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Abstract. The article proposes a generalization of the Lyapunov direct method for the 
dynamic equations with a fractional-like derivative of the state vector. In addition, new 
estimates of the change of Lyapunov functions along the solutions of the fractional-like 
equations based on the integral inequalities on the time scale are established. The obtained 
estimates are used to analyze the various types of stability and boundedness of solutions of 
the dynamic equations with a fractional-like derivative of the system state vector. 
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Вступ. 
Методи аналізу стійкості розв’язків динамічних рівнянь проаналізовано в моног-

рафії [8], в якій прямий метод Ляпунова [7] розглядається на основі скалярних, векто-
рних та матрично-значних допоміжних функцій. Істотним елементом цього методу є 
застосування повної похідної допоміжної функції (chain rule) на розв’язках досліджу-
ваної системи рівнянь. Як відомо, таку похідну не вдається обчислити для дробових 
похідних, введених у роботах Рімана – Ліувілля, Капуто та інших авторів. Дробово-
подібна похідна неперервної функції, введена в роботі [9], дає змогу обчислити дро-
бово-подібну похідну функції Ляпунова. Розв’язання цієї проблеми дозволило уза-
гальнити прямий метод Ляпунова для рівнянь із дробово-подібною похідною та вста-
новити достатні умови стійкості за Ляпуновим та практичної стійкості руху для ряду 
прикладних проблем. 

У роботі [3] було введено дробово-подібну похідну на часовій шкалі у розвиток 
результатів статей [1, 5]. У роботах [10, 11] обговорюються нові означення дробово-
подібної похідної на часовій шкалі у функціональних просторах. Експоненційна фун-
кція для дробово-подібної похідної на часовій шкалі приведена в статті [11]. 

Результати цієї статті викладено за наступним планом. 
У розділі 1 наведено елементи математичного аналізу на часовій шкалі для функ-

цій з дробово-подібною похідною. 
У розділі 2 розглядається система дробово-подібних рівнянь збуреного руху на 

часовій шкалі. Тут вводиться узагальнена похідна функції Ляпунова на розв’язках 
системи (2.1) та формулюються задачі для дослідження. 

У розділі 3 наведено нові оцінки функції Ляпунова на розв’язках дробово-подіб-
них динамічних рівнянь. 

Розділ 4 містить деякі застосування загальних оцінок функцій Ляпунова до якіс-
ного аналізу руху. Зокрема, розглядається задача щодо обмеженості розв’язків; задача 
про рух системи із заданим часом встановлення; задача про практичну стійкість та 
про стійкість руху за Ляпуновим. 
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§1. Елементи дробово-подібного аналізу на часовій шкалі. 
Нагадаємо прийняті позначення та означення. 

1. Номенклатура часової шкали ([2]). 

Нехай )[0,= R , nR  – n -вимірний Евклідів простір і nR  – обмежена об-

ласть, що містить початок координат. Далі позначаються: T  – часова шкала, довільна 
непорожня замкнена підмножина дійсних чисел; ( ) = inf{ : > }t s T s t   – оператор 

стрибка вперед; ( ) = sup{ , < }t s T s t   – оператор стрибка назад; 

\ ( (sup) ),sup ], якщо sup < ;
=

, якщо sup = ;

T T T T
T

T T

 
 

  

: , ( ) ( ( ))f T R f t f t t T      , тобто f f   ; 

точка Tt  розсіяна праворуч, якщо ( )t t  ; точка Tt  розсіяна зліва, якщо 

( )t t  ; точка Tt  щільна справа, якщо < supt T  і ( )t t  ; точка Tt  щільна 

зліва, якщо > inft T  і ( )t t  ; ( ) ( )t t t    – функція зернистості шкали T ; rC  – 

множина регулярних функцій; функція :f T R  є регулярною, якщо в щільних 

справа точках Tt  правостороння межа існує і скінченна і у всіх щільних зліва точ-
ках Tt  лівостороння межа існує і скінченна; rdC  – множина функцій :f T R  

неперервних у щільних праворуч точках T , для яких лівостороння межа існує і скін-
ченна в щільних зліва точках T . 

На шкалі часу T  розглянемо функцію 0: [ , )f t R   і припустимо, що t T  . 

Означення 1.1. Функція )(tf  допускає  –похідну по t  на часовій шкалі, якщо 

існує число ))(( tf , при якому для будь-якого 0   знайдеться 0   таке, що для 

всіх ( , )s t t T      виконується умова  

.|)(||])()[)(()]())(([| ststtfsftf    

Виразом f  позначається  –похідна функції f  на часовій шкалі T . 

1.2. Дробово-подібна похідна ([1, 5]). 
Для (0, 1]q  і неперервної функції 0( ) : [ , )x t t R   будемо розглядати узагаль-

нену порядку q  дробово-подібну похідну )(txDq
t . 

Означення 1.2. Нехай задана функція 0: [ , )x t R  . Для будь-якого (0, 1]q  

визначимо вираз ))((
0

txDq
t  формулою  

 
0

1
0( ) ( )

( ( )) = lim , 0 .

q
q
t

x t t t x t
D x t






     
  

 

Вираз 
0

( ( ))q
tD x t  називається дробово-подібною похідною (ДПП) функції ( )x t  для 

довільного значення 0 < 1q  . Якщо 0 = 0t , тоді 
0

( ( ))q
tD x t  набуває вигляду 














 

0,
)()(

lim=))((
1

0



 txttx

txD
q

q
t . 

При 0 = 0t  тоді писатимемо 0 ( ( )) = ( ( ))q qD x t D x t . Якщо ( ( ))qD x t  існує на (0, )b , тоді 

0

( (0)) = ( ( ))lim
q q

t

D x D x t


. 
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Якщо ДПП функції )(tx  порядку q  існує на 0( , )t  , тоді говоритимемо, що )(tx  

є q -диференційовною на ),( 0 t . 

1.3 Дробово-подібна похідна на часовій шкалі ([3, 10, 11]). 
На основі поняття  –похідної на часовій шкалі і дробово-подібної похідної фор-

мується поняття  –дробово-подібної похідної на часовій шкалі. 
Функція RTf :  – q -регресивна на T , якщо для будь-якого (0, 1]q  викону-

ється умова  

0)()(1 1  qttft  для всіх t T  . 

Нехай q  – множина всіх q -регресивних функцій f  на T . 

Для деякого t T   і 0>  визначається  – окіл точки t  так: 

Tttt  ),(:  . 

Означення 1.3. (cf. [3]). Нехай функція :f T R , t T   і (0, 1]q . Для будь-

якого 0>t  визначимо число ))(( tfq
t  (допускається його існування) з наступними 

властивостями. Для довільного 0>  існує  -окіл Tt   точки t , такий, що  

    ststtftsftf q
t

q   )()())(()())(( 1  при всіх ts  .      (1.1) 

Вираз ))(( tfq
t  називається дробово-подібною похідною функції f  порядку 

(0,1]q  у точці t T   на часовій шкалі. 

Дробово-подібна експоненційна функція ,0)(rE f  на часовій шкалі для функції 

qf   вводиться формулою  

 1
( )

0

( ,0) = exp ( )
r

q
f sE r f s s s

 
  

 
 для всіх Tr )(0, ,  

де k  – циліндричне перетворення kk ZC  , де  = : 1/ , > 0kC z C z k k   , 

 = : / < ( ) < /k mZ Z C k I z k   . q
  – множина позитивних q -регресивних фун-

кцій  0)()(1::= 1  qq ttftRTf   при всіх t T  . 

Для функції qf   визначається операція 

  .
)()(1

)(
=)(

1
 Tt

ttft

tf
tf

qq 


 
 

Далі будемо розглядати функцію :f T R  та її дробово-подібну похідну на часовій 

шкалі в точці t T  . 
Деякі корисні співвідношення для дробово-подібної похідної функції f  містить 

таке твердження ([3, 10, 11] та бібліографія там). 

Теорема 1.1. Нехай RTf :  і t T  . Тоді для функції f  справедливі такі тве-

рдження: 
(1) якщо f  дробово-подібна диференційовна функція порядку (0, 1]q  у точці 

0>t , тоді f  неперервна у точці t ; 

(2) якщо функція f  неперервна в точці t  і t  є розсіяною праворуч, тоді f  є дро-

бово-подібно диференційовною порядку q  у точці t T   і  
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qq
t t

t

tftf
tf 

 1

)(

)())((
=))((




; 

(3) якщо f  дробово-подібно диференційовна функція порядку q  у точці t T  , 

тоді  
1( ( )) = ( ) ( ( )) ( )( )q q

tf t f t t t f t    ;                                    (1.2) 

(4) якщо RTgf :,  – дробово-подібно диференційовні функції порядку 

(0,1]q , тоді  

))(())((=))(( tgtftgf q
t

q
t

q
t  ;                                    (1.3) 

(5) якщо RTf :  дробово-подібно диференційoвна функція, тоді для будь-якого 

R   

( )( ) = ( )( )q q
t tf t f t   ;                                                 (1.4) 

(6) якщо функції f  і g  неперервні, тоді добуток RTfg :  – дробово-подібно 

диференційовний згідно з формулою  

      
    1

( ) ( ) = ( ) ( ) ( ) ( ) ( ) =

= ( )( ( )) ( ) ( ( ) ( ) = ( ) ( ) ,

q q q
t t t

q q q
t t

fg t f g t f t g t

f g t t f g t fg t t



  

   

  




                      (1.5) 

де   – похідна добутку функцій на часовій шкалі (див. [2]); 
(7) якщо f  неперервна функція, тоді 1 f  – дробово-подібно диференційовна і  

q
q
tq

t tt
ftff

tf
t

f





















 1)(

1
=

))((

))((
=)(

1


                                 (1.6) 

для всіх точок t T  , для яких 0))(()( tftf  ; 

(8) якщо функції f  і g  неперервні, тоді функція f g  – дробово-подібно дифе-

ренційовна і  

1( )( ) ( ) ( )( ( )( ))
( ) = = ( )

( ( ) ( ))

q q
q qt t
t

f t g t f t g tf f
t t t

g g g t t g


     

    
   

                      (1.7) 

для всіх точок t T  , для яких 0))(()( tgtg  ; 

(9) якщо функція RTg :  неперервна і дробово-подібно диференційовна по-

рядку (0,1]q  у точці t T   і функція RRf :  неперервно диференційовна, тоді 

знайдеться постійна )](,[ ttc  , для якої  

))(())((=)))((( tgcgftgf q
t

q
t  .                                           (1.8) 

Доведення тверджень (1) – (9) проводяться за схемою доведення теорем 1.16, 1.20 
та 1.87 з монографії [2]. 

1.4 Дробово-подібний інтеграл та його властивості. Дробово-подібний інтеграл 
на часовій шкалі вводиться з урахуванням двох понять: q -регулярності і rd -непе-

рервності функції :f T R . 

Нехай RTf :  і q -регулярна функція. Тоді дробово-подібний інтеграл функції 

f  для (0, 1]q  визначається формулою ([3] та бібліографія там) 
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tttfttftfI qq
q   1)(=)(=)( . 

Нагадаємо деякі властивості дробово-подібного інтеграла ([3]) на часовій шкалі. 
Теорема 1.2. Нехай (0, 1]q , ,f g  – r d -неперервні функції, постійна R  і 

,a b T . Тоді: 

(1) має місце співвідношення 

)()(=)( aIbIttf qq

b

a

q  ;                                             (1.9) 

(2) для суми двох функцій вірне співвідношення 

   
b

a

q
b

a

q
b

a

q ttgttfttgtf )()(=)()( ;                               (1.10) 

(3) якщо 0>)(tf  при всіх ],[ bat , тоді 0)( 
b

a

qttf ; 

(4) має місце рівність 

  )(=)()( tfttfIq
q
t  при всіх Tt ;                                 (1.11) 

(5) якщо ))(( tfq
t  rd -неперервна функція, тоді 

  )()(=)()( aftftfI q
tq  ;                                          (1.12) 

(6) якщо 0))((  tfq
t  на [ , ]a b , тоді функція )(tf  є спадною на [ , ]a b . 

Доведення тверджень (1) – (6) наведено у статті [3]. 

§2. Постановка задачі. 
Розглядається система рівнянь збуреного руху на часовій шкалі з дробово-подіб-

ною похідною вектора стану  

))(,(=))(( txtftxq
t ;                                                     (2.1) 

0=(0) xx ,                                                            (2.2) 

де ))(( txq
t  – дробово-подібна похідна вектора nRx  на часовій шкалі T , ( ) =F t  

= ( , ( )) ( , ), , (0, 1]n n
rdf t x t C T R R t T q    . Далі припускається, що початкова задача 

(2.1) – (2.2) має розв’язок 0( , 0, ) = ( )x t x x t  при початкових значеннях 0(0, )x   

int( )nR R   при всіх 0t . 

Дробово-подібна   – похідна складної функції ))(( tgfq
t  , яка визначається  

формулою (1.8), застосовується далі в цій статті. 
Відомо, що 

   
1

0

( ( )) = ( ) ( ) ( ) ( )f g t f g t h t g t dh g t   
   

 
  

([2, 8] і бібліографія там). 

Якщо 1=q , і функція xtPxtxV T )())((   є  -диференційовною на часовій шкалі T , 

тоді  

        ))(()()()(=))(( txtPxxtPxxtPxtxV TTT 
   

([8] і бібліографія там). 
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Разом із системою рівнянь (2.1) розглядатимемо функцію ),(),( n
rd RRCxtV   та-

ку, що 0=,0)(tV  при всіх 0t  і  = : < , > 0n
rx B x R x r r  . 

Якщо функція )(= xVV  є автономною, то на розв’язках системи (2.1) функція 

( )( )q
t V t  буде залежною від t  через непостійну функцію зернистості шкали T . 

Нехай функція xxxtV T),( , де )(T  – знак транспонування вектора x , є дробово-

подібно диференційовною, тоді  

  qTq
t ttxxtxtV 

 1)(=))(,( .                                         (2.3) 

Зауваження 2.1. Оскільки )(=))(,( tvtxtV  на розв’язках системи (2.1), то згідно з 

твердженням (2) теореми 1.1 отримаємо  

qq
t t

t

txtx
t 

 1

)(

))(()))(((
=))((


 , 

якщо )(t  неперерервна в будь-якій точці Tt , розсіяній праворуч. 

Цікавим є якісний аналіз властивостей розв’язків дробово-подібної системи рів-
нянь (2.1), зокрема, задачі про стійкість та обмеженість розв’язків. 

§3. Оцінки функцій Ляпунова на розв’язках системи (2.1). 
Як і в класичній теорії стійкості ([7]) у теорії стійкості розв’язків дробово-подіб-

них рівнянь на часовій шкалі ключове значення має співвідношення Ляпунова  

0( , ( )) = (0, ) ( ( , ( ))( )q
q tV t x t V x I V t x t t  , 

де qI  – дробово-подібний інтеграл на шкалі T . Покажемо, що має місце таке тверд-

ження. 
Лема 3.1 Нехай для системи (2.1) існує функція Ляпунова ( , )V t x   

( , )q n
rdC R R R   , функція )(  RCf rd  і для функції qtp )(  визначено експонен-

ційну функцію ,0)(tEp . Якщо для всіх t T   виконується нерівність  

( , )( ) ( ) ( , ) ( )q
t V t x t p t V t x f t   ,                                          (3.1) 

тоді має місце оцінка 

0
0

( , ( )) (0, ) ( , 0) ( , ( )), ( )
t

q
p pV t x t V x E t E t s f s s                               (3.2) 

при всіх Tt . 

Доведення. Враховуючи, що ,0)(=
)(0,

1
=,0)( tE

tE
tE

qp
p

p   та згідно з твердженням 

(6) Теореми 1.1 отримаємо 

,0))((),(),0)(()))(,((=),0))((),(( tExtVtEtxtVttExtV
qp

q
tqp

q
tqp

q
t    .      (3.3) 

Із співвідношення (3.3) випливає, що 

),0)((),()()))(,((=),0))((),(( tExtVtptxtVttExtV
qp

q
tqp

q
t   .            (3.4) 

Згідно з твердженням (5) теореми 1.2 з (3.4) отримаємо співвідношення Ляпунова 
для функції ),( xtV  у вигляді 
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  ssEsxsVspsxtV

tExVtExtV

q

qp

t
q
t

qpqp





 ),0)(()))(,()(()))(,((

=,0)()(0,,0)(),(

0

0





.                   (3.5)  

 
Далі з (3.5) випливає, що 

 
t

q

qp

qp
p ssf

tE

sE
tExVtxtV

0
0 )(

,0)(

),0)((
,0)()(0,))(,(



 
 

або остаточно у вигляді  

0
0

( , ( )) (0, ) ( , 0) ( ) ( , ( ))
t

q
p pV t x t V x E t f s E t s s    

при всіх Tt . Цим лему 3.1 доведено. 
Лема 3.2. Нехай для системи (2.1) виконуються умови: 

(1) існує функція Ляпунова ( , ) ( , )q n
rdV t x C R R R   ; 

(2) існує функція rdCf 1  і для функції qRtp )(1 , 0)(1 tp  при всіх t T   ви-

значено експоненційну функцію 
1
( , ( ))pE t t ; 

(3) при всіх Tt  виконується нерівність 

1 1
0

( , ( )) ( ) ( , ( )) ( )
t

qV t x t f t V s x s p s s   .                                (3.6) 

Тоді має місце оцінка  

 
t

q
p ssfstEtftxtV

0
111 )())(,()())(,(                                   (3.7) 

при всіх Tt . 
Доведення. Введемо позначення  

 
t

qsspsxsVtW
0

1 )())(,(=)(                                          (3.8) 

при всіх Tt . Очевидно, що 0=(0)W  і  

1( , ( )) ( ) ( )V t x t f t W t  .                                            (3.9) 

Виконуючи дробово-подібне диференціювання співвідношення (3.8), отримаємо 

1 1 1 1( ) = ( , ( )) ( ) ( ) ( ) ( ) ( )q
t W t V t x t p t f t p t p t W t   .                         (3.10) 

Із співвідношення (3.10) випливає, що  

 
t

qsspstEptW
0

11 )())(,()(                                              (3.11) 

при всіх Tt . З огляду на нерівність (3.11) з (3.9) отримуємо оцінку (3.7). 
Цим лему 3.2 доведено. 
Лема 3.3. Нехай для системи (2.1) виконуються умови: 

(1) існує функція Ляпунова ),(),(   RRRCxtV nq
rd  при всіх rBx )(0, ; 

(2) існує функція ,)(2 rdCtp   qtp )(2 , для якої  

2( ( , ))( ) ( ) ( , )q
t V t x t p t V t x                                            (3.12) 

при всіх rBxt  ][0,),(  . Тоді має місце оцінка  
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0 2
( , ( )) (0, ) ( ,0)pV t x t V x E t                                          (3.13) 

при всіх Tt  ][0, . 

Доведення. З оцінки (3.12) отримаємо  

0 2
0

( , ( )) (0, ) ( , ( )) ( )
t

qV t x t V x V s x s p s s    при всіх [0, ]t T  .         (3.14) 

Застосовуючи до оцінки (3.14) лему 3.2 при 0( ) = (0, )f t V x  дістанемо 

0 0 22
0

( , ( )) (0, ) (0, ) ( , ( )) ( )
t

q
pV t x t V x V x E t s p s s   .                     (3.15) 

Враховуючи теорему 3.12 статті [11] оцінка (3.15) зводиться до такої  

0 02 2 2
( , ( )) (0, )(1 ( ,0) ( , )) = (0, ) ( ,0)p p pV t x t V x E t E t t V x E t                 (3.16) 

при всіх Tt  ][0, . Цим лему 3.3 доведено. 

§4. Застосування. 
Оцінки (3.2), (3.7) і (3.13) функції ),( xtV  дозволяють провести якісний аналіз роз-

в’язків системи (2.1). 
4.1. Обмеженість розв’язків. У цьому розділі встановлено достатні умови обме-

женості розв’язків системи (2.1) на основі оцінки функції Ляпунова (3.2). 
Нехай вектор-функція ))(,(=)( txtftF  у системі (2.1) така, що 0)( tF  при 

0=)(tx  і при всіх Tt . 

Означення 4.1. (cf. [8, 12]). Розв’язок )(tx  початкової задачі (2.1) – (2.2) 
nRTx )(0, 0  рівномірно обмежений, якщо за будь-якого (0, 1]q  існує постійна 

 0= x   така, що )(tx  за всіх )[0,t , де величина   може залежати від 

кожного розв’язку. 
Має місце таке твердження. 

Теорема 4.1. Нехай n
r RB   і існує функція ( , ), ( ) [0, )rd rV t x V C T B     така, 

що при всіх rBxt  )[0,),(  виконуються всі умови леми 3.1 і крім того: 

(1) існує 0>1c  така, що ),(
2

1 xtVxc  , ),( xtV  при x ; 

(2) існує неспадна функція  x , : [0, )   і  ( , )V t x x ; 

(3) при всіх )[0,t  для деякого 0>  виконується оцінка 

   
1

0 00

1
( ,0) ( , ( )) ( )

t
q

p p
c

E t E t s f s s
x x




 
   . 

Тоді всі розв’язки )(tx  початкової задачі (2.1) – (2.2) залишаються в області rB  і є 

рівномірно обмеженими. 
Доведення. Нехай )(tx  деякий розв’язок початкової задачі (2.1) – (2.2), який за-

лишається в області rB  при всіх 0t . При виконанні умов (1) – (2) теореми 4.1 з 

нерівності (3.2) отримуємо оцінку  

   
2

1 0
0 0

1
( ) ( , ) ( , ( )) ( ) )

t
q

p pc x t x E t E t s f s s
x

  


 
    

 
 

 .                   (4.1) 

З оцінки (4.1) за умови (3) теореми 4.1 знаходимо, що 
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 1/2
0( ) <x t x ,                                                    (4.2) 

де   залежить тільки від 0x . Отже, всі розв’язки початкової задачі (2.1) – (2.2), які 

залишаються в області rB , є рівномірно обмеженими. Цим теорема 4.1 доведена. 

4.2 Рух із заданим часом встановлення. Визначимо одну з якісних властивостей 
руху системи (2.1) так: 

Означення 4.2. Для заданої функції )[0,)(  rrd BTCV  і постійної 0>a  рух 

системи (2.1) встановлюється в момент T)[0,  на множині axtV ),( , якщо існує 

T  таке, що для будь-якого розв’язку )(tx  виконується умова atxtV ))(,(  при 

всіх t  і за будь-яких nRx 0 , для яких <)(0, 0xV . 

Має місце таке твердження. 

Теорема 4.2. Нехай nRx 0 , існує функція )[0,)(  rrd BTCV , при x , 

виконуються всі умови леми 3.2 і крім того: 

(1) існує постійна 0>  така, що ),( xtVx
r   при всіх nRTxt ),(  і 1>r ; 

(2) для деякого 0>a  величина 

11
1 10

1
sup :1 ( , ( )) ( ) .

( ) ( )

t
q

p
a

t T E t s f s s
f t f t

 
 

        
 

  

Тоді розв’язок )(tx  системи (2.1) встановлюється на множині axtV <),(  при всіх 

[0, )t  . 

Доведення. Нехай )(tx  – розв’язок системи (2.1) при nRxx 0=(0) , для якого 

<)(0, 0xV . З леми 3.2 та умови 2 теореми 4.2 випливає, що  

1 11
1 0

1
( , ( )) ( ) 1 ( , ( )) ( ) )

( )

t
q

pV t x t f t E t s f s s
f t


 

    
 

 .                      (4.3) 

З оцінки (4.3) за умови (2) теореми 4.2 маємо оцінку  

( , ( ))V x a   . 

Отже, розв’язок )(tx  залишається на множині axtV ),(  при всіх )[0,t . Якщо 

виконується умова (1) теореми 4.2, тоді  

1
11

1 0

( ) 1
( ) 1 ( , ( )) ( )

( )

t
r q

p
f t

x t E t s f s s
f t




 
    

 
  

і при виконанні за всіх [0, )t   нерівності  

1 01
1 10

1
1 ( , ( )) ( ) (0, )

( ) ( )

t
q

pE t s f s s V x
f t f t

    

отримаємо оцінку 
1/

0( ) ( (0, )) =rx t V x R ,                                                (4.4) 

для деякого 0>R , де R  буде залежати тільки від 0x . Отже, рух системи (2.1) буде 

обмеженим. 
4.3 Практична стійкість. У цьому розділі розглядається рух системи (2.1), при 

деяких заздалегідь заданих величинах 0    , що обмежують початкові значення 

0x  і розв’язок )(tx  при всіх 0t . 
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Означення 4.3. (cf.[6]) Будемо говорити, що при заданих  0  розв’язок по-

чаткової задачі (2.1) – (2.2) практично стійкий, якщо при 0x   всі розв’язки )(tx  

такі, що ( ) <x t   при всіх 0t . 

Вкажемо достатні умови такого роду стійкості розв’язків ( )x t  з урахуванням оці-

нки функції Ляпунова з леми 3.3. Нагадаємо деякі означення, дотримуючись моног-
рафії [4]. 

Означення 4.4. Функція )[0,][0,: ra  належить до K -класу, якщо вона озна-

чена, неперервна і строго зростаюча на [0, ], (0) = 0r a . 

Означення 4.5. Функція : [0, ] [0, )b r    належить до KR -класу, якщо вона 

означена, неперервна і )(rb  при , (0) = 0r b . 

Теорема 4.3. Нехай для системи (2.1) виконуються умови: 
(1) існує функція ( , ) : [0, ) [0, )rV t x B     і функції KRa -класу і Kb -кла-

су такі, що   ( , )a x V t x  і  ( , )V t x b x ; 

(2) при всіх Tt  виконуються всі умови леми 3.3; 

(3) при 0x   виконується нерівність  

1
12

( ( , 0))
( ( ))

pa E t t T
a b





   . 

Тоді розв’язок )(tx  системи (2.1) практично стійкий. 

Доведення. Нехай при 0x   розв’язок системи (2.1) означений при всіх 0t . 

При виконанні умови (2) леми 3.3 при всіх Tt  маємо  

   0 2
( ) ( , ( )) ( , 0)pa x t V t x t b x E t  . 

Звідси  

2

1 1( ) ( ( )) ( ( , 0))px t a b a E t   

та при умові (3) теореми 3.3 отримаємо ( ) <x t   при всіх Tt . Цим теорема 4.3 

доведена. 
4.4 Стійкість за Ляпуновим. Нехай у системі рівнянь (2.1) вектор-функція 

0=),( xtf  при 0=x  і при всіх t T . 

Означення 4.6. (cf.[7]). Розв’язок 0=x  системи (2.1) стійкий у сенсі Ляпунова, 

якщо для будь-якого 0   існує 0( , )t    таке, що 0( , 0, ) <x t x   при всіх Tt  

як тільки 0x  . 

Покажемо, що має місце таке твердження. 

Теорема 4.4. Нехай для системи (2.1) виконуються такі умови: 
(1) існує функція  RBTCxtV rrd )(),( , функції ,a b K -класу такі, що  

  ( , )a x V t x  і  ( , )V t x b x  на rB)[0, ; 

(2) виконуються всі умови леми 3.3 для функції ( , )V t x  з умови (1) цієї теореми; 

(3) при всіх Tt  виконується нерівність  

2

( )
( , 0)

( )p
a

E t
b




 .                                                     (4.5) 

Тоді розв’язок 0=x  системи (2.1) є стійким. 
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Доведення. При виконанні умов (1), (2) теореми 4.4 з леми 3.3 отримуємо оцінку 

 0 2 2
( , ( )) ( , 0) < ( ) ( , 0)p pV t x t b x E t b E t                                (4.6) 

для початкових умов 0 0:x x  . Далі, при виконанні нерівності (4.5) маємо  

 ( ) ( , ( )) ( )a x t V t x t a                                                 (4.7) 

при всіх Tt . Звідси  
1 1( ) ( ( , )) ( ( ))x t a V t x a a       

при всіх Tt  для будь-якого 0  . Цим теорему 4.4 доведено. 

Висновки. 
У статті розглядається новий клас динамічних рівнянь із дробово-подібною похід-

ною вектора стану. Достатні умови різних типів обмеженості та стійкості розв’язків 
отримано на основі інтегральних оцінок функцій Ляпунова на розв’язках рівнянь, що 
розглядаються. Ці результати відкривають нові можливості якісного аналізу лінійних 
та квазілінійних систем динамічних рівнянь із дробово-подібною похідною вектора 
стану на основі як скалярних, так і багатокомпонентних функцій Ляпунова. 

 
РЕЗЮМЕ.  Запропоновано узагальнення прямого методу Ляпунова для динамічних рівнянь із 

дробово-подібною похідною вектора стану. Встановлено нові оцінки зміни функцій Ляпунова вздовж 
розв’язків дробово-подібних рівнянь на основі інтегральних нерівностей на часовій шкалі. Отримані 
оцінки застосовуються до аналізу різних типів стійкості та обмеженості розв’язків динамічних 
рівнянь із дробово-подібною похідною вектора стану системи. 

 
КЛЮЧОВІ СЛОВА :  динамічні рівняння, часова шкала, дробово-подібна похідна, оцінка фу-

нкції Ляпунова, обмеженість розв’язку, практична стійкість.  
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