interface of two dissimilar homogeneous iso-
tropic materials. It is supposed that the interface is weakened by an interface crack with the
tip at the angular point. The contact zone near the crack tip is modeled by the cut with the
frictional contact between faces according to the Comninou model. The asymptotic expres-
sions for the components of displacement gradients and stress tensor near the crack tip are
found using the Wieghardt-Williams method. A characteristic equation is obtained to deter-
mine the singularity order at the crack tip. A numerical analysis of the order of singularity
dependence on the angle of the interface and the ratio of Young’s moduli of the bounding
materials is given. It is shown that the Comninou model can be used in this problem to get
rid of the displacement oscillations near the angular point of the interface between two dis-
similar materials. The obtained results are used to determine the scope of model applicability.

Key words: fracture, interface crack, polygonal interface, Wieghardt-Williams method,
singularity order, contacting faces.

1. Introduction.

Solving many problems of fracture mechanics requires knowledge of the stress-strain
state near various natural defects in the structure of solids and near the sharp technological
elements of structures, which are a source of high-stress levels. When calculated within the
framework of the linear elasticity theory, local stresses are singular in the vicinity of the
concentrator vertices. The foundations of linear fracture mechanics were laid in the last
century by A. Griffith, G. R. Irwin, E. Orowan. The fracture criteria formulated by them
ensured significant progress in the mechanics of fracture, first of all, of homogeneous bodies
with cracks.

The next step in the development of fracture mechanics was to take into account the
influence of pre-fracture zones on the stress-strain state near the crack vertices. To this end,
more complex models of cracked bodies have been developed, in particular, the models of
Barenblatt [6] and Dugdale [17] and their generalization [9, 26 — 30], which provide a zone
of pre-destruction by rupture lines.

At the same time, studies of piecewise homogeneous bodies with a crack at the flat
interface between two dissimilar materials, carried out by Williams [42], Erdogan [20],
England [19], Rice and Sih [37], and others, resulted in the physically impossible mutual
intersection of crack edges due to spatial oscillations of displacement in the bound bodies
near the vertices. Further investigations showed that oscillatory singularities at the tip of the
opened interface crack cannot be vanished by taking into account additional factors, namely
the curvilinear form of the interface crack [43], taking into account the spatial configuration
of the piecewise homogeneous body [7] and anisotropy of the materials [36]. The oscillatory
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singularity of the displacement field in the vicinity of the crack tip is an important issue in
thermoelasticity [31] and piezoelectricity in bimaterials with impermeable and permeable
interface crack [21].

Oscillating singularities at the tip of the opened interface crack caused some difficulties
with the correct application of the linear fracture mechanics criteria [23]. A solution to this
problem was proposed by M. Comninou [11]. It supposes a face contact area near the tip of
the interface crack. Investigations by Comninou [10, 11], Comninou and Dundurs [12],
Dundurs and Gautesen [18], Anderson [1], Y. A. Antipov et al. [3], Atkinson [4], Audoly
[5], Leguillon [32] and others did confirm the elimination of displacement oscillations and
the preservation of the power-law stress singularity due to the contacting faces for the planar
interface between isotropic materials. The contact model was successfully used to
investigate planar interfaces of various anisotropic, piezoelectric, electrically permeable, and
dielectric materials in various configurations [21, 22, 24, 25, 39].

But is the Comninou model perfect? Does it guarantee that there will be no oscillatory
singularity for every interface crack? In this paper, to answer this question we consider a
crack in the piecewise linear interface. As was stated earlier, the vast majority of interface
crack studies deal with the case when the crack is located on the planar interface between
two dissimilar media. However, in the structure of modern industrial products or rocks, the
appearance of interface cracks located at the broken interface is possible. Not enough
attention has been paid to the determination of the stress-strain state in the vicinity of the
vertices of such cracks. In particular, Theocaris and Gdoutos [38], using the Muschelishvili
complex potential method, obtained explicitly characteristic equations for stress singularity
orders within the first, second, and mixed basic problems of the theory of elasticity for an
interface crack emerging from the angular point of two dissimilar homogeneous materials
neglecting possible contact between the crack faces.

Under certain assumptions, the stress singularity orders under the above conditions can
be determined from the results of local stress field studies in the vicinity of the common
vertex of a multiwedge heterogeneous system [8, 13, 33-35]. In work [15], an analysis of
the stress field near the tip of the open crack emerging from the angular point of the
interface was performed. Following the results of Theocaris and Gdoutos [38], it is shown
that in a rather wide range of fracture angles the stress singularity order is complex. As in
the case of an interface crack at the planar interface, this yields spatial oscillations of the
crack face displacement. As it was mentioned above, an alternative to the model of the open
interface crack is the model of a crack with contacting faces (the Comninou model), in
which, as in the model of M. Comninou, the displacement oscillation can be eliminated. In
this regard, it is important to study the local field of stresses and displacements near the
angular point of the boundary between two dissimilar materials, from which the interface
crack emerges. The faces are supposed to interact according to the law of dry friction. The
problem is to find the scope of model applicability and the asymptotic expressions for the
components of the stress tensor near the crack tip under the conditions of plane strain. These
asymptotic expressions can be used to determine the limiting states of piecewise
homogeneous bodies with interface crack, the cohesive zone parameters at the crack tip, etc.

The general notation and the problem statement is given in Sect. 2. Section 3 is devoted
to the solution of the problem. The solution and its implications are discussed in Sect. 4. The
corresponding asymptotical near-tip stress field is analyzed in Sect. 5 with some necessary
functions given in Appendix A.

2. Problem statement.

Consider the behavior of stresses near the tip of an interface crack under the plane strain
condition. The tip of the crack is located in the angular point of the polygonal boundary
between two dissimilar elastic homogeneous isotropic materials. The materials are
characterized by Young’s moduli E;, E, and Poisson’s ratios v;, v,, respectively. It is

assumed that part of the crack faces of length s is in Coulomb frictional contact (Fig. 1).
The coefficient of friction is . Following the general stress behavior near the angular

points of elastic bodies (at distances r < s), we arrive at a homogeneous problem of
elasticity theory for a piecewise homogeneous plane with a boundary between materials in
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the form of rectilinear sides of an angle. A half-
infinite crack with contacting faces emerges from

EL v the angle vertex. Local structure of a piece-ho-

. ) mogeneous body with an interface crack is depic-
: ted in Fig. 1.

s ""_ : In what follows the polar coordinate sys-

(Ey v Qa ' tem (r,0) is introduced in such way that the

W/ / ; pole O is at the vertex of the angle of measure

) CLLLLLL S S0 a on the interface and the polar axis is located

Fig. 1 along the bound line of materials. Taking into

account the contact of the crack edges and the
condition of continuity of stresses and displacements at the bound line of materials, one can
formulate the boundary value problem of the theory of elasticity as follows:

b (r,0)= 0 (r,0); i (r,0) =% (r,0);
uy (r,0) =1l (r,0); u! (r,0)=u?(r,0);
oy(r.f) =05 (r,~a); )
Ty (1. B) = 139 (r.—t) = —poy (1. )
up(r.B)=up(r—ar) (B=27-a),

where superscripts denote the number of material, o,, o,, 7,, are the radial and tangential

components of the stress tensor, and u, , u, are components of the displacement vector.

ro

3. Determination of stress singularity orders.

Since the studied body is a combination of two elastic wedges, we use the Wieghardt-
Williams method [40, 41] to expand the solutions of the theory of elasticity equations by
eigenfunctions and present the stresses and derivatives of displacements in each of the
materials as

o (r,0) = r*[a sin(1+2)0 + dj sin 10 + a} cos(A +2)0 + ajf cos A6];

ri

(A+2)

zyy(r,0) = - [a]' (A +2)cos(A+2)0 +

+ay Acos A0 —aj (A +2)sin(A +2)0 —az Asin 16];

A
ol (r.0) =~

[a] (A +2)sin(A+2)60 +

+ay (A -2)sin A0+ a5 (A +2)cos(A +2)0 + ay (A —2)cos 10];
()
OCuy(r,0) _ 1+v, At
or E, A+2

[a]' (A +2)xcos(A+2)0+ay(A+4—4v,)cos 10—

—al (A+2)sin(A+2)0—al (A+4—4v,)sin 10];

ouy (r,0) _ 1+v, "
or E, A+2

[af (A +2)sin(A+2)0+
+al (A -2+ 4v,)sin A0 + al (A +2)cos( +2)0 +al (A -2 +4v, ) cos A0];
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n=1 for 0£0<p and n=2 for —a < <0. Satisfying the boundary conditions (1) using
the Eqgs. (2), we arrive at a system of linear homogeneous algebraic equations for the co-
efficients a_:f( j=1...4). For this system to have a nontrivial solution, its determinant

should be zero. This condition leads to the characteristic equation of the problem for de-
termining the exponent A in the functional dependence of stresses from the distance r to
the crack tip. After calculating the determinant and its algebraic transformations, this equ-
ation gives

D(A)=0; D(A)=Dy(4)+ puD,(4), 3)
where
Dy(A)=(1-¢e)[0,5(1+x;)D,t, —0,5e(1+ x5 ) Dy ts + e(1+ ;) (1 + x5 )d ]+
+e(1+x))(1+x,)Dy5;
Dy(A) = (1=e){(1+ k1) Dyt — e(1+ 1) [ Doyt = (14 1)y ]+ 2(1- €)* 1185} +
+e(1+x)(1+x,)Dys3;
Dy (A) = (1-e)ds +(1+x,)sin 24 + )27 — )
Dipy(A) = e(14&,)sin2(A + Da + (1 - e)dy;
Dy5(2) = sin*Az[(1+ &y)d7 — e (1+K,)dy ];
D, (A)=(1-e)ds —(1+K))ty;
Dy, (A)=e(l+xy)ty +(1-e)d;;
Dy3(2) = sin*Az[(1+ &) —e(1+ K,)1dg;
d, =(A+1)sin’a+3t,; d, =(A+1)sin2a +sin2(A +1)a;
dy = [(,1 +1)? sina +sin(A+Dasin(A+1) /j}sinz(z 1) a-7)—
-2 (/1 + 1) sin?Azsin2acos* (A +1)(7 —a);

d, = 2[(/1 + 1)2 sin’a +sin(A +Dasin(A + l)ﬂ}sinz(l +)(r—a)-
—4sin?Az [ (A+1)sin’@cos (A +1)(x — @) +sin(A+Dasin(A+1)4 |;
ds = (A+1)sin2a —sin2(A+1)f; dg = (A+1)sin® & +3ty;

d; =(A+1)sinacosa —sin(A+1)acos(A+1);
dg =(A+1)sin’a +sin(A +asin(1+1)3;
dy=(A+1)sinacosa +cos(A+1)asin(A+1)4;

f = (A+1Y sina —sin2(A+1)a; 1, =sin*(A+1)f;
ty =(2+1) sin’a —sin*(A+1)B; 1, =sin*(A+Da;

E 1+v,
=——= Ko =34V 0.
E, 1+v,” '@ '@

When a =7, Eq. (3) can be reduced to the known result by Comninou [11]
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(I+exy)—(e+x)
(I+exy )+ (et+xy)

cosAzm+ ufpsinAzr =0; By =

where S , is the so-called «second Dundurs’ parameter». The corresponding order of the

stress singularity in this case is 4 = —ﬂ_larccot| ,u,BD| .

4. The contact model implications and its scope of applicability.

It follows from (2) that the stress behavior near the crack tip will be singular if Eq. (3)
has roots in the range —1<Red <0 (roots with Red < -1 are inacceptable as they yield
infinite displacements for » — 0). If the root with the smallest real part, say 4, is real then
we have a simple power-law singularity. However, if A, has a non-zero imaginary part then

we have a power-law singularity Re4; <0 with oscillations along the radial coordinate.

This gives us stresses as o, ~ M cos (ImA, -Inr+¢) (¢ is a constant). A similar oscil-
lating factor in a formula for displacements gives an unphysical crack face penetration.

The results below are given for the stress state near the crack tip for Young’s moduli
that meet the condition E; < E,. The obtained conclusions can be transferred to the case of
E, > E, by the simultaneous substitutions E, <> E,, v, & V,, u—>—u, a >2r—-a.

Numerical analysis of equation (3) reveals that there can be 1 or 2 of such roots. Fig. 2, a
shows the dependencies of the singularity orders 4,, 4, for E,/E,=0,1, v, =v, =0,3 for
#=0 (solid line), #=2 (dashed line) and x=-2 (dot-dashed line); the sign of x is de-
termined by the direction of relative shear displacement of the crack faces. This displa-
cement also determines the contact zone extent.
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The last statement is a conclusion of the contact interface crack studies for the linear
interfaces by Dundurs and Gautesen [18]. In what follows, the study is focussed on
configurations with £, < E, and x <0 (Fig. 1). This parameter combination corresponds to

the case of substantial contact zone extent.
As it is shown in works [15, 38], the singularity order near the tip of the open interface
crack has a non-zero imaginary part at certain ranges of bending angles ( @ pin > @ max ) (the

area in Fig. 2, b denoted as Re4, ). This leads to unphysical oscillatory behavior. Due to
the contacting crack faces for ¢ >0 (Fig. 2, a), solid and dashed lines) the order of singu-
larity 4, becomes a purely real number for an arbitrary bending angle, hence the stresses
have a power-law singularity and there is no oscillatory behavior near the crack tip. Thus,
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the Comninou model for #>0, E,/E, <1 allows to avoid the shortcomings of the

classical model of open interface crack.
However, for 4 <0 at certain ranges of bending angles ( &) in > @ max )» Which depend

on the ratio of Young’s moduli of the bound materials and the coefficient of friction (Table),
the singularity orders can reach complex conjugate values A4, = A,, which cause physically
incorrect spatial displacement oscillations (dash-dotted line, range Re4, , on the plot for
u=-2, Fig. 2, a). Thus, the Comninou model becomes ineffective for the bending angles

from this range.

Table
E/E, 0,1 0,3 0.5 0,7 0,9

H -1 2 -1 2 -1 -2 -3 —~4 -12 | -13

. - (46, - (57, - (35, - (73, - (64,
(almm’ almax) 77) 84) 91) 76) 84)
(@ ) | @64 | @42 [ @74 | @52, | (267, | (67, - 268, | (277, | @72,
2min> #2max 317) | 322) | 305) | 312) | 305) | 305) 304 | 296) | 300)

(Ciins Pinax) (61,252) (75,258) (82,262) (86,266) (89, 268)

The width of the intervals (&> @max ) 304 (Aomin> Xomax ) depends on the ratio of
Young’s moduli of the bound materials and the coefficient of friction and tends to zero as
the elastic characteristics of the materials becomes closer and the coefficient of friction
decreases (Table). The corresponding range of the bending angles for the open crack is
given in Table as values a,;,, O,y - If the coefficient of friction allows the existence of
(%mins %max )» (Comins Cmax ) for the model with contacting faces, these intervals are

substantially narrower than the interval (¢, ; @pax )-

Dependence of the stress singularity order near the tip of the interface crack with
contacting (a) and load-free (b) faces on the bending angle of the interface [15, 38] for
E /E,=0,1, v,=v,=0,3 is shown in Fig. 2.

The ranges of bending angles of the interface (in degrees), which correspond to the
complex orders of the singularity at the tip of the interface crack with the contacting faces
(v, =v, =0,3) are given in Table.

For every couple of the interface pa-

. 25 50 75 100 .. 240 265 290 a.
rameter values ( £,/ E,, «), there exists

I, ‘ T oI-—f=E==—F
Pt j

a limiting value of the coefficient of fric- 5 -7~ N e
tion £, such that the order of singularity _;, ¢ / ]

has a non-zero imaginary part for g < g, -15 5

(|4l g ) (Fig. 3). The closer Young’s 20 £ 7 3 /
moduli of the bound materials to each 2> f | i [ !
I

- E ! .
other, the bigger is | 4, |. 0 i L

-35 B 1

The dependence of the stress singu- w0 b } i
larity order near the tip of the interface 5 e
crack on the coefficient of friction for i i

p’C
the bending angles «=200° (a) and
a =300 (b) (v, =v,=0,3; dashed line
is for E,/E, =0,1, solid line is for E,/E, =0,5, dash-dotted line is for E,/E, =0,9 is

shown in Fig. 4.
As it can be seen from the comparison of Figs. 2, a and 2, b, the singularity orders 4,

Fig. 3

near the tip of the crack with contacting faces and the open crack for most values of the
interface bending angles are close to each other and to the value of —0,5, which
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corresponds to a crack in a homogeneous body. At the same time, the values of A, differ
quite signi-ficantly, so according to their values, the effect of 4, on the stress state near the

tip in the case of a closed crack is assumed to be much smaller than for the open one.
According to our calculations (Fig. 4) the friction escalation (' < 4" <0) leads to the

decrease of the stress concentration (4 > 4"). This pattern does not hold for the complex

orders of singu-larity (Fig. 4, b, bolder lines on the plot). The corresponding ranges of
parameters should be treated according to other models of interface crack.

The limiting values of the coefficient of friction for various bending angles are shown in
Fig. 3 (v, =v, =0,3; dashed line is for E,/E, =0,1, solid line is for E,/E, =0,5, dash-

dotted line is for £,/ E, =0.9).

5. Asymptotical near-tip stress field.

Consider one of the coefficients a;’ for each of the found roots 4 of Eq. (3) to be

known and equal to a given constant, namely: a3 (4)=C,. This allows us to determine the
remaining coefficients, expressing them in C;, and obtain the desired formulas for the local

field of stresses and displacements near the crack tip, which are given as a superposition of
partial solutions of the problem with Re 4, >—1:

oo(r,0)=2 CF (4, 0)r’"; 1,(r.0)= YCiFs (A 0)r’i;
O',(I", 9) = ZC,FE (ﬂ«i, 9)]”11';

duy(r, 0)
or?

F, (/1,19)={

ou,(r,0) _

21
:Zi:CiF4 (ﬂi,ﬁ)r iy o

SCF (4, 0)r;
i

F,(4,0), 0<0<2r-a,

(m=1...5)
Fy(2,0), -a<@<0;

F"(2,0) =} (A)sin(A+2)0+ @l (2)sin A0+ @} (1) cos(A +2)0 + all (1) cos 0;

A

Fy'(4,0)=-a(A)cos(A+2)0-a5(A) P

cos A0 +aj (A)sin(A+2)0+
+dy (A)ﬁsin 10,
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Fl(2,6)= —[d{’(l)sin(l +2)0+a! (i)%sin/w+ a(1)cos(A+2)0+
+

+ay (A) j ;i cos w} 4)
F} (2,6)=- ! ;V” %[d{’ (AA+2)cos(A+2)0 +ay (ANA+4—4v,)cos 10—
n +
_E (WA +2)sin(A+2)0 -l (A)(A+4— v, )sin A6);
Fi(r,0)= —%[&1 (A)(A+2)sin(A +2)0+ @ (A)(A—2+4v, )sin 10 +

+a@! (A)(A+2)cos(A +2)0+a) (A)(A—2+4v,)cos A0].

The functions a 7

which depend on the geometry of piecewise homogeneous body and applied loads,
completely determine the field of stresses and displacements around the angular point of the
materials interface. The quotients C; take into account the external load and the structure of

(4) are given in Appendix A. Thus, the Egs. (4) up to C; constants,

a specific piecewise homogeneous body but they cannot be determined in the framework of
Wieghardt-Williams method and should be obtained numerically.

The main terms of the expansion (4) correspond to the smallest singularity order in the
—1<ReA <0 strip, say 4;. These terms determine the stressed state in the vicinity of the
crack tip. Taking this into account, the factor C, is subject to the condition
CF(4,—a) <0, which corresponds to the compressive normal stress on the crack faces

and ensures their contact.
The angular distribution of stress and strain in the crack tip is determined by the
functions F,(4,0). The dependence of the normal (o, ~ Fi(4,0)) and tangential

(7,9 ~ F,(4,0)) stresses on the polar angle in the coordinate system depicted in Fig. 1 is
shown in Fig. 5 for ¢=200°, E,/E,=0.1, v,=v,=0,3, pu=-2. According to this
figure, F(4;,—a) <0 . Thus, the crack face contact implies C; >0.

Angles for the extremal values of the
nor-mal and tensile stresses, denoted 6,

F,(1,.0)
Fy(1,.0)

F\(0,.0)
\

here, can be found from the angular
dependency of the stresses. These angles
can be used to obtain esti-mations of the 0
primal initial directions of (small-scale)
prefracture zones. As a consequence one -1
can evaluate possible directions of the

crack propagation. In particular, if it is —2
the brittle crack that propagates due to 3
the tensile deformations then the 2200 —100 0 100 0°

propagation direction angle & can be Fig. 5
determined from the condition of the

maximum value of F{(4;,6,). For the example in Fig. 5, this gives us 6, =46°. For the
ductile materials, the initial plastic zone orientation can be approximately determined from

the condition of F,(4,,6,) maximum value. For the example in Fig. 5, 6, = 46° for the first

material and 6, ~—139° for the second material.
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The obtained solution allows us to estimate the length of the contact area of the faces
using the distance from the tip to the point where the normal stress on the faces of the crack
are equal to zero. Limiting the expansion of o,(r, 27 —¢) to the first two terms, one can

find that

SZL(_HMJMM)_ -

Fy (4,27 -a)

where n= (CIL/11 ) / (C2L/12) is the dimensionless parameter which depends on the configu-

ration of the piecewise homogeneous body and external loading. Since the found solution
takes into account the local stress field, the use of the obtained contact zone length estimate
is limited by the requirement that the zone dimensions should be much smaller than the
crack length or any other governing lengths (distances from crack tip to nearest body boun-
dary, to the nearest point of external forces application, etc.). For example, the assessment of

the contact zone length is physically valid, s=~0,005L, for n=0,01 and « =200,
E /E,=0,1, v,=v,=0,3, but n=0,05 yields an invalid value s ~1,395L > L.

It is worth noting that the contact zone length in approximation from Eq. (5) does not
change for the simple loading as C;/C, in n does not change with proportional growth of

the stress components. This conclusion is in agreement with the results of the contact model
of crack for flat interfaces [4, 12, 18].

6. Conclusions.

Knowing how stress and displacement are distributed near the crack tip is important to
evaluate the strength of the solids. The results of this work can be of use for designers and
engineers to evaluate parameters of limiting states of the piecewise homogeneous bodies
with polygonal interface. The results for the interface crack at the flat interface have been
already obtained a relatively long time ago. This work initiates investigations for the general
case of the crack at the polygonal interface. The local stress and displacement fields found
in this work as well as the corresponding orders of the stress singularity at the tip of the
interface crack emerging from the interface angular point can be used to make the industrial
designs physically and mathematically valid.

The expressions found for stress and displacement fields near the interface crack tip can
also be used in fracture mechanics to study the parameters of small-scale cohesive zones and
limiting loads in piecewise homogeneous bodies with a polygonal interface. This problem is
partially solved for the case of an open crack [15], but it remains unsolved for the case of a
crack with contacting faces.

Besides of the practical applications, an important corrolary of this work lies in analysis
of the theoretical basics of solving the interfcae crack problem. It is found that the modeling
of interface cracks emerging from the angular point of the interface using Coulomb’s fric-
tion law and taking into account the face contact can be used to get rid of spatial oscillations
of face displacement, which are inevitable when using the model of open interface crack.
However, it is shown that the crack model of the Comninou type with contacting faces still
can have small intervals of interface bending angles, for which, depending on the direction
of shear displacement of the crack faces, there are also complex singularity orders
responsible for oscillations of face displacements.

Hence, the interface crack model with contacting faces does not give the universal solu-
tion to the problem of oscillatory singularity elimination. We believe that this problem can
be solved by introducing a prefracture zone near the crack tip. This is the essence of the
complex interface crack model [16, 30]. It should be mentioned that unphysical displa-
cement oscillations can also be eliminated by introducing other features into the vicinity of
the crack tip, namely the crack face cohesion without sliding [14], unideal material con-
juction [2], etc.
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Appendix A. Eigen functions in expansions of the stresses and displacement deriv-
atives near the interface crack tip for the case of the crack faces contact.

@ (2) = A (D) B (A) = Ay () By () + Ay (A) By (A);

@ (A)==Ay1 (DB (A) + Ay, (A) By (A) — Ay  (A)Bs();

& (2)= Ay (DB () + Mgy (A)Bs(A) + Asy (A)Bg(A);
@3 (A) == (A3 (DB (A) + Ags(A)Bs(A) + Ayy (A)Bg(A));
1

(1+x)

+d§(/l)ﬁ((l+ K)+A(1-e)—e(l+ K‘z)):l;

i) = [512(/1)((1+K1)+/1(1—e))+

as(A)= ;[—&f(l)(/ﬂ 2)(1-e)-ay(A)(A(1-e)—e(1+ K‘z)):|;

(1+x)

B = | BD((1+ )= (2+2)(1-e€))+

(1+x,)
+@; (A ((1+5) = (A+2)(1=¢)—e(1+,)) ];

() :;[532(1)(/1+2)(1—e)+5f(l)((/1+2)(1—e)+e(1+K2))J;

(1+x;)
A (A)=(2+2)[ cos(A+2)a+usin(A+2)a ;
Ay (A) = Acos Aa + u(A+2)sin Aa;
A3 (2)=(A+2)[sin(A+2)a - pcos(A+2)a ;
Ay(2) = Asin da — u (A +2)cos Aa;
Ay (2)=(1-e)(A+2)[cos AB—cos(A+2)a ];
Ay (D) =[A(1-e)—e(1+x,)](cos 4B —cos Aar);
Ayy(A) = (1-e)(A+2)[sinAB—sin(A+2)a |;
Ay (2)=(1-e)[ (A +2)sin 4B - Asin A |+ e(1+x, ) (sin Aa +sin 13);

Ay () =(1-€)8,(A) +(1+ &) [ sin(A+2) B+sin(1+2)a |;

Ay ()= (1_6)112(1”2) 5\ (/1)+1;T’(21[/lsin(/l+2)ﬂ+(/1+2)sin/1a];

Ay3(A)=(1-€)(A+2)3,(A) +(1+x)[ cos(A+2) B—cos(A+2)a |;
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Az (D) =[(A+2)(1-e)+e(1+,)] 6, (A) +(1+K)[ cos(A+2) B—cos Aa |;
Bi(A)=(1-¢)’ B,(A) —e(1+1,)(1-¢€) B (A) + (14 ) (1-€) B3 (1) -
—e(1+x,)(1+ &) By (A);

By (A) = ~(A+2)8,(A)85(A); By (A)=(A+2)[sinAa+sin(A+2)a] 8}, (2);
Bi3(2) = ~[(A+2)sin 181, (A) +c0S(A +2) 8,3 (2)] + 35 (A);
By4(A) = (sin Aa +sin A8)[cos(A +2) f —cos(A +2)a];
B,y(A)=(1-¢) B, (A)+e(1+K,) Byy (A) +(1+ K7 ) B3 (A);

By (A) = (A+2)[8y3(2) + (A +2)85, (1)]515(A);

Byy(A) = (A+2)[sin(A+2)a — cos(A+2)] 5, (2);

By3(A) =[6r3(2) + s A +2)85, (A)] c0S(A +2) f — 83, (A);

By(A) = (1—¢) By (A) +e(1+K,) By, (A);

B3 (A) = (A+2)[[835 (1) + t(A+ 250 (A)|sin A — udy, (2) |;

By, (A) = (A +2)(sin A +sin 1) [sin(4 + 2)a — ucos(A +2)ax];
By(A)=(1-e)[[(1-e) A —e(1+x, 1By (1) + (141 ) By (A) |+
+e(l1+x, )(1+&;) By (A);

By ()= 6,,(A)S2(A); Byp(A) = Asin(d+2) Sy, (A) —cos A8, (2) — 55,(A);
By3(A) =[sin(2 +2)a +sin(A +2) 8] (cos A —cos La);

Bs(A) = (1—e€) Bs;(A) +e(1+ & ) By (A) +(1+ &1 ) Bs; (A);

Bs1(A) = [A85,(A) = 6y (A)] 671 (A);

Bsy(A) =[cos(A+2)a + usin(A +2)a] 8, (A);

Bs3y(A) =[ A5y (A) — 6, (A)]sin(A +2) f — 3, (A);

Bs(A)=(1-¢) By (A) —e(1+K,) By (A);

By (A) = (A+2)[ =[ A8y (2) — 18,y (A)]cos AB + udyy (2) |;

By (1) = (A +2)(cos A3 —cos Aa ) [cos(A +2)a + usin(A+2)a];
8,1(A) = Asin(A+2) f— (A +2)sin Af; 6,5(A) = cos A —cos(A+2)3;
8,3(A) = (A +2)sin(A+2) - Asin A3;

8, (A) = Asin(A+2)a — (A +2)sin dat; Sy, (A) = cos Ao —cos(A +2)a;

)



053 () =(A+2)sin(1+2)a - Asin Aa;
031 (A) =—(A+1)sin2a +sin2(1 +1)e;

O3 (A)=(A+1)sin2a +sin2(1+1)a.

PE3IOME. JlocnimKyeTbes JIOKalIbHE 10JIe HAPYXKEHb 1 IepeMillleHb B yMOBaX IIOCKOI Aedopmartii
01151 KyTOBOI TOUKHM JIaMaHOI MeXi pO3/ily JBOX Pi3HUX OIHOPIAHMX i30TponHUX MarepiainiB. Ha onwiit i3
CTOpIH MEXIi pO3Iily pO3TaIIOBaHA TPIlIMHA, BEPIINHA SKOI 30iraeThes 3 TOUKOI 31MaMy. B pamkax monemi
M. KoMHiHOY Tpil[fHA BBa)KA€ThCS MATEMAaTHYHUM PO3Pi30M, Oeperd SKOro KOHTAKTYIOTh 3 TepTsIM. 3a
JoroMoror Merony Birrapara — BinesiMca po3kiany po3B’s3KiB piBHSHB TEOpii MPY>KHOCTI 3a BIACHUMHU
(yHKIISAMH 3HAWAEHO aCUMIITOTHYHI BHPa3H Ul KOMIIOHEHT TPaJi€HTIB IEepeMillieHb Ta TEH30pa Harpy-
JKeHb Ol BEepIIWHU TpinwHU. YHCensHO MpoaHai30BaHI 3aIe)KHOCTI MOKA3HUKIB CHHTYISIPHOCTI Bif KyTa
371aMy MeXi po3ainy 1 BigHomieHHs MonyniB FOHra 3’eqHaHux MartepianiB. Po3paxoBaHo i 0OrpyHTOBaHO
o0JacTi MOKIIMBOTO 3acTOCyBaHHs Mojeni KoMHiHoy, sika 103BoJIse yCyHYTH (DI3UUHO HEMOMJIUBI IIPOCTO-
POBI OCIMIIALIT IIepeMilieHs OeperiB TPimuHY O KyTOBOI TOYKHU JIaMaHOI MEXi pO3ZiLy ABOX Pi3HHX Ma-
Tepiais.

KJIFOUOBI CJIOBA: pyiinyBanus, Mik(a3Ha TpillliHa, KyCKOBO-JiHii{Ha Mexa po3ainy.
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