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Abstract. The torsional waves as one type of the nonlinear elastic cylindrical waves of 

displacement are analyzed theoretically within the framework of the five-constant Murna-
ghan model. This analysis is based on tools of the nonlinear theory of elasticity. Two vari-
ants of new nonlinear wave equations for the torsional waves are derived by taking into ac-
count the nonlinear summands of the cubic order. The difference among these variants is in 
a different allowance for the nonlinearities in the wave equation. The simpler variant is used 
and the evolution of torsional waves is analyzed theoretically and numerically. A special 
attention is paid to the boundary conditions and the classical for torsional waves transcen-
dent equation. 
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Вступ. 
Каталог хвильових рівнянь постійно поповнюється новими рівняннями, в основ-

ному, нелінійними ([6, 30, 34] в області нелінійних диференціальних рівнянь, [4, 7, 8, 
21, 28, 32] в області нелінійних механічних хвиль, [9, 16, 27] в області квантової ме-
ханіки, [11] в області геофізики, [12, 33] в області акустики, [14, 31] в області астрофі-
зики, [29] в області медицини, [6] в області метаматеріалів). Ці рівняння не тільки 
описують фізичні явища, але і хімічні, економічні та інші. Тобто, нові рівняння опи-
сують хвилі різної природи. Спосеред класичних хвиль механічні хвилі є одними з 
найбільш вивчених. Однак і тут трапляються невивчені фрагменти. До одного з таких 

фрагментів належать як лінійні, так і нелінійні крутильні хвилі.  
Задача про поширення крутильних хвиль вздовж осі симетрії кругового циліндра 

в лінійній постановці є класичною в теорії пружності [1 – 3, 5, 10, 13, 17, 18, 20, 22]. 
Нелінійна постановка задачі про циліндричні хвилі в рамках п’ятиконстантної нелі-
нійної моделі пружного деформування Мернагана [19] описана в ряді статей, вказа-
них в монографії [22]. Однак в цих публікаціях варіант конфігурації, яка стосується 
крутильних хвиль, досліджений побіжно. Тому при проведенні повного аналізу кру-
тильних хвиль виникає потреба в більш загальних хвильових рівняннях, отриманих 
послідовно і строго. 

Примітка 1. Незважаючи на те, що крутильні хвилі є одним з класичних типів 
хвиль (плоских, циліндричних і у їх числі крутильних, сферичних, поверхневих), вони 
не описані як в дуже відомих, так і в менш відомих книгах з теорії пружності. Прак-
тично, тільки книги [5, 20, 22] дають послідовний опис цих хвиль в рамках лінійної 
теорії пружності. 

1. Класична задача лінійної теорії пружності про поширення крутильних 
хвиль. 

В будь-якій задачі про поширення біжучих пружних гармонічних хвиль негласно 
приймається, що такі хвилі збуджуються гармонічним у часі імпульсом. Наприклад, 
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плоска поздовжна хвиля зміщення в напрямку осі Ox  збуджується гармонічним ім-

пульсом заданої амплітуди і частоти ( ) o i t
x xu t u e  , прикладеним до площини 0x  . 

Аналогічно, гармонічна крутильна хвиля в напрямку осі симетрії циліндра Oz  збуджу-

ється імпульсом ( ) o i tu t u e 
  , прикладеним до поперечного перетину циліндра (круга) 

0z  . Тоді в циліндрі виникає крутильна хвиля, яка поширюється вздовж його осі. 
Для опису крутильної хвилі в пружному циліндрі кругового поперечного перерізу 

використовуються циліндричні координати  , ,r z  і додаткові умови щодо осьової 

симетрії деформівного стану та відсутності радіального і осьового зміщень [5, 20, 22]  

   , , , , 0r zu r z t u r z t  .                                              (1) 

Тоді система з трьох рівнянь руху циліндра спрощується до одного рівняння  

     2 2
, , , ,1 1 1 0rr r zz T ttu r u r u u v u         ,                    (2) 

де Tv    є фазовою швидкістю зсувної чи плоскої поперечної хвилі в лінійно 

пружному матеріалі;   – модулем зсуву і   – густиною цього матеріалу. 

Якщо припустити, що колове зміщення u  є гармонічним у часі і просторі (тобто, 

розглядається розв’язок у вигляді хвилі) 

     , , zi k z tu r z t u r e 
 

  ,                                               (3) 

то такий розв’язок вважають гармонічною крутильною хвилею, оскільки кожен попе-
речний переріз циліндра здійснює гармонічне коливання у коловому напрямку з зада- 
ною частотою   у часі і за просторовою координатою z  рухається хвиля з довжи-

ною  2 zk   та хвильовим числом zk . При цьому циліндр піддається деформації 

кручення і тому хвилю називають крутильною. 
Як випливає з представлення хвилі (3), амплітуда хвилі змінюється зі зміною раді-

уса. Ця амплітуда визначається з рівняння 

   2 2 2
, ,1 1 0o o o
rr r z Tu r u k k r u         .                              (4) 

Розв’язок рівняння (4) виражається через циліндричну функцію (функцію Бесселя 
першого роду і першого індексу) 

    2 2
1 ,o

T zu r u J r k k      .                                      (5) 

Отже, розв’язок у вигляді крутильної хвилі є таким 

     
1, , zi k z tou r z t u J r e 

    .                                        (6) 

Примітка 2. Функція Бесселя  1J r  має такі особливості: вона є спадною і 

 1 0 0J  . Тому зміщення у центрі циліндра є нульовими, що відповідає фізичному 

сенсу задачі. 
Хвильове число zk і відповідна фазова швидкість  z zv k  визначається з умо-

ви відсутності напружень на бічній поверхні циліндра or r   

     , , , , , , 0o o o
rr r rzr z t r z t r z t     .                           (7) 

Якщо врахувати співвідношення 

2 ; 2 ; 2 ;rr rr r r rz rze             
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   ,0; 1 2 1 ; 0; 0rr r r rzu r u e                                        (8) 

і підставити розв’язок (6) у граничні умови (7), то для знаходження zk  отримується 

трансцендентне рівняння 

   0 12o o or J r J r   .                                               (9) 

Рівняння (9) має нескінченну кількість коренів  1, 2,...o
k r k  . Відповідно, 

крутильна хвиля має нескінченну кількість мод з відмінними між собою фазовими 
швидкостями 

   221z T zk k
v v k  .                                               (10) 

Примітка 3. Крутильним хвилям зміщення  , ,u r z t  (6) відповідають крутильні 

хвилі напруження  

       
1 0, , 2 zi k z to

r r z t u J r rJ r e 
        .                     (11) 

2. Побудова нових нелінійних хвильових рівнянь, які описують поширення 
пружних крутильних хвиль. 

Побудова вказаних у назві параграфу хвильових рівнянь потребує використання 
інструментів нелінійної теорії пружності. Перш за все, слід використовувати цилінд-

ричну ортогональну систему координат 1 2 3, ,r z      . У цій системі довжина 

вектора обчислюється за формулою [2, 3, 22] 

       2 2 2 22i k
ikds g d d dr r d dz      ,                                  (12) 

метричні тензори мають компоненти 

2 2

1 0 0 1 0 0

0 0 ; 0 1 0

0 0 1 0 0 1

ik
ikg r g r  ,                                    (13) 

базисні вектори    1 2 3
1 2 3, , , , ,e e e e e e
     

 k k
n ne e  

 
 мають довжини 

 1 2 3
1 2 31; ; 1; 1; 1 ; 1e e r e e e r e     
     

,                     (14) 

лише три символи Крістоффеля першого роду m
ki  нерівні нулеві 

 1 2 2
22 12 21; 1r r       .                                        (15) 

Далі необхідно вибрати конфігурацію (стан) нелінійно пружного середовища. Та-
ких станів при описі деформування в циліндричних координатах може бути чотири 
[22]. Для опису крутильних хвиль слід вибирати конфігурацію, яка відповідає поста-
новці задачі про крутильні хвилі в лінійному наближенні (1). Це є осесиметрична 
конфігурація з віссю симетрії Oz , яка залежить від координат ,r z  і не залежить від 
координати  . У цій конфігурації стосовно крутильних хвиль (1) компоненти вектора 
зміщень є такими: 

       , , , 0, , , , 0 0, , , , 0r z
r zu r z t u u u r z t u u u u r z t u 

         


. (16) 

Компоненти нелінійного тензора деформацій Коші – Гріна обчислюються за до-
помогою похідних ко- і контраваріантних компонентів вектора зміщень (закреслені 
доданки є нульовими внаслідок врахування вибору конкретної конфігурації і пред-
ставлення (16)) 
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загальна формула:  

; ;
k

jk j k k
i ji i j k jii i

uu
u u u u

 


       

 
   1 1

1 ,1u u  1 1
11u  2 1

21u  3 1
31u  0 ; 

1 1,1iu u  1
1 11u  2

2 11u  3
3 11u  0;   1

1 2 2,1 1 21u u u    2 3
2 21 3 21u u    2,1 2

1
;u u

r
   

2 2 1 2
1 ,1 11u u u    2 2 3 2

21 31u u    2 2
,1

1
u u

r
  ; 

3
3

1 1

u
u




 


3
1

j
ju  3

1 3 1
0;

u
u




  
 31

k
ku  0;  

1
1

2 2

u
u




 


1 1
12u  2 1 3 1

22 32u u    2

1
2 1 2

;ru

u
u



 


 


1

1 12u  2 3
2 12 3 12u u    2

1
;u

r
 

2
2

2 2

u
u




 


1 2
12u  2 2

22u  3 2
32u  2

2 2 2
0;

u
u




  


1
1 22u  2

2 22u  3
3 22u  0;  

3
3

2 2

u
u




 


3
2

j
ju  3

2 3 2
0;

u
u




  
 32

k
ku  0;  

1
1

3 3

u
u




 


1
3

j
ju  1

3 1 3
0;

u
u




  
 13

k
ku  0;  

2
2 2

3 33
j

j
u

u u



   


2 2
,3 3 2 233

; k
k

u
u u u




    
 2,3;u  

3
3

3 3

u
u




 


3
3

j
ju  3

3 3 3
0;

u
u




  
 33

k
ku  0  

і за умови (16) мають вигляд  
загальна формула: 

 1
;

2
ij j i k

i j i j ku u u u       

11 1
1u    1

1 1 1
1

2
u u      2 3

1 2 1 1 3 1
1 1

2 2
u u u u     

2
2 2

2,1 2 ,1
1 1 1

2
u u u u

r r
        
   

; 

22 2
2u      1 2

2 1 2 2 2 2
1 1

2 2
u u u u       3

2 3 2
1

2
u u   2

2
1

2
u u ;      (17) 

33 3
3u   1

3 1 3
1

2
u u   2 3

3 2 3 3 3 3u u u u      2
,3 2,3

1
;

2
u u  

12 2 1
1 2

1

2
u u     1

1 1 2u u   2
1 2 2u u   3

1 3 2u u    2 2
,1

1 1
;

2
u u

r
   
 

 

23
2 3

1

2
u   2 1

3 2 1 3u u u    2
2 2 3u u   3

2 3 3u u    2
,3

1
;

2
u  
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13
1 3

1

2
u   3 1u  1

1 1 3u u   2 3
1 2 3 1 3 3u u u u      2

2,1 2 ,3
1

u u u
r

   
 

 

або у випадку крутильних хвиль в слабко нелінійному пружному матеріалі 

   
2 2

, 2

1 1

2rr ru u
r

      
;    22

1 1

2
u

r
   ;    2,

1

2zz zu  ; 

,
1 1

2r ru u
r      

 
;   ,

1
;

2z zu      , ,
1

.rz r zu u u
r      

 
 

Примітка 4. В рамках вибраної конфігурації два компоненти ,r z    тензора де-

формації є лінійними, а решта компонентів не має лінійних доданків і є лише квадра-
тично нелінійними.  

Нелінійні рівняння руху в записі через тензор напружень Лягранжа kl  є такими: 

 ki n n i
k i iu u        .                                        (18) 

У ряді випадків виявляється доцільним аналізувати рівняння руху лише як рів-
няння щодо зміщень. Тоді компоненти тензора напружень треба спочатку обчислюва-

ти за формулою  ik ikW    , де слід знати внутрішню енергію W як нелінійну 

функцію компонентів тензора деформації. Далі треба використати формули (17). 
Наступний крок пов’язаний з вибором типу пружного матеріалу (середовища). У 

проведеному дослідженні вибрано гіперпружний матеріал і спосеред моделей дефор-
мування такого матеріалу вибрано п’ятиконстантну модель Мернагана, яка задається 

кубічно нелінійним пружним потенціалом [19] 

2 3
1 2 3 1 2 3 1 2 1

1 1 1
( , , )

2 3 3
W I I I I I A I B I I C I                          (19) 

зі стандартними представленнями перших трьох інваріантів тензора деформації 

         

           

2 2 211 22 33 11 22 33
1 2

2 2 2 2 2 212 13 23 21 31 32

;

;

ik ik ik ikI I         

     

       

     

         (20) 

  11 22 33 13 21 32 31 12 23 13 22 31 11 23 32 12 21 33
3 detik ikI                           . 

На даному етапі аналізу немає потреби вираховувати всі компоненти тензора на-

пружень ik  через деформації і зміщення, оскільки не всі ці компоненти потрібні для 

запису рівнянь руху (18) через зміщення (у даному випадку вони ж і хвильові рівнян-
ня). Особливістю конфігурації (1) є те, що з трьох рівнянь руху нетотожнім є лише 

друге рівняння – рівняння щодо зміщення 2u   

 2 2
2 2

k n n
k u u          

   12 22
1 2 2 2 2 2

n n n nu u               32 2
3 2 2

n nu u          

12 32 2
1 3 u      .                                           (21) 
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Таким чином, потрібен тільки запис дотичних напружень 12 23,   

12 1
1 12

I
I 







32 2 1
1 212 12 12 12

1

3

II I I
A B I I

   
  

   
   

2 1
1 12

I
CI


  

 
 

   12 13 23 12 33 12 11 22 331
2 2 ;

3
A B        



     

         (22) 

23 1
1 23

I
I 







32 2 1
1 223 23 23 23

1

3

II I I
A B I I

   
  

   
   

2 1
1 23

I
CI


  

 
 

23 13 12 11 23 23 11 22 331
2 2 2 2 .

3
A B        



           

       (23) 

Рівняння руху (21) з врахуванням представлень (22), (23) має вигляд 

 

 
   

  
   

13 23 13 23 12 33
,1 ,1 ,1

12 23
,1 ,3

12 13 11 12 13 33 11
,3 ,3 ,1 ,3

12 23 11 22 33
,1 ,3

2

12 11 22 33 23 11 22 33
,1 ,1 1 ,3 ,3 ,3

1
2

3

2 .

A

B u

     
  

      

    


       

   
    
      

    
   
       



                (24) 

Тепер можна врахувати формули (17) і записати рівняння (24) через зміщення 

    

     

2
, ,1 . ,

2 22
, , ,2

1 1

1 2
1 2

rr r zz tt

r r z

Lu u r u r u u u

Lu B u u u u u
r r

     

     

       
 

       

                         (25) 

       

 
       

         

2 2
, , ,

2 2
, , , , , , ,

2 22
, , , , , ,

2
1 6 9

1 2 1 2
1 3

3 2 2 1 2 1 2

r z z

r z rz z rr r zz

r zz z rz z zz

A B u u u u
r

ru u u r u u r u u
A

u u u u u u r u u r u u

   

      

         

      

   
   
     

 

     

       

           

2 2 22
, , , , , ,

2 22
, , ,

3 22 2
, , , , , , ,

2

1 2 4 1 .

3 2 5 2 5 2 2 1 2

z zz r rr r rz

r rr r

r r z rz r rr rr

r u u r u u r u u

B r u u r u u

u r u u u u u u u u r u u

     

   

          

   
 
      
 
 
      

 

Рівняння (25) являє собою нове нелінійне хвильове рівняння, яке у лівій частині по-
вністю співпадає з лінійним хвильовим рівнянням (4), а у правій частині містить додан-
ки, які є кубічно нелінійними щодо зміщення. Отже, квадратична нелінійність, яка ха-
рактерна, наприклад, для деяких циліндричних хвиль [22], не присутня в рівнянні (25) і 
крутильні хвилі є виключно кубічно нелінійними в рамках реалізованого підходу. 
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Окрім вказаної вище особливості нового нелінійного хвильового рівняння, слід 
вказати ще на декілька інших особливостей. 

Права нелінійна частина рівняння (25) містить багато нелінійних доданків. Подіб-
на ситуація виникала і раніше при вивченні плоских і циліндричних хвиль [22, 23]. 
При застосуванні трьох різних підходів до знаходження наближених розв’язків такого 
роду нелінійного хвильового рівняння було виявлено [22], що рядом нелінійних дода-
нків можна знехтувати і враховувати лише доданок, подібний до лінійної частини 
хвильового рівняння. Отже, присутність в рівнянні багатьох нелінійних доданків у 
ряді випадків не створює великих перепон в знаходженні наближеного розв’язку. 

Також звичайно в теорії пружності розрізняють два типи нелінійностей в основ-
них рівняннях – геометричну та фізичну. Геометрична виникає, коли в записі тензора 
деформації враховуються квадратично нелінійні доданки. Тоді у загальному випадку 
при записі хвильових рівнянь у цих рівняннях виникають нелінійні доданки з множ-
никами у вигляді пружних постійних Ляме ,  . Як свідчить хвильове рівняння (25), 

в рамках прийнятої постановки задачі про крутильні хвилі такі доданки відсутні. При-
сутні лише нелінійні доданки з множниками у вигляді пружних постійних Мернагана 

,А В , що свідчить про врахування у рівнянні (25) лише фізичної нелінійності. Отже, 

ця ситуація не є наслідком нехтування геометричної нелінійності, а наслідком специ-
фіки загальної для теорії пружності постановки задачі про крутильні хвилі.  

Ще одна особливість рівняння (25) пов’язана з виразом у правій частині, який по-
міщений у рамку. Він містить лінійний оператор L . Якщо знехтувати всіма іншими 
нелінійними доданками і врахувати лише вказаний вище вираз, то можна застосувати 
до аналізу наближених розв’язків рівняння (25) методи повільно змінних амплітуд, 
послідовних наближень, обмеження на градієнт зміщення [15, 22 – 26]. У цьому ви-
падку рівняння (25) спрощується до вигляду лінійного хвильового рівняння з неліній-

но змінною швидкістю гармонічної за часом хвилі    , , , tu r z t u r z e     

     

    

2 22
, , ,2

2
, , . ,

1 2
1 2

1 1 0

r r z

rr r zz tt

B u u u u u
r r

u r u r u u u

   
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



             

     

                        (26) 

або 

       

     

2 22 2
, , ,2

2 2
, , .

1 2
1 1 2

1 1 0.

T r r z

rr r zz

v B u u u u u
r r

u r u r u u

   
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



             

     

    

   

                 (27) 

3. Новий наближений метод побудови розв’язку нелінійного рівняння (5). 
Цьому методу присвячена публікація [4], де було вибрано найпростіший варіант 

рівняння (5) 

    

     

2
, , . ,

2 22
,1 ,1 ,32

1 1

1 2
1 2

rr r zz ttLu u r u r u u u

Lu B u u u u u
r r

     

     

       
 

      

 

або 

     

   

2 22 2
, , ,2

2
, , . ,

1 2
1

2

1 1 0.

T r r z

rr r zz tt

B
с u u u u u

r r

u r u r u u u
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    


          

       

                       (28) 
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Розв’язок рівняння (28) представляється у вигляді хвилі з невідомим хвильовим 
числом і невідомою амплітудою 

     , , zi k z tu r z t u r e 
 

  .                                        (29) 

В результаті нелінійне хвильове рівняння (28) перетворюється на якби лінійне рів-
няння зі змінною швидкістю хвилі Kv   

        2 2 2 2
, ,1 1 0K rr r zv u r u k r u u          

 

або 

        2 2 2
, ,1 1 0rr r z Ku r u k k r u       ,                           (30) 

де 

 K Kk v ;     2 22
, , ,2

1 2
1

2K T r r z
B

v с u u u u u
r r

    
       

.                (31) 

Примітка 5. Раніше [22 – 26] автори застосовували до нелінійного хвильового  
рівняння типу (30) 

    2
1, 1 1,1 1,11 0tt Lu v N u u                                          (32) 

щодо плоскої поздовжної хвилі метод обмеження на градієнт зміщення. Згідно з цим 

методом, рівняння (31) далі перетворювалось у якби лінійне рівняння 2
1, 1,11 0ttu v u   

зі змінною швидкістю хвилі 1,11 Lv u v  ,  1 2N      . Далі накладалося 

обмеження на невелику зміну швидкості 

1,1 1u                                                            (33) 

(на невелику зміну градієнта зміщення). Метод отримав назву методу обмеження на 
градієнт зміщення. 

За новим методом потрібно ввести обмеження на змінну швидкість (31) 

  1
2

B
M u

 ,       2 22
, , ,2

1 2
r r zM u u u u u u

r r
     

      
.          (34) 

Примітка 6. Зважаючи на порядок множника перед  M u , обмеження (34) 

включає обмеження на пройдений хвилею шлях від поверхні циліндра до центру ци-
ліндра, зміщення і два компоненти градієнта зміщення. Тому новий метод можна б 
назвати методом обмеження на змінну швидкість хвилі – зміна повинна бути малою 
порівняно з одиницею. Оскільки обмежуються добутки, то умова (34) є дуже відмін-
ною від умови (33). Наприклад, умова на квадрат градієнта є значно слабшою умови 
на сам градієнт (величина градієнта 10-2 і величина його квадрату 10-4). Звичайно ве-
личина зміщення в конструкційних пружних матеріалах 10-4 і тоді, відповідно, його 
квадрату 10-8. Отже, в реальних числових розрахунках кожен з чотирьох доданків в 

 M u  повинен оцінюватися окремо. 

Наступний крок у методі полягає в використанні розв’язку (29) і його формаль-
ному записі через функцію Бесселя  

      2 2
1, , ;zi k z to

K K K zu r z t u J r e k k
     .                            (35) 

Зазначимо, що особливістю наближеного представлення хвилі (35) є те, що воно 
вже включає постійну швидкість хвилі  z zс k , яка відповідає лінійному набли-

женню, але швидкість хвилі залежить від невідомого зміщення, його похідних і прой-
деної хвилею відстані в перетині циліндра. 
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Далі метод використовує ще одне обмеження 

 
2

4
zBk

r M u


                                                    (36) 

і наближене представлення функції Бесселя  2 2
1 K zJ k k r , в результаті чого з (35) 

отримується наближений розв’язок в такому вигляді: 
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   .      (37) 

Нарешті, в (37) дещо перетворюється вираз  M u  і остаточно представлення 

розв’язку у вигляді двох наближень – лінійного (першого) і другого (певної нелінійної 
добавки) – має вигляд  
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                       (38) 

Звичайно, в наближеному аналізі плоских та циліндричних хвиль друге набли-
ження вносить спотворення в початковий профіль хвилі, тому що вплив нелінійної 
добавки збільшується зі збільшенням відстані, яку проходить хвиля. В проведеному 
аналізі крутильної хвилі це не так. Тут відбуваються два види спотворення. Одне по-
казує еволюцію хвилі при зміні відстані від центру до поверхні циліндра (добавка 
містить як множник). Друге спотворення пов’язане з тим, що на поверхні циліндра 
лінійна гармонічна хвиля (перша гармоніка) отримує постійну добавку у вигляді тре-
тьої гармоніки, тобто, хвиля спотворюється до вигляду модульованої хвилі, але ця 
добавка не змінюється з відстанню поширення хвилі в осьовому напрямку. Можна 
вважати, що реалізований наближений підхід не описує еволюцію хвилі, а лише одно-
моментно переводить гармонічну хвилю у модульовану хвилю. Поступового переходу 
першої гармоніки у третю цей підхід не описує. 

4. Граничні умови в нелінійній задачі про крутильні хвилі. 

Як і в лінійній задачі, тут хвильове число zk і швидкість хвилі  z zv k  визна-

чаються з умови відсутності напружень на бічній поверхні циліндра or r   

     , , , , , , 0o o o
rr r rzr z t r z t r z t     .                               (39) 

Далі слід вирахувати напруження з (39) через деформації і далі зміщення. Форму-
ла для нормального напруження rr  через зміщення не показана нижче з тих мірку-

вань, що в ній немає доданків першого порядку (лінійних доданків) але є доданки 
другого і четвертого порядків. Формули для дотичних напружень є такими: 
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                       (40) 
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(формула (40) включає лінійну частину, яка відповідає лінійному класичному підходу, 
і чотири доданки, які є кубічно нелінійними) 
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Це напруження включає два доданки другого порядку нелінійності та шість дода-
нків четвертого порядку.  

Отже, всі три напруження на поверхні циліндра включають нелінійні доданки і не 
можуть прирівнюватись до нуля, оскільки у такому випадку для знаходження однієї 
невідомої величини – хвильового числа – задаються три рівняння. Тоді задача стає 
переозначеною. Виникає питання загального порядку про перехід від лінійної задачі 
до спорідненої з нею нелінійної. У лінійній постановці вийшло вдало, бо два напру-
ження з граничних умов є нульовими завжди і всюди (не лише на граничній поверхні 
циліндра). Характерне для багатьох задач збереження граничних умов при переході 
від лінійної постановки до нелінійної у задачі про нелінійні крутильні хвилі не вигля-
дає коректним.  

Тому раціонально зберегти в граничних умовах нелінійної задачі одну граничну 
умову щодо дотичного напруження r , характерного для крутильної хвилі. Саме 

воно у лінійній постановці трансформується в трансцендентне рівняння для знахо-
дження хвильового числа. Щодо нормального напруження та дотичного напруження 
на поверхні циліндра в нелінійній постановці треба вважати, що вони не будуть ну-
льовими і можуть бути вирахувані при відомому хвильовому числі. 

Оскільки функції Бесселя вбудовані в більшість комп’ютерних пакетів (напри-
клад, в Mathematika), то ускладнень з комп’ютерним аналізом еволюції крутильної 
хвилі не передбачається. Однак, достовірність наближеного представлення (20) регу-
люється певними обмеженнями – перш за все, це обмеження на профіль хвилі (відно-
шення максимальної амплітуди до довжини хвилі) та на відстань поширення хвилі; 
крім того, в обмеження входять вибір початкового амплітудного множника, частоти 
хвилі і матеріалу. Практика комп’ютерного аналізу еволюції хвилі [22] показує, що 
такий аналіз вносить корективи в розуміння обмежень в наближеному аналізі хвилі. 

Загальні висновки. 
Більш повно описана процедура отримання нового нелінійного хвильового рів-

няння стосовно крутильної хвилі зміщення, яке стисло описане в недавній публікації 
одного з авторів цієї статті. За допомогою інструментів нелінійної теорії пружності 
виведені два варіанти нелінійного хвильового рівняння (повне і вкорочене), що опи-
сує поширення крутильних хвиль в круговому циліндрі вздовж його осі симетрії. 
Отримані рівняння мають класичну лінійну частину, є кубічно нелінійними та мають 
ряд особливостей. Цікаво, що вкорочене рівняння включає лише одну з трьох пруж-
них констант Мернагана і обидва рівняння не враховують вплив третього інваріанта 
тензора деформацій. Проаналізовано наближено вкорочене рівняння, для чого уза-
гальнено метод обмеження на градієнт зміщення. Метод обмежує зміну швидкості 
крутильної хвилі і містить не лише обмеження на градієнт зміщення. Особливість 
методу полягає у врахуванні нелінійності в записі амплітуди хвилі. При переході до 
нелінійної постановки задачі спостережено нестандартну ситуацію з використанням 
граничних умов, яку прокоментовано. Також спостережено чутливість амплітуди 
хвилі на поверхні циліндра від радіуса циліндра, яка теж прокоментована. Тут існує 
можливість нульової амплітуди на поверхні циліндра і піків амплітуд всередині цилі-
ндра, що спричинено особливістю графіка функції Бесселя. 
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Наукові дослідження, результати яких опубліковано у цій статті, виконано за ра-
хунок коштів бюджетної програми «Підтримка пріоритетних напрямків наукових до-
сліджень» (КПКВК 6541230). 

 
 
РЕЗЮМЕ.  Теоретично в рамках п’ятиконстантної моделі Мернагана проаналізовано пружну 

крутильну хвилю як один з типів пружних циліндричних хвиль. Цей аналіз використовує інструмен-
ти нелінійної теорії хвиль. Отримано два варіанти нових нелінійних хвильових рівнянь, які містять 
крім лінійних лише кубічно нелінійні доданки. Відмінність між варіантами полягає у різному враху-
ванні нелінійних доданків у хвильовому рівнянні. Проаналізовано простіший варіант і вивчена тео-
ретично і чисельно еволюція крутильних хвиль. Особлива увага приділена граничним умовам та 
класичному для крутильних хвиль трансцендентному рівнянню. 

 
КЛЮЧОВІ СЛОВА: нелінійно пружна крутильна хвиля, п’ятиконстантний потенціал Мер-

нагана, нове нелінійне хвильове рівняння в зміщеннях, граничні умови, наближений підхід, еволюція 
з часом і відстанню.  
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