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Abstract. The in-plane dynamic and static stability of diamond beam structures under 

the periodic load is investigated. The diamond shape structure is assumed to be an Euler 
beam and modeled by using the Finite Element Method. The Bolotin approach is used for 
finding the dynamic instability regions. The natural frequencies and buckling load obtained 
from the generated finite element code are compared with ANSYS program results. 
Moreover, the effects of various boundary conditions, inclination angles, beam lengths, a 
beam having a tapered cross-section, and static/dynamic load parameters on unstable 
regions are investigated. 
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1.Introduction. 
Frames are used in engineering in structural configurations such as bridges, industrial 

structures, and skyscrapers. Also, the frame structures are widely used in the turbine, 
automotive, and machine industries. These frames are subjected to static and dynamic loads 
that may cause static and dynamic instability during operating conditions. Therefore, there 
are many researches on the static stability (buckling) and dynamic stability of frame 
structures. According to Bolotin’s (1964) definition, the dynamic stability of mechanical 
systems represents the specific stability of motion. When this definition is examined, it is 
seen that three stages are included in the dynamic stability equation. These three stages are 
vibration analysis, static stability (buckling) analysis, and dynamic stability analysis. The 
bending of a Bernoulli-Euler beam has been developed using a modified couple stress 
theory by Park and Gao (2006). A variational formulation based on the principle of 
minimum total potential energy is employed in this study. Falsone and Settineri (2011) have 
studied a new finite element approach for the solution of the Timoshenko beam. They have 
used the finite element method similar to the Bernoulli-Euler beam theory. But it was 
considered a single fourth-order differential equation that governs the equilibrium of the 
Timoshenko beam. Briseghella et al. (1998) have used the finite element method to find the 
regions of the dynamic stability of beams and frames. Girgin et al. (2006) have developed a 
simplified procedure for determining approximate values for the buckling loads of both 
regular and irregular frames, where the procedure utilizes lateral load analysis of frames. 
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Zaslavsky (1981) has examined the elastic stability of portal frames consisting of hinged 
and/or fixed columns and hinged girder (beam) with an overhang under the action of a 
moving load. Thomas and Belek (1977) have studied the free-vibration characteristics of 
shrouded blade packets by using the finite element method. The effects of various weight 
ratios, flexural rigidity ratios, and length ratios between the blades and shrouds on the 
frequencies of vibration of the blade packet have been investigated. 

Lin and Ro (2003) have developed a hybrid analytical/numerical method that permits 
the efficient dynamic analysis of planar serial-frame structures. The method has utilized a 
numerical implementation of a transfer matrix solution to the equation of motion. The semi-
rigid connections between members of frame structures have been idealized as rotational 
and linear springs and the physical model representing each individual member has been 
assumed to consist of a flexible beam with springs and dashpots attached at both ends by 
Kawashima (1984). In-plane stability analysis of non-uniform cross-sectioned thin curved 
beams under uniformly distributed dynamic loads was investigated by using the Finite 
Element Method by Öztürk et al. (2006). Karaağaç et al. (2011) have studied the effects of a 
single-edge crack and its locations on the buckling loads, natural frequencies and dynamic 
stability of circular curved beams by using the Finite Element Method. 

Öztürk and Sabuncu (2005) have examined the static and dynamic stabilities of a 
laminated composite cantilever beam having a linear translation spring and torsional spring 
as elastic supports subjected to periodic axial loading. Öztürk et al. (2015) have investigated 
the effect of crack depth and crack location on the in-plane static and dynamic stability of 
cracked multi-by frame structures subjected to periodic loading by using the Finite Element 
Method. Ibrahim et al. (2012) have studied the effects of crack depth and crack location on 
the in-plane free vibration of cracked frame structures by using the Finite element Method. 
The equation of motion in the matrix form of a tapered cantilever Bernoulli-Euler beam 
subjected to a follower force at the free end has been formulated by Lee based (1995) on the 
Lagrangian approach and the assumed mode method.  

Covill et al. (2014) have examined the analysis of the diamond-shaped bicycles frames 
by using the Finite Element Method. The non-linear solutions for the large deflections of 
diamond-shaped frames have been derived by Jenkins et al. (1996). In this study, the frames 
have been loaded by forces applied at a pair of opposite joints, which are either pin-jointed 
or rigid. The experimental results obtained on square steel frames are compared with the 
nonlinear (exact) solutions and also with small deflection nonlinear and linear analyses. 

In this study, a finite element model is developed for diamond-shaped frame structures. 
The Bernoulli-Euler beam theory is used in modeling the diamond frame structures. Natural 
frequencies and buckling load are calculated. Bolotin’s approach is used for finding the 
dynamic instability regions. Matlab software is used for numerical analysis and calculated 
results are compared with ANSYS program results. 

As can be seen from existing literature, any studies on the static and dynamic stability of 
diamond-shaped frame structures are not available. This study will make up for this deficiency. 

2. Material and Method. 
2.1. Finite Element Formulation. The problem addressed in this study is a diamond-

shaped steel frame forming four beams with an inclination angle θ,  shown in Fig. 1. 

θ  

P(t)

 

Fig. 1. Diamond-shaped frame. 
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The finite element method is used for modeling the frame. The beam element has two 
nodes with three degrees of freedom at each node and it is shown in Fig. 2. 

 

Fig. 2. Two nodes with six degrees of freedom beam element. 

2.1.1. Mass and Stiffness Matrix. Mass and stiffness matrices for longitudinal and 
transverse vibrations of the uniform beam can be found in any finite element textbook and 
given below: 

For transverse vibration, 
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where ρ, E, I, A and l are mass density, elastic modulus, area moment of inertia, cross-
section area and beam length, respectively.  

The element mass and stiffness matrices, shown in Equations (1), (2), are superposed 
with the element matrices associated with the two-node element and given in  

Equation (3): 

 

11 12 13 14

21 22 23 24

11 12

31 32 33 34

41 42 43 44

21 22

0 0

0 0

0 0 0 0
;

0 0

0 0

0 0 0 0

b b b b

b b b b

a a

e b b b b

b b b b

a a

m m m m

m m m m

m m
m

m m m m

m m m m

m m

 
 
 
 
   
 
 
 
  

  

11 12 13 14

21 22 23 24

11 12

31 32 33 34

41 42 43 44

21 22

0 0

0 0

0 0 0 0
,

0 0

0 0

0 0 0 0

b b b b

b b b b

a a

e b b b b

b b b b

a a

k k k k

k k k k

k k
k

k k k k

k k k k

k k

 
 
 
 
   
 
 
 
  

   (3) 

where ija  defines ( , )i j  th element of matrix [a]. 

To ensure that the compatibility conditions are satisfied at the columns and top beams 
connections, the transformation of element matrices to a global coordinate system is 
necessary before the assembly is constructed. In the case of planar structures, all local 
systems have an axis parallel to an axis of the global system. Fig. 2 shows the case in which 
the axis u2 of an arbitrary local system is parallel to the axis 2U  of the global system. For a 

frame element oriented at an angle from the positive 3U  axis in the clockwise direction, the 

displacements in global coordinates are given in Equation (4) and Fig. 3. 

    .u U                                                            (4) 
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Fig. 3. 1 2 3 :u u u  Local coordinate system, 1 2 3 :U U U  Global coordinate system. 

 

For the element matrices  
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The element mass and stiffness matrices referred to as the global coordinates are then 
given by 
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The mass and stiffness matrices for the entire structure are assembled, then the overall 
mass and stiffness matrices are obtained as [ ]M  and [ ],K  respectively. 

2.1.2. Geometric Stiffness Matrix. The geometric stiffness matrix of an element is given 
in Ref. [4] and shown in Equation (8). 
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The geometric stiffness matrix of an element in terms of global coordinates is then 
computed as in Equation (9). 

   = .
T
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The global geometric stiffness matrix of the structure is assembled and [Kg] is obtained 
in this way.  
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2.1.3. Equation of energy. Energy equations should be expressed for the Euler beam 
with an element length .l  The elastic potential energy eU  is given in Equation (10): 
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The kinetic energy of the beam element is given in Eq. 11: 
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2.1.4. Equation of motion. The equation of motion of the undamped system can be 
expressed using the Lagrange method and energy equations; 
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where [ ], ][ ,M K  and [ ]gK  are global mass, elastic stiffness and geometric stiffness matrix, 

respectively. 
The periodic load 0( ) costP t P P t    consists of two parts: 0P  is the static load and tP  

is the amplitude of the time-dependent component with frequency . The static and time-

dependent components of the load can be represented as a fraction of the fundamental 
buckling load .crP  Therefore, substituting ( ) coscr crP t P P t     in Equation (10) gives 

[13]: 
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where static load parameter 0 crP P   and dynamic load parameter is .crtP P   

From Equation (11), it can be seen that this equation is a Mathieu-Hill-type linear second 
order differential equation with a periodic coefficient. According to the theory of linear 
equations with periodic coefficients, the boundaries between stable and unstable solutions of 
Equation (11) are formed by periodic solutions of period T  and 2 ,T  where 2 .T    

Ref. [1] showed that solutions with a period of 2T are of greater practical importance as the 
widths of these unstable regions are generally larger than the corresponding solutions with 
period T. As a first approximation, assume a periodic solution with period 2T. Using this 
solution along with Equation (11) yields the following equation [12]: 
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Equation (14) represents the solution of the three related problems: 
  Free vibration with 0,  0,    and the natural frequency 2,    Equation (15): 
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  Static stability with 1, 0    and 0,   Equation (16): 
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  Dynamic stability when all terms are present, Equation (17): 
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3. Results. 
In this study, the static and dynamic stability of diamond-shaped frames with various 

boundary conditions (BC) (Fig. 4) and the inclination angle θ  under point load applied in 
vertical direction have been investigated. The beams forming the frame are Euler-Bernoulli 
beams and have the length of 1 200 mmL   and 2 10,2 .L L  The material properties of 

beams are 15 mm, 0,1 , 20 mm,h h h b    the mass density 37700 kg m ,   Young’s 

modulus 210 GPa.E   The structure consisting of tapered beams has also been discussed 

and the effect of taper on the instability regions is examined. In addition, the effects of 
boundary conditions and inclination angle on instability regions have been analyzed. 
Calculations made in the MATLAB program (present work) are compared with the ANSYS 
program results for verification. 

 

Fig. 4. Boundary conditions. 
 
3.1. Static Stability (Buckling) Analysis. It is expected that the critical buckling load is 

dependent on the inclination angle θ and different values for the critical buckling load will 
be obtained if θ is changed. Depending on the variation of the angle θ,  shown in Fig. 4, the 
critical buckling loads of the diamond-shaped beam structure are calculated by using the 
finite element method and results are given in Table 1. It is clear that the differences in 
results between the current study and the ANSYS program for frames with different 
boundary conditions and angle θ are acceptable. 

The frame with boundary conditions BC2, BC4 and BC6, which are similar, exhibits the 
same characteristics depending on θ . Namely, the critical buckling loads have shown a 
tendency parallel to θ and increased with increasing θ values. Contrary to the previous case, 
for the boundary conditions of BC1, BC3 and BC5, increased θ values caused a reduction in 
critical buckling loads. 
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Table 1. Variations of the critical buckling load values with angle θ and boundary 
conditions are shown in Fig. 4. 

 
3.2. Natural Frequency. The natural frequencies are given in Table 2 for different 

boundary conditions. For BC2, BC4 and BC6, the frames have the same character. On the 
other hand for BC1, BC3 and BC5, if the angle θ increases, the frequency values also 
decrease. This means that an increase in θ values makes the structure more flexible. 

3.3. Dynamic Stability Analysis. Due to having the greatest practical importance, the 
principal instability region close to 2   are studied for the boundary conditions given in 
Fig. 4. Here,   and ω are forcing frequency and the first natural frequency which is given 
in Table 2, respectively. Analyzes are performed for the different values of the following 
parameters: 

1) θ angle θ 15,30,45,60,75);(   

2) length ratio of beams ( 1 2 0,5L L   and 1); 

3) static load parameter ( 0 and 0,5);    

4) dynamic load parameter (   is from 0 to 1 and   is from 0 to 2). When the static 

load parameter is 0, the dynamic load parameter is from 0 to 2, and, when the static load 
parameter is 0,5, the dynamic load parameter is from 0 to 1. 

 
Table 2. The first natural frequency (Hz). 

θ  BC 1 BC 2 BC 3 BC 4 BC 5 BC 6 

150 66,364 342,98 26,086 98,012 33,133 129,365 

300 53,277 344,867 22,65 98,08 36,76 129,422 

450 43,579 344,807 20,16 98,02 29,076 129,39 

600 37,742 343,724 18,51 97,80 24,23 129,274 

750 34,677 337 17,56 96,59 21,9 128,59 

 

  
Pcr(N) 

BC 1 BC 2 BC 3 

θ  Ansys 
Present 

work 
Eror (%) Ansys 

Present 
work 

Eror (%) Ansys 
Present 

work 
Eror (%) 

15
 

13224 13240,243 0,123 7280,6 7233,745 0,648 3416,1 3324,7800 2,7466 

30
 

6846,3 6852,833 0,095 13972 13977,501 0,039 2931,8 2915,4700 0,5601 

45
 

4840,8 4852,7099 0,245 19734 19769,902 0,182 2589,1 2582,0294 0,2738 

600 3951,3 3954,7391 0,087 24157 24221,410 0,266 2364,3 2363,0220 0,0541 

750 3535,9 3545,8675 0,281 26931 27014,477 0,309 2231,9 2236,1074 0,1882 

 Pcr(N) 

  BC 4 BC 5 BC 6 

θ  Ansys 
Present 

work 
Eror (%) Ansys 

Present 
work 

Eror (%) Ansys 
Present 

work 
Eror (%) 

150 7007,5 7007,1951 0,004 2256 2228,3566 1,241 342,99 329,1570 4,203 

300 7749,1 7755,2572 0,079 1168,9 1153,3898 1,345 661,52 635,9800 4,016 

450 8168,9 8176,4459 0,092 826,72 816,8347 1,210 935,22 899,5500 3,965 

600 8506,3 8513,1412 0,080 675,04 665,8850 1,375 1145,3 1254,3974 8,697 

750 8725,6 8734,9750 0,107 605,08 598,0000 1,184 1277,3 1230,0000 3,846 
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When the static load parameter 0,5   and the dynamic load parameter   varies in the 

range [0, 1], unstable regions become narrower as θ increases as shown in Fig. 5. 

 
Fig. 5. Effect of 0,5   on the first dynamic instability regions of BC1. 

 

 

Fig. 6. Effect of 0   on the first dynamic instability regions of BC1. 

In Fig. 6, the static load parameter   is taken as zero and the dynamic load parameter 
  varies in the range [0, 2]. In comparison with Fig. 5, forcing frequencies increase but 
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similar behavior for unstable regions for the same θ values has been observed. When the 
dynamic load parameter 0   and the static load parameter 0,   it is seen that the graph 

shifts upward. 
For the structure having boundary condition BC2 shown in Fig. 4, an increase in θ angle 

causes a slight change in the unstable regions as seen in Fig. 7 and Fig. 8. 

 
Fig. 7. Effect of 0,5   on the first dynamic instability regions of BC2. 

 

 

Fig. 8 Effect of 0   on the first dynamic instability regions of BC2. 
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Fig. 9 and Fig. 10 are plotted for the structure given in Fig. 4 for the boundary condition 
of BC3. Fig. 9 and Fig. 10 show that the frequencies of applied loads slightly increase when 
the static load parameter α decreases. 

 

Fig. 9. Effect of 0,5   on the first dynamic instability regions of BC3. 

 

Fig. 10. Effect of 0   on the first dynamic instability regions of BC3. 
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The regions of instability for the static load parameter value of 0,5   and 0   are 
shown in Fig. 11 and Fig. 12 for the boundary condition BC4. As seen in Fig. 11 and Fig. 12 
an increase in θ angle causes a slight change in the unstable region. It is observed from 
these graphs that the widths of unstable regions are not changed by θ values. 

 

Fig. 11. Effect of 0,5   on the first dynamic instability regions of BC4. 

 
Fig. 12. Effect of C on the first dynamic instability regions of BC4. 
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Fig. 13 and Fig. 14 show the regions of instability for boundary condition BC5 with the 
static load parameter 0,5   and 0   for various θ values. It is determined that as the 
static load parameter increases the regions of instability shift downward. Moreover, it is 
observed that the effect of θ on the unstable dynamic region of BC5 is more than the other 
diamond- shaped frames. 

 
Fig. 13. Effect of 0,5   on the first dynamic instability regions of BC5. 

 

Fig. 14. Effect of 0   on the first dynamic instability regions of BC5. 
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Fig. 15 and Fig. 16 are plotted for the structure given in Fig. 4 for BC6. If the static load 
parameter 0,   the frequencies of applied force decrease with an increasing angle. This 
situation is also the same when the static load parameter 0,5.   However, the static load 
parameter 0,5a   has smaller frequency values than the static load parameter 0.a   
Unstable regions exhibit a negligible change in both cases as shown in Fig. 15 and Fig. 16 

 

Fig. 15. Effect of 0,5   on the first dynamic instability regions of BC6. 

 

Fig. 16. Effect of 0   on the first dynamic instability regions of BC6. 
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4. Discussion and Conclusion. 
In this study, the effect of various boundary conditions on the dynamic stability of 

diamond- shaped frames has been studied. The instability regions are determined for various 
boundary conditions, inclination angles, beam lengths, taper ratio and static load parameters. 
Conclusions drawn from the current analysis are that: 

(1) In boundary conditions where displacement in the horizontal direction is zero, the 
effect of θ on the instability regions is negligible. 
(2) When the angle θ increases, natural frequencies decrease. If the beam has a tapered 
cross-section, as the beam length increases, beams become more flexible and the natural 
frequencies decrease. 
(3) If the angle θ and beam length increase and the beam has a tapered cross-section, 
the critical buckling load decreases for BC1, BC3, and BC5. 
(4) The effect of θ angle on the frequencies is negligible for all diamond-shaped frame 
structures having BC2, BC4 and BC6. This is perhaps due to the rigidity of the system. 
On the other hand if θ increases, the critical buckling load also increases for these 
boundary conditions. 
(5) By changing the static and dynamic load parameters, length of beam and type of 
cross-section of beam for different boundary conditions, the dynamic stability regions of 
the diamond frame structures show variable values. 
(6) The regions of instability are the widest when inclination angle θ takes the value 
15 for a frame consisting of a uniform beam. As the θ  value increases, the instability 
regions become narrower.  
(7) For the case of the tapered beam, the instability regions are widest at θ 30   and 
become the narrowest at θ 15 .   
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РЕЗЮМЕ. Досліджено динамічну та статичну стійкість ромбоподібних балкових конструкцій 

під дією періодичного навантаження. Припущено, що структура ромбоподібної форми є балкою Ей-
лера та моделюється за допомогою методу скінченних елементів. Використано підхід Болотіна для 
знаходження областей динамічної нестійкості. Власні частоти та навантаження втрати стійкості, 
отримані зі згенерованої програми скінченних елементів, порівнюються з результатами програми 
ANSYS. Крім того, досліджено вплив різних граничних умов, кутів нахилу, довжини балки, балки з 
конічним поперечним перерізом і параметрів статичного/динамічного навантаження на області не-
стійкості. 

 
КЛЮЧОВІ СЛОВА:  ромбоподібна рама, динамічна стійкість, скінченний елемент, статичні 

та динамічні навантаження. 
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