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Abstract. The statement is given and an analytical-numerical technics is developed for 
solving a geometrically nonlinear problem for a long cylindrical panel of non-circular cross-
-section that is compliant with the transverse shear under the action of a normal surface 
load. The basic equations are written following the geometrically nonlinear theory of 
shallow shells in the quadratic approximation, Timoshenko hypothesis, and Hooke law for 
transversely isotropic materials. For a shell with hinged longitudinal edges, the analytical 
expressions for the components of the stress-strain state are obtained, and the limiting values 
of the generalized geometric parameter are determined. The numerical results are obtained 
for the long open cylindrical shells of elliptical and oval cross-sections under the action of 
uniform normal pressure. 
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Вступ. 
Довгі, короткі та середньої довжини композитні циліндричні оболонки некруго-

вого поперечного перерізу (еліптичного, овального, параболічного, тощо) як елементи 
сучасних конструкцій знаходять широке застосування в авіа- та суднобудуванні, кос-
мічній техніці, цивільному будівництві, радіоелектроніці та інших галузях промисло-
вості. При розрахунку оболонкових елементів конструкцій, виготовлених з композит-
них матеріалів, необхідно враховувати як дійсні умови експлуатації, так і особливості 
їх деформування, зокрема, деформації поперечного зсуву і великі (скінченні) прогини. 

Врахування зміни кривизни поперечного перерізу і зазначених вище факторів 
призводить до значних математичних труднощів при розв’язанні задач даного класу. 
Тому значну кількість результатів з розрахунку некругових циліндричних оболонок 
отримано за допомогою чисельних і наближених аналітичних методів [2 – 4, 6, 8, 9,  
12 – 16, 20, 22 – 24]. 

Точні аналітичні розв’язки лінійних і нелінійних крайових задач для некругових 
циліндричних оболонок отримано тільки для деяких видів поперечного перерізу. Так, 
в роботі [21] для довгої непологої циліндричної оболонки овального поперечного пе-
рерізу з неперервним і східчасто-змінним радіусами кривизни наведено точні 
розв’язки лінійно-пружних задач статики за дії нормальних поверхневих і погонних 
сил, які рівномірно розподілені вздовж твірних. 

В більшості робіт, присвячених аналітичному дослідженню нелінійного деформу-
вання циліндричної оболонки, отримано точні розв’язки геометрично нелінійних задач 
для нескінченно довгої пологої оболонки кругового поперечного перерізу [5, 11, 18, 25]. 

Точним розв’язкам нелінійних крайових задач для некругових оболонок присвя-
чені лише окремі роботи, в яких розглянуто два види поперечного перерізу оболонок. 
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Так, автори робіт [1, 10] на основі геометрично нелінійної теорії пологих оболонок у 
квадратичному наближенні аналітично дослідили нелінійне деформування і стійкість 
довгої циліндричної оболонки некругового поперечного перерізу, кривизна якого змі-
нюється за квадратичним законом. В роботі [17] одержано аналітичний (точний) 
розв’язок геометрично нелінійної задачі статики для піддатливої на поперечний зсув 
нескінченно довгої пологої циліндричної оболонки овального поперечного перерізу й 
наведено конкретні числові результати для незамкненої оболонки з шарнірно закріп-
леними поздовжніми краями під дією прикладеного з боку опуклості оболонки рівно-
мірного тиску.  

Зазначимо, що в роботі [20] запропоновано ефективний аналітично-чисельний 
підхід до дослідження лінійного напружено-деформованого стану (НДС) довгих не-
кругових циліндричних оболонок змінної товщини та представлено числові результа-
ти для замкненої оболонки еліптичного перерізу за дії внутрішнього поверхневого 
навантаження. 

Нижче дано постановку геометрично нелінійних задач статики для піддатливих на 
поперечний зсув нескінченно довгих пологих циліндричних оболонок довільного по-
перечного перерізу, розроблено аналітично-чисельну методику розв’язання задач да-
ного класу та досліджено нелінійне деформування і стійкість довгих циліндричних 
панелей еліптичного і овального поперечного перерізу під дією рівномірного зовніш-
нього тиску. 

§1. Постановка задачі і основні співвідношення. 
Розглянемо незамкнену нескінченно довгу пологу циліндричну оболонку некру-

гового (еліптичного, овального, параболічного, тощо) поперечного перерізу, виготов-
лену із трансверсально-ізотропного матеріалу. Геометрію оболонки опишемо в декар-
товій системі координат ),,( ZYX , вісь OY  якої розташована в площині поздовжніх 

країв на однаковій відстані від них (рисунок). Площину поперечного перерізу відне-
семо до системи координат ),( ZX , а серединну поверхню оболонки – до криволіній-

ної ортогональної системи координат ),( ys , де ys,  – довжини дуг напрямної і твір-

ної )0;( lys   . Прямолінійну координату   направимо по нормалі до се-

рединної поверхні. Приймемо, що оболонка має сталі характеристики жорсткості й 
знаходиться під дією нормального поверхневого навантаження інтенсивності ,q  яке 

прикладене з боку опуклості оболонки і може змінюватися тільки вздовж напрямної. 
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Закони зміни навантаження і кривизни поперечного перерізу вздовж напрямної 
представимо у вигляді 

;)(0 pqq    ;)(0 kk    , s                                     (1.1) 

де 00 , kq  – параметри навантаження q  і кривизни k ; )(),( p  – парні функції без-

розмірної координати ,)11(    які можуть бути задані аналітичним або таблич-

ним способом. 
Нехай при підвищених рівнях діючого навантаження в оболонці виникають вели-

кі (скінченні) прогини, порівняні з товщиною h . Для дослідження НДС даного класу 
гнучких циліндричних оболонок скористаємося рівняннями геометрично нелінійної 
теорії пологих оболонок у квадратичному наближенні, яка базується на гіпотезі прямої 
лінії (враховуються деформації поперечного зсуву). У цьому випадку для компонентів 
деформації оболонки  ,,  маємо вирази [1, 15]: 
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де wu ,  – тангенціальне переміщення і прогин точок серединної поверхні оболонки; 
  – кут повороту нормалі. 

Зв’язок внутрішніх зусиль і момента з компонентами деформації оболонки запи-
суємо згідно із законом Гука у вигляді: 
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У співвідношеннях (1.3) позначено: QN ,  – тангенціальне і перерізуюче зусилля; 

M  – згинальний момент; QMN DDD ,,  – характеристики жорсткості оболонки; ,E  

– модуль пружності й коефіцієнт Пуассона матеріалу оболонки в площині ізотропії; 

sG – модуль зсуву в площині поперечного перерізу; m  – коефіцієнт, який залежить 

від характеру розподілу зсуву за товщиною. 
Рівняння рівноваги мають такий вигляд: 

,0;0;0
*

 Q
ds

dM
qkN

ds

dQ

ds

dN
                                (1.4) 

де .*

ds

dw
NQQ   

На підставі (1.2) – (1.4) приходимо до системи розв’язувальних рівнянь у перемі-
щеннях 
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При розв’язанні конкретних крайових задач до системи рівнянь (1.5) потрібно 
приєднати відповідні граничні умови. 

Наведемо граничні умови для випадку, коли поздовжні краї оболонки шарнірно 
закріплені: 

;0)( w     ;0
 



sds

d
     .0)( u                                 (1.6) 

Останню з умов (1.6) на одному краї можна замінити еквівалентною умовою 
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яка означає, що зближення між краями відсутнє. 

§2. Аналітично-чисельний розв’язок геометрично нелінійної задачі для дов-
гої некругової циліндричної панелі. 

Оскільки поверхневе навантаження прикладене з боку опуклості оболонки, то 
тангенціальне зусилля N  є нерозтягуючим ( 0N ). 

Інтегруючи перше рівняння системи (1.5), отримуємо, що тангенціальне зусилля 
не змінюється вздовж напрямної, тобто 
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Введемо безрозмірні величини [10, 17]: 
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Зазначимо, що безрозмірна координата  s  введена вище (1.1). 

Крайова задача (1.5) – (1.7) у безрозмірних величинах записується наступним чи-
ном: 
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Система (2.4) є системою лінійних звичайних диференціальних рівнянь зі сталими 

коефіцієнтами відносно безрозмірних прогину w~  і кута повороту 
~

.  

У випадку, коли 0
~1   N , загальний розв’язок однорідної системи, яка від-

повідає системі (2.4), має вигляд  
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ємо метод варіації довільних сталих. Шукаємо частинний розв’язок системи (2.4) у 

вигляді формул (2.7), вважаючи, що величини )4,1( iCi  є функціями від змінної  . 

Шукані функції )4,1()( iCi   задовольняють такій системі рівнянь: 
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Звідки знаходимо похідні цих функцій 
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де )(det W  – визначник системи (2.8) (визначник Вронського частинних розв’язків 

однорідної системи); )(3 iW  – алгебраїчні доповнення елементів третього рядка ви-

значника Вронського. 
Підставивши у співвідношення (2.9) значення величин )(det W  і )(3 iW  та вико-

навши інтегрування, отримаємо для функцій )(iC  наступні вирази: 
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Праві частини формул (2.10) записані з використанням позначень: 
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Із співвідношень (2.10), (2.11) випливає, що функції )(),( 31  CC  – парні, а 

)(),( 42  CC  – непарні. 
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Загальний розв’язок системи (2.4) має вигляд 

     

    
1 1 2 2 3 3 4 4

2 2 3 3 4 4

( ) ( ) ( ) cos ( ) sin ;

( ) (1 ) ( ) sin ( ) cos .

w C C C C C C C C

C C N C C C C

      

       

       

       



 
    (2.12) 

Визначимо сталі інтегрування )4,1( iCi  з перших чотирьох граничних умов (2.5) 

на поздовжніх краях оболонки. 
При 0sin   і 0cos   одержимо такі значення сталих інтегрування: 

1 1 2(1) (1);C C C     ;02 C   3 3 4(1) (1) ;C C C tg     .04 C            (2.13) 

Отже, в цьому випадку розв’язок системи (2.4) має вигляд 

0 0 0 0 0 0 0
1 2 1 2 3 4 3(1) (1) ( ) ( ) (1) (1) ( ) cosw C C C C C C tg C                  

0
4 0 1 2 1 2( )sin (1) (1) ( ) ( )q q q qC q C C C C            

3 4 3 4(1) (1) ( ) cos ( )sin ;q q q qC C tg C C                              (2.14) 

 0 0 0 0 0
2 3 4 3 4( ) (1 ) (1) (1)tg ( ) sin ( )cosC N C C C C                  

         

 0 02 3 4 3 4( ) (1 ) (1) (1)tg ( ) sin ( )cos .q q q q qq C q N C C C C               
   

Якщо 0cos   ( nn   2 ; ...,2,1,0n ), то отримаємо: 1 1 2(1) (1);C C C    

;02 C  ;04 C  3C  – довільне дійсне число. Тому при n   розв’язок системи (2.4) 

визначається неоднозначно (з точністю до множника 3C  при тригонометричних фун-

кціях cos  і sin ). Неоднозначність розв’язку можна усунути, якщо дослідити 

границі виразів для прогину і кута повороту при n  . 

У випадку, коли 0sin  , тобто ...,2,   , значення сталих інтегрування до-

рівнюють: 1 1 2(1) (1);C C C    ;02 C  3 3 4(1) (1)tg ;C C C     4C  – довільне дійсне 

число. При досягненні параметром внутрішнього зусилля значення    симетрична 
відносно лінії 0  форма рівноваги оболонки вперше стає нестійкою та з’являється 

несиметрична складова прогину. Зазначимо, що в цьому випадку сталу інтегрування 

4C  можна визначити з граничної умови (2.6). 

З (2.14) при значенні координати 0  отримаємо вираз для стріли прогину панелі: 

0 0 0 0
1 2 3 4 0 1 2 3 4(0) (1) (1) (1) (1) (1) (1) (1) (1) .q q q qw C C C C tg q C C C C tg                   (2.15) 

Безрозмірні внутрішні силові фактори визначаються за формулами: 

;)1(
~ 22  N    0 0 0

3 3 4( ) (1) (1)tg sinQ N C C C        
   

  0
4 0 3 3 4 4( )cos ( ) (1) (1) sin ( )cos ;q q q qC q N C C C tg C             

  

 0 0 0 0
3 4 3 4(1) (1)tg ( ) cos ( )sinM N C C C C          

                 (2.16) 

 0 3 4 3 4(1) (1)tg ( ) cos ( )sin .q q q qq N C C C C         
  
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Вирази для нормального напруження ~  )/~( 2
MDh    на зовнішній і внутрі-

шній поверхнях оболонки ( 5,0/~  h ) мають вигляд 

.
~~

6
~~ MkN                                                     (2.17) 

Задовольняючи граничну умову (2.6), отримаємо зв’язок між безрозмірними па-
раметрами навантаження й тангенціального зусилля у вигляді квадратного рівняння 
відносно 0

~q  

.0~~
302

2
01  RqRqR                                               (2.18) 

Коефіцієнти рівняння (2.18) обчислюються за формулами: 

;)3,2,1(cossincossin 3
2

2
2

1  irrrR iiii   

22
4

11

(1)
;

2

qC A
r

  
     

221 2 3
12 4

1

(1)1
( )

2 2

q
q

C A
r C d


 



 
        

1 1 12 22 22 2
3 3 3 4

1 1 1

(1) ( )sin ( )sin ( )cos
2 2

q q q qC C d C d C d
          

  

             

  
 

1

1
42

1

1

1

1
3223 cos)()(sin)()(sin)()1(  dCCdCCdCC qqqqqq  

;cossin)()(cossin)()1(
1

1

1

1
43

2
43

2  
 

  dCCdCC qqqq  

 


1

1

2
34

2
43

2
13 sin)()1()1()1(  dCCACCr qqqq  

;cossin)()1(sin)()1(
1

1
44

2
1

1
24 



  dCCdCC qqqq               (2.19) 

 ;)1()1( 4
0
4

2
21 ACCr q    

1 1

22 1 2 1
1 1

(1) (1) ( ) ( ) ( )q q qr C C d C d      
 

         





1

1
3

1

1
3

1

1
2 cos)()(cos)()1()()(  dCdCdC qqq  

 


1

1

2
3

0
3

2
1

1
2

0
2

1

1
4 sin)()1()()(sin)()(  dCCdCCdC qqq  

 


1

1

2
3

0
3

2
1

1

20
33

2
3

0
3

2 sin)()(sin)()1()1()1(  dCCdCCACC qqq

 


1

1
2

0
3

1

1

0
23

1

1

2
4

0
4

2 sin)()1(sin)()1(cos)()(  dCCdCCdCC qqq  

1 1
0 0 2 0
2 3 43 2 3

1 1

( ) ( ) ( ) ( ) sin (1) ( )sin cosq q qC C C C d C C d           
 

        

1 1
0 0 2 0
2 4 34 2 4

1 1

( ) ( ) ( ) ( ) cos (1) ( )sin cosq q qC C C C d C C d           
 

        
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1
2 0 0

4 33 4
1

( ) ( ) ( ) ( ) sin cos ;q qC C C C d       


     

1
2 0 0

23 3 44 4 3
1

(1) ( )cos (1) (1) (1) (1)q q qr C d C C C C A    


       

 


1

1

0
24

1

1

20
34

2
1

1

2
3

0
4

2 sin)()1(sin)()1(sin)()1(  dCCdCCdCC qqq  

 


1

1

0
44

2
1

1
2

0
4 cossin)()1(sin)()1(  dCCdCC qq  

;cossin)()1(
1

1
4

0
4

2 


  dCC q  

22 0
4

31

(1)
;

2

C A
r

  
      ;~

6

~
*
32232 r

k

N
r     

1
* 0 0
32 1 2

1

(1) (1) ( )r C C d  


       

 


1

1

0
3

1

1

0
2

1

1

0
1 cos)()1()()()()(  dCdCdC  

22 01 1 1 2 30 0 0
3 4 2

1 1 1

(1)1
( ) ( )cos ( ) ( )sin ( )

2 2

C A
C d C d C d


           

  

 
           

1 1 12 22 22 0 0 2 0 2 0 2
3 3 3 4

1 1 1

(1) ( )sin ( ) sin ( ) cos
2 2

C C d C d C d
          

  

             





1

1

0
4

0
2

1

1

0
3

0
2

1

1

0
2

0
3 cos)()(sin)()(sin)()1(  dCCdCCdCC  

;cossin)()(cossin)()1(
1

1

1

1

0
4

0
3

20
4

0
3

2  
 

  dCCdCC  

 


1

1

20
3

0
4

20
4

0
3

2
1

1

0
433 sin)()1()1()1(cos)()1(  dCCACCdCr  

.cossin)()1(sin)()1(
1

1

0
4

0
4

2
1

1

0
2

0
4 



  dCCdCC  

Тут .
2

2sin
1sin

1

1

2


  



dA  

Оскільки підінтегральні функції у формулах (2.11), (2.19) є неперервними, то ін-
теграли в цих формулах існують, але для більшості поперечних перерізів циліндрич-
ної оболонки первісні підінтегральних функцій не виражаються через елементарні 
функції. Тому в розробленій методиці відзначені інтеграли обчислюються чисельно з 
використанням формули трапецій. Враховуючи, що підінтегральні вирази у формулах 
(2.11), (2.19) є парними функціями, чисельне інтегрування в цих формулах виконуємо 
на відрізку ]1;0[ . 
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Квадратне рівняння (2.18) має дійсні розв’язки при невід’ємних значеннях його 
дискримінанта: 

   2 4 2 2 2
21 11 31 23 21 22 13 33 11 32 12 314 sin 2 4 4 4 sin cosD r r r r r r r r r r r r           

   2 4 3
22 12 32 21 23 11 33 31 134 cos 2 2 2 sin cosr r r r r r r r r         

  3 2
22 23 12 33 32 132 2 2 sin cos cos 0;r r r r r r D                        (2.20) 

   2 2 2 2
23 21 22 13 33 11 32 12 31 22 12 322 4 4 4 sin 4 cosD r r r r r r r r r r r r          

 22 23 12 33 32 132 2 2 sin cos 0,r r r r r r       

де враховано, що 04 3111
2

21  rrr  і 022 133133112321  rrrrrr . 

Таким чином, точний розв’язок нелінійної крайової задачі (2.3) – (2.6) отримано в 
параметричній формі з величиною   в якості параметра.  

§3. Граничні значення узагальненого геометричного параметра. 

Чисельний аналіз виразу D
~

 свідчить про те, що для кожного значення узагальне-

ного геометричного параметра k
~

 існує певне значення параметра внутрішнього зу-

силля max , для якого 0)(
~

D  при max  , 0)(
~

max D  і  0)(
~

D  при max  . 

Значення параметра ,
~
k  для якого 2max   , позначається 

2
2

~~
 

 kk  і знахо-

диться з умови .0
~

2



D  

Звідки отримаємо 

 
11

2 2 *
23 21 22 13 33 12 31 11 32

2

2
.

3 2 4 4 4

r N
k

r r r r r r r r r


 


   

                        (3.1) 

Аналогічно з умови 0
~




D  визначаємо величину узагальненого геометрично-

го параметра k
~

, для якої  max : 

 
12

2 *
22 12 32

2
.

3 4

r N
k

r r r


 




                                                (3.2) 

Отримані граничні значення узагальненого геометричного параметра розбивають 

область зміни k
~

 на три проміжки. 

1) 2 max0 (0 / 2)k k       . В цьому проміжку залежність прогину у вершині 

оболонки від навантаження )~(~
0

qw
  є монотонно зростаючою та iснує тiльки одна 

стiйка симетрична форма рiвноваги оболонки (втрати стiйкостi немає). 

2) 2 max( 2 )k k k          . В цьому дiапазонi залежність )~(~
0

qw
  має точки 

максимуму i мiнiмуму (верхнє i нижнє критичнi значення навантаження) та iснують 
двi рiзнi форми стiйкої рiвноваги оболонки, перехiд мiж якими вiдбувається за раху-
нок хлопка.  

3) max( )k k     . В цьому випадку можлива втрата стiйкостi оболонки за ра-

хунок бiфуркацiї з переходом до несиметричної форми рiвноваги. 
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§4. Апробація аналітично-чисельного підходу. 
Ефективність розробленої методики показана на прикладі розв’язання тестової 

задачі і порівняння отриманих результатів з даними точного розв’язку. Як тестовий 
приклад розглянута геометрично нелінійна задача про деформування і стійкість під-
датливої на поперечний зсув довгої овальної незамкненої циліндричної оболонки з 
шарнірно закріпленими поздовжніми краями за дії рівномірного нормального тиску, 
прикладеного з боку опуклості оболонки. 

Поперечний переріз незамкненої циліндричної оболонки має форму дуги овалу, 
кривизна якого змінюється за законом [6, 13]:  

   0 0 0 01 cos2 1 cosk k k s k k       ,                                   (4.1) 

де 00 /1 rk  ; 0r  – радіус кола, довжина якого дорівнює довжині овалу;   – параметр, 

який є мірою відхилення овалу від кола ( 11   ).  

Відношення півосей овалу )( ba , що відповідає заданому значенню його парамет-

ра ,  обчислюється за формулою: 

,~sin~cos
2

0

2

0



 sdsdba                                          (4.2) 

де ;~
0rss     – кут між нормаллю до серединної поверхні і вертикальною віссю: 

.~2sin5,0~2sin5,0
0

00 sssksksdk
s

    

Розрахунки виконані для оболонки з параметрами: 

;5,0
~

0 k   ;5,0   .08,0  

В цьому випадку граничні значення узагальненого геометричного параметра і від-
ношення півосей овалу дорівнюють:  

;999,1
~

2 k   ;401,3
~

k   .405,1ba  

У табл. 1 для величини узагальненого геометричного параметра 3
~
k  наведено 

верхнє i нижнє критичнi значення навантаження uq~  і lq~ , при досягненні яких відбу-

вається втрата стійкості за рахунок хлопка ,)
~~~

( 2  kkk   та відповідні цим наванта- 

Таблиця 1 

НДС 
АЧР 

ТР 
5n  10n  20n  40n  80n  160n  320n  

10~ uq  14,1078 14,2064 14,2309 14,2370 14,2385 14,2389 14,2390 14,2391 

10~  uw  1,51294 1,51740 1,51839 1,51904 1,51880 1,51874 1,51872 1,51872 

 u
~  9,50662 9,59034 9,61056 9,61788 9,61747 9,61737 9,61734 9,61733 


u

~  2,13857 2,16548 2,17207 2,17485 2,17444 2,17433 2,17431 2,17430 

10~ lq  6,99441 6,98609 6,98466 6,98435 6,98427 6,98425 6,98425 6,98425 

10~  lw  3,79271 3,82586 3,83373 3,83587 3,83641 3,83654 3,83658 3,83659 

 l
~  18,1560 18,3683 18,4202 18,4334 18,4367 18,4376 18,4378 18,4378 


l

~  10,8289 11,0344 11,0840 11,0972 11,1005 11,1013 11,1016 11,1016 

max ,% 2,4564 0,6053 0,1585 0,0396 0,0099 0,0027 0,0007 0 
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женням значення у вершині панелі прогинів ,u lw w   і нормальних напружень ,u l     

на зовнішній і внутрішній поверхнях. Дані отримані з використанням розробленої 
методики (аналітично-чисельного розв’язку – АЧР) для ряду значень кількості частин 
n , на які розбивається відрізок інтегрування ]1;0[ , і точного розв’язку (ТР) [17]. Тут 

же наведені значення максимальних похибок )( max  АЧР в залежності від кількості 

розбиттів відрізка інтегрування. 

Для панелі з узагальненим геометричним параметром 4
~
k  у табл. 2 представле-

но значення критичного навантаження *~
uq , при досягненні якого оболонка може втра-

тити стiйкість за рахунок біфуркації з переходом до несиметричної форми рівноваги 

.)
~~

( kk   Також в цій таблиці наведено відповідні навантаженню *~
uq  значення проги-

ну *~
uw  і нормальних напружень *)~( 

u  у вершині панелі. 

Таблиця 2 

НДС 
АЧР 

ТР 
5n  10n  20n  40n  80n  160n  320n  

10~* uq  20,0671 20,1803 20,2078 20,2146 20,2163 20,2167 20,2168 20,2169 

10~*  uw  1,27077 1,26967 1,26945 1,26940 1,26938 1,26938 1,26938 1,26938 

*)~(  u  12,6686 12,7697 12,7947 12,8009 12,8024 12,8028 12,8029 12,8029 

*)~( 
u  1,63849 1,73954 1,76450 1,77072 1,77227 1,77266 1,77276 1,77279 

max ,% 7,5756 1,8756 0,4676 0,1168 0,0293 0,0073 0,0017 0 

 
Аналіз даних, представлених у табл. 1, 2, свідчить про те, що при розбитті відрізка 

інтегрування на 5, 10, 20, 40, 80, 160 і 320 частин найбільша відмінність )( max  ре-

зультатів аналітично-чисельного розв’язку даної задачі від її точного розв’язку не 
перевищує, відповідно, 2,4564; 0,6053; 0,1585; 0,0396; 0,0099; 0,0027; 0,0007(%) для 

панелі з узагальненим геометричним параметром 3
~
k  та 7,5756; 1,8756; 0,4676; 

0,1168; 0,0293; 0,0073; 0,0017(%) для випадку, коли 4
~
k .  

Таким чином, розроблена аналітично-чисельна методика може бути застосована 
для дослідження нелінійного деформування і стійкості нескінченно довгих пологих 
некругових циліндричних оболонок з врахуванням деформацій поперечного зсуву. 

§5. Числові результати і їх аналіз. 
На основі отриманого аналітично-чисельного розв’язку геометрично нелінійної 

задачі (2.3) – (2.6) дослідимо НДС і стійкість піддатливих на поперечний зсув довгих 
еліптичних і овальних циліндричних панелей з шарнірно закріпленими поздовжніми 
краями за дії рівномірно розподіленого нормального поверхневого навантаження ін-
тенсивності .q  

5.1. Нелінійне деформування еліптичної циліндричної панелі під дією критич-
ного навантаження. Представимо результати розрахунків для нескінченно довгої 
незамкненої циліндричної оболонки з еліптичним поперечним перерізом. 

Параметричні рівняння контуру поперечного перерізу оболонки запишемо у ви-
гляді 

 
2

1 22 2 2 2

sin
;

sin cos

a
X

a b



 



   

 
2

1 22 2 2 2

cos
,

sin cos
N

b
Z z

a b



 
 


          (5.1) 

де ba,  – півосі еліпса;  1 22 2 2 2 2cos sin cos ;N N N Nz b a b    .NN    

Кривизна еліпса в цьому випадку обчислюється за формулою: 
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 3 22 2 2 2

02 2

sin cos
( ) ,

a b
k k

a b

 
 


                                   (5.2) 

де 
 

 

3 22

22

1 2 cos2
( ) ;

1

g g t

g


 

 



 

 
 

22 2

3 22
0

2 1
;

1 2 cos 2

g d
t

g g

 
 




 
  





ba

ba
g  

;)1()1(  baba  00 /1 rk  ; 2/)(0 tbar   – радіус кола, довжина якого дорівнює 

довжині еліпса.  
Для виконання чисельного інтегрування за правилом трапецій у формулах (2.11), 

(2.19) необхідно відрізок інтегрування ]1;0[  розбити на n  рівних частин і обчис-

лити значення підінтегральних функцій у вузлах інтегрування i  (зокрема, функції 
кривизни )( i ). З порівняння виразів для кривизни (1.1) і (5.2) випливає, що 

( ) ( )i i    , де ,i i   – значення координат ,   в i -му вузлі. Зазначимо, що вузли 

розташовані рівномірно за безрозмірною координатою довжини дуги еліпса   і нері-

вномірно – за кутом  . 

Значення кута   у вузлах обчислюємо за допомогою такого рекурентного спів-

відношення: 

0 1
1

( )
,

2
i

i i
k

K

   
 


                                               (5.3) 

де ;1,...,3,2  Ki  ;0nnK   1 0.   

Для збільшення точності розрахунків за формулою (5.3) кожна частина відрізка 
інтегрування величиною n1  розбивалася додатково на 0n  рівних частин. Вузлам ін-

тегрування у формулі (5.3) відповідають вузли з номерами 0 01, 1, 2 1, ..., 1.n n K    

Відношення стріли підйому до відстані між поздовжніми краями панелі обчислю-
ється за формулою: 

 
1

0

1

000

,cos2sincos2sin
~




dddsdsf                         (5.4) 

де кут   у вузлах чисельного інтегрування для еліптичної панелі визначається за до-

помогою співвідношення (5.3). 

Залежність величини f
~

 від параметра 0
~
k  та відношення ba  наведена в табл. 3. 

Таблиця 3 

f
~

 

ba  
0

~
k  

0,25 0,50 0,75 1,00 1,25 1,50 2,00 2,50 

31  0,186 0,335 0,460 0,571 0,676 0,778 0,981 1,195 

21  0,095 0,184 0,265 0,341 0,414 0,485 0,628 0,779 

32  0,059 0,117 0,174 0,229 0,284 0,338 0,450 0,570 

1 0,031 0,063 0,095 0,128 0,162 0,197 0,273 0,361 

23  0,018 0,035 0,054 0,072 0,092 0,113 0,162 0,222 

2 0,012 0,024 0,037 0,050 0,063 0,078 0,112 0,156 

3 0,007 0,015 0,023 0,030 0,039 0,048 0,068 0,095 
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Зазначимо, що панель вважається пологою, коли 2,0
~
f . 

З використанням розробленої аналітично-чисельної методики для ряду значень 

параметрів 0, , ,a b k k    отримано граничні значення узагальненого геометричного 

параметра 2
~
k  і k

~
, верхнє i нижнє критичнi значення навантаження uq~  і lq~ , при 

досягненні яких відбувається втрата стійкості за рахунок хлопка, критичне наванта-

ження *~
uq , при досягненні якого оболонка може втратити стiйкість за рахунок біфур-

кації, та навантаження ,~*
lq  яке є нижньою межею для q~  при несиметричній формі 

втрати стійкості. Також були обчислені відповідні цим навантаженням значення про-
гинів і напружень на зовнішній і внутрішній поверхнях у вершині панелі ,uw  

* * * *, , , , , ( ) , ( )l u l u l u lw w w              . В табл. 4, 6 наведено результати розрахунків для 

моделі Тимошенка )0(  , а в табл. 5, 7 – для моделі Кірхгофа – Лява )0(  . В цих 

таблицях величини навантажень, прогинів і напружень, що розміщені у рядках, зна-

чення параметра k
~

 в яких позначені зірочкою зверху, відповідають несиметричній 

формі втрати стійкості, тобто величинам * * * * * *, , , , ( ) , ( ) .u l u l u lq q w w          

Таблиця 4 

;08,0   25,0
~
0 k  

ba   kk
~

;
~

2  k
~

 uq~  lq~  uw~  lw~   u
~  

u
~   l

~  
l

~  

0,50 
0,341; 

   0,571  

0,43 7,007 5,338 1,003 2,094 8,216 2,502 14,09 8,391 

0,50 8,132 4,253 0,895 2,218 9,238 2,022 17,63 10,48 

0,90* 14,26 -1,179 0,338 2,754 9,364 -1,666 39,61 28,58 

0,60 
0,459; 

0,772 

0,50 4,714 4,459 0,887 1,412 7,802 3,176 11,06 6,437 

0,70 6,321 2,909 0,651 1,672 9,643 1,974 18,74 11,18 

0,90* 8,694 1,087 0,555 1,745 12,33 1,305 27,23 16,20 

0,70 
0,589; 

0,992 

0,70 3,883 3,276 0,617 1,180 8,006 2,762 12,91 7,677 

0,90 4,945 2,258 0,508 1,306 9,696 1,999 18,85 11,26 

1,20* 7,066 0,583 0,391 1,405 11,97 0,941 28,90 17,87 

0,85 
0,799; 

1,348 

0,90 2,762 2,514 0,485 0,837 7,857 3,005 11,80 6,946 

1,20 3,572 1,733 0,378 0,958 9,550 2,066 18,38 11,00 

1,60* 5,107 0,540 0,305 1,019 12,28 1,249 22,18 17,15 

1,00 
1,022; 

1,726 

1,20 2,216 1,907 0,361 0,674 7,974 2,828 12,65 7,511 

1,60 2,926 1,231 0,289 0,758 9,951 1,975 19,53 11,70 

2,60* 4,681 -0,266 0,130 0,904 10,23 -0,799 38,22 27,19 

1,20 
1,334; 

2,253 

1,60 1,725 1,435 0,270 0,523 8,056 2,746 13,11 7,809 

2,10 2.257 0,929 0,221 0,582 10,02 1,969 19,70 11,81 

2,60* 2,957 0,428 0,199 0,594 12,71 1,680 27,02 15,99 

1,50 
1,819; 

3,072 

2,10 1,232 1,086 0,207 0,375 7,921 2,898 12,31 7,292 

2,90 1,681 0,659 0,161 0,429 10,15 1,942 20,08 12,04 

3,50* 2,132 0,352 0,152 0,430 12,91 1,881 26,47 15,44 

2,00 
2,647; 

4,471 

2,90 0,821 0,771 0,153 0,247 7,828 3,163 11,22 6,552 

4,10 1,116 0,488 0,112 0,292 9,855 2,009 19,24 11,53 

6,80* 1,815 -0,108 0,049 0,350 10,21 -0.818 38,67 27,64 
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Таблиця 5 

;0   25,0
~
0 k  

ba   kk
~

;
~

2  k
~

 uq~  lq~  uw~  lw~   u
~  

u
~   l

~  
l

~  

0,5 
0,374; 
   0,753  

0,50 8,873 5,904 0,953 2,141 10,87 3,348 19,82 12,30 
0,65 12,07 2,749 0,817 2,288 13,89 2,336 28,72 17,23 
0,90* 19,63 -4,393 0,701 2,411 20,17 0,429 46,46 26,72 

1,0 
1,119; 
2,260 

1,2 2,519 2,416 0,409 0,624 9,997 4,568 13,83 8,401 
1,6 3,174 1,766 0,304 0,731 11,54 3,188 21,90 13,56 
2,6* 6,172 1,058 0,263 0,778 21,56 1,819 44,41 24,68 

2,0 
2,897; 
5,852 

4,1 1,212 0,695 0,118 0,282 11,45 3,231 21,591 13,39 
5,3 1,669 0,248 0,104 0,298 14,91 2,338 31,04 18,56 
6,8* 2,426 -0,450 0,099 0,303 21,37 1,626 45,15 25,41 

Таблиця 6 

;08,0   50,0
~
0 k  

ba   kk
~

;
~

2  k
~

 uq~  lq~  uw~  lw~   u
~  


u

~  
 l

~  

l

~  

0,50 
0,367; 
0,606 

0,43 6,155 5,308 0,998 1,864 7,797 2,660 12,43 7,302 
0,50 7,007 4,468 0,866 2,002 8,497 2,040 15,66 9,220 
0,90* 12,91 -1,033 0,339 2,520 8,558 -2,472 35,86 24,83 

0,60 
0,477; 
0,793 

0,50 4,466 4,365 0,911 1,296 7,799 3,405 10,18 5,786 
0,70 5,843 3,020 0,638 1,587 9,189 1,930 17,63 10,43 
0,90* 8,045 1,255 0,574 1,636 12,23 1,200 25,53 14,50 

0,70 
0,600; 
1,005 

0,70 3,759 3,262 0,617 1,142 7,907 2,804 12,48 7,384 
0,90 4,753 2,303 0,502 1,272 9,458 1,967 18,27 10,87 
1,20* 6,832 0,623 0,394 1,365 11,84 0,813 28,05 17,02 

0,85 
0,804; 
1,353 

0,90 2,736 2,508 0,486 0,829 7,840 3,026 11,67 6,860 
1,20 3,529 1,743 0,377 0,950 9,478 2,056 18,21 10,88 
1,60* 5,054 0,549 0,305 1,010 12,24 1,208 27,92 16,89 

1,00 
1,022; 
1,726 

1,20 2,216 1,907 0,361 0,674 7,974 2,828 12,65 7,511 
1,60 2,926 1,231 0,289 0,758 9,951 1,975 19,53 11,70 
2,60* 4,681 -0,266 0,130 0,904 10,23 -0,799 38,22 27,19 

1,20 
1,330; 
2,248 

1,60 1,735 1,436 0,270 0,526 8,075 2,740 13,18 7,861 
2,10 2,273 0,926 0,221 0,585 10,06 1,978 19,81 11,89 
2,60* 2,976 0,424 0,198 0,597 12,73 1,702 27,17 16,14 

1,50 
1,810; 
3,062 

2,10 1,242 1,087 0,207 0,378 7,950 2,888 12,43 7,373 
2,90 1,700 0,654 0,161 0,432 10,23 1,962 20,25 12,17 
3,50* 2,154 0,347 0,151 0,434 12,94 1,911 26,70 15,67 

2,00 
2,632; 
4,454 

2,90 0,828 0,773 0,152 0,250 7,842 3,138 11,35 6,646 
4,10 1,130 0,485 0,113 0,294 9,934 2,025 19,43 11,66 
6,80* 1,829 -0,108 0,050 0,353 10,31 -0,718 38,97 27,94 

Таблиця 7 

;0   50,0
~
0 k  

ba   kk
~

;
~

2  k
~

 uq~  lq~  uw~  lw~   u
~  

u
~   l

~  
l

~  

0,5 
0,402; 
0,807 

0,50 7,717 6,008 0,940 1,928 10,23 3,501 17,62 10,90 
0,65 10,20 3,538 0,782 2,091 12,54 2,308 25,61 15,41 
0,90* 16,07 -2,054 0,795 2,085 20,61 0,869 40,44 20,70 

1,0 
1,119; 
2,260 

1,2 2,519 2,416 0,409 0,624 9,997 4,568 13,83 8,401 
1,6 3,174 1,766 0,304 0,731 11,54 3,188 21,90 13,56 
2,6* 6,172 1,058 0,263 0,778 21,56 1,819 44,41 24,68 

2,0 
2,879; 
5,820 

4,1 1,227 0,692 0,118 0,284 11,52 3,230 21,79 13,51 
5,3 1,693 0,237 0,104 0,300 15,06 2,360 31,35 18,75 
6,8* 2,463 -0,473 0,098 0,307 21,36 1,620 45,64 25,89 

 
З аналізу даних, наведених в табл. 4 – 7, випливає, що при фіксованих параметрах 

0, k   зі зростанням відношення півосей еліпса ba , тобто для більш пологих панелей, 

граничні значення узагальненого геометричного параметра 2,k k 
   також зростають. 
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Оскільки hkhkk 2
~~

00
2   , то це означає, що при фіксованому 0

~
k  зростає відно-

шення h , тобто втрата стійкості стає можливою для більш тонких панелей. Для 

значень параметра 2
~~
kk   зі зростанням відношення ba  величини верхніх критич-

них значень навантажень хлопка і біфуркації та максимальних прогинів і напружень у 

вершині панелі спадають. Так, для панелі з параметрами ;08,0  25,0
~

0 k  при зро-

станні відношення ba  від 0,5 до 0,6 спадання відповідних величин становить: 42% 

для верхнього критичного навантаження хлопка та 36,3% і 36,3% для відповідних йо-

му максимальних прогинів і напружень у вершині панелі при 5,0
~
k ; 39% для верх-

нього критичного навантаження біфуркації та 36,6% і 31,0% для відповідних йому 

максимальних прогинів і напружень у вершині при 9,0
~
k . Варто зазначити, що в 

цьому випадку різниця між верхніми і нижніми критичними значеннями навантажен-
ня зменшується, тобто відбувається звуження діапазонів зміни параметра наванта-
ження 0

~q , в яких рівновага оболонки є нестійкою. При спаданні відношення ba  зна-

чення узагальненого геометричного параметра 2
~
k  також спадають, що призводить 

до звуження області докритичного деформування. З представлених в табл. 4 – 7 даних 
випливає, що волокна поблизу зовнішньої поверхні панелі при всіх наведених зна-

ченнях навантаження та параметрів ba  і k
~

 завжди стиснуті, а поблизу внутрішньої 

поверхні панелі – майже завжди розтягнуті. При цьому найбільші напруження у вер-
шині панелі є стискаючими та виникають на зовнішній поверхні під дією нижніх кри-
тичних значень навантаження. 

Зростання параметра 0
~
k  призводить до зростання граничних значень узагальнено-

го геометричного параметра при 1ba  та до їх спадання – при 1ba , до спадання 
верхніх критичних значень навантаження і відповідних їм максимальних значень на-
пруження у вершині панелі при 1ba  та до їх зростання – при 1ba . Зазначимо, 
що ці зміни є незначними при 85,0ba . У випадку панелі кругового перерізу 
( 1ba ) зміна параметра 0

~
k  не впливає на граничні значення узагальненого геомет-

ричного параметра, на критичні навантаження і НДС оболонки. 
Врахування деформацій поперечного зсуву )0(   призводить до зменшення 

значень всіх видів критичного навантаження і відповідних їм максимальних напру-
жень у вершині панелі та до збільшення відповідних максимальних прогинів у вер-
шині панелі в порівнянні з даними розрахунків для моделі Кірхгофа–Лява )0(  . 

Так, на основі даних табл. 6, 7 для панелі з параметрами ;5,0ba  ;5,0
~

0 k  08,0  

зменшення становить: 9,2% і 25,6% для верхніх і нижніх критичних навантажень хло-
пка та 16,9% і 11,1% для відповідних їм максимальних напружень у вершині панелі 

при 5,0
~
k ; 19,7% для навантаження біфуркації та 58,5% для відповідного йому мак-

симального напруження у вершині панелі при 9,0
~
k . При цьому збільшення макси-

мальних прогинів у вершині панелі, які відповідають зазначеним вище навантажен-

ням, складає: 3,8% при 5,0
~
k  і 20,9% при 9,0

~
k . 

5.2. Порівняння результатів розрахунків на стійкість овальної та еліптичної 
циліндричних панелей. Спочатку дослідимо стійкість довгої овальної циліндричної 
панелі, кривизна якої задається співвідношенням (4.1).  

Конкретні числові результати отримано для панелі з такими параметрами: 

;75,0
~

0 k   ;08,0   .8,0;6,0;4,0;2,0;1,0   

Значення відношення півосей овалу обчислюються за формулою (4.2) і для зрос-
таючих значень параметра   дорівнюють: 

.7523,1;5087,1;3098,1;1431,1;0690,1;9355,0;8748,0;7635,0;6628,0;5707,0ba  
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В табл. 8 представлено граничні значення узагальненого геометричного парамет-
ра, критичнi значення навантаження, відповідні їм прогини і напруження на зовніш-
ній і внутрішній поверхнях у вершині довгої циліндричної панелі овального перерізу. 

Таблиця 8 

Овальна циліндрична панель )75,0
~

;08,0( 0  k  

   kk
~

;
~

2  k
~

 uq~  lq~  uw~  lw~   u
~  

u
~   l

~  
l

~  

-0,8 
0,581; 
0,974 

0,70 3,970 3,279 0,616 1,202 8,028 2,681 13,15 7,811 
1,15* 6,965 0,736 0,421 1,396 12,02 0,993 27,61 16,58 

-0,6 
0,652; 
1,093 

0,85 3,788 2,685 0,510 1,115 8,431 2,407 14,89 8,882 
1,35* 6,505 0,375 0,331 1,290 11,53 0,503 29,54 18,51 

-0,4 
0,741; 
1,245 

0,95 3,277 2,412 0,455 0,973 8,339 2,476 14,51 8,660 
1,45* 5,378 0,680 0,345 1,080 12,33 1,307 27,16 16,13 

-0,2 
0,859; 
1,446 

1,15 2,941 1,970 0,380 0,855 8,616 2,358 15,49 9,262 
1,65* 4,517 0,720 0,318 0,912 12,73 1,704 26,37 15,34 

-0,1 
0,934; 
1,574 

1,30 2,815 1,710 0,340 0,799 8,904 2,256 16,43 9,832 
1,90* 4,445 0,381 0,248 0,884 12,03 1,002 28,83 17,80 

0,1 
1,130; 
1,910 

1,50 2,221 1,517 0,291 0,649 8,603 2,423 15,35 9,200 
2,25* 3,581 0,424 0,222 0,715 12,50 1,475 27,96 16,93 

0,2 
1,262; 
2,139 

1,70 2,015 1,332 0,258 0,585 8,715 2,402 15,70 9,422 
2,50* 3,178 0,417 0,203 0,635 12,72 1,691 27,74 16,71 

0,4 
1,648; 
2,815 

2,00 1,409 1,151 0,217 0,427 8,165 2,769 13,42 8,037 
3,25* 2,399 0,374 0,163 0,480 13,23 2,196 27,55 16,52 

0,6 
2,375; 
4,127 

2,70 0,935 0,843 0,163 0,285 8,000 3,091 12,11 7,208 
4,50* 1,527 0,424 0,138 0,310 14,81 3,781 25,61 14,58 

0,8 
4,253; 
7,856 

5,00 0,535 0,462 0,088 0,164 8,280 3,159 13,00 7,886 
8,40* 0,822 0,308 0,086 0,167 17,24 6,213 26,65 15,62 

 
Далі виконаємо розрахунки на стійкість еліптичних циліндричних панелей з тими 

самими значеннями довжини 02 r  та відношення півосей ba / , що й у відповідних 
циліндричних панелей овального перерізу (табл. 8).  

В табл. 9 наведені характеристики стійкості та НДС еліптичних циліндричних па-
нелей, які аналогічні відповідним характеристикам для овальних панелей (табл. 8). 

Таблиця 9 

Еліптична циліндрична панель )75,0
~

;08,0( 0  k  

ba   kk
~

;
~

2  k
~

 uq~  lq~  uw~  lw~   u
~  

u
~   l

~  
l

~  

0,5707 
0,472; 
0,775 

0,70 5,993 2,955 0,633 1,601 9,036 1,613 17,68 10,29 
1,15* 10,03 -0,840 0,262 1,962 8,259 -2,771 35,46 24,43 

0,6628 
0,573; 
0,950 

0,85 4,920 2,453 0,526 1,322 9,215 1,826 17,83 10,51 
1,35* 8,112 -0,420 0,251 1,586 9,438 -1,592 34,50 23,47 

0,7635 
0,697; 
1,164 

0,95 3,697 2,360 0,460 1,061 8,682 2,226 15,87 9,445 
1,45* 6,125 0,277 0,300 1,215 11,21 0,181 29,66 18,63 

0,8748 
0,845; 
1,420 

1,15 3,042 1,955 0,381 0,875 8,719 2,294 15,88 9,484 
1,65* 4,706 0,613 0,305 0,946 12,39 1,365 27,09 16,06 

0,9355 
0,930; 
1,566 

1,30 2,840 1,705 0,340 0,804 8,934 2,240 16,54 9,893 
1,90* 4,485 0,360 0,246 0,891 11,96 0,929 29,01 17,98 

1,0690 
1,124; 
1,900 

1,50 2,242 1,514 0,291 0,654 8,630 2,404 15,46 9,262 
2,25* 3,620 0,403 0,219 0,722 12,42 1,388 28,17 17,14 

1,1431 
1,235; 
2,091 

1,70 2,102 1,318 0,259 0,602 8,855 2,331 16,19 9,708 
2,50* 3,329 0,337 0,194 0,662 12,36 1,327 28,63 17,60 

1,3098 
1,493; 
2,531 

2,00 1,695 1,135 0,219 0,493 8,677 2,416 15,57 9,348 
3,25* 2,934 1,047 0,133 0,576 11,69 0,656 31,70 20,67 

1,5087 
1,808; 
3,068 

2,70 1,567 0,779 0,168 0,423 9,551 2,155 18,29 10,99 
4,50* 2,617 -0,105 0,080 0,506 10,73 -0,305 37,37 26,34 

1,7523 
2,201; 
3,738 

5,00* 2,046 0,018 0,082 0,399 11,42 0,385 33,48 22,45 
8,40* 2,399 -0,335 0,027 0,454 8,969 -2,061 58,95 47,92 
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Аналіз наведених в табл. 8, 9 результатів свідчить про те, що для всіх значень па-

раметра   граничні значення узагальненого геометричного параметра 2,k k 
   оваль-

ної панелі більші від відповідних величин для еліптичної панелі. Звідси отримаємо 
два наслідки: 1) області докритичного деформування овальної циліндричної панелі 
ширші від відповідних областей для еліптичної панелі; 2) оскільки значення парамет-

ра 0
~
k  для обох панелей є однаковими, то втрата стійкості для овальної циліндричної 

панелі стає можливою для більш тонких панелей, ніж для еліптичної панелі.  
Для циліндричної панелі еліптичного перерізу при всіх значеннях параметра ba  

верхні критичнi значення навантаження більші, а нижні – менші від відповідних ве-
личин для овальної панелі. Це означає, що діапазони зміни параметра навантаження, в 
яких рівновага панелі є нестійкою, для еліптичної панелі є ширшими від відповідних 
діапазонів для овальної панелі. 

З представлених в табл. 8, 9 даних випливає, що для всіх пар значень параметрів 
  і ba  максимальні прогини і напруження еліптичної циліндричної панелі переви-

щують відповідні характеристики овальної панелі. Найменша відмінність між резуль-
татами розрахунків НДС і стійкості овальної та еліптичної циліндричних панелей має 
місце при 0,1    )9355,0( ba  і 1,0  )0690,1( ba , а найбільша – при 0,8    

)5707,0( ba  і 8,0  )7523,1( ba . 

Висновки. 
В роботі отримано аналітично-чисельний розв’язок крайової задачі для нескін-

ченно довгої трансверсально-ізотропної незамкненої циліндричної оболонки некруго-
вого поперечного перерізу з врахуванням геометричної нелінійності та деформацій 
поперечного зсуву. Інтегрування в запропонованій методиці виконується аналітично 
та чисельно з використанням формули трапецій. Ефективність розробленої методики 
перевірена шляхом розв’язання тестової задачі для довгої овальної незамкненої цилі-
ндричної оболонки і порівняння отриманих результатів з даними точного розв’язку 
[21]. Побудований розв’язок дозволяє обчислити з високою (майже аналітичною) то-
чністю значення внутрішніх силових факторів і узагальнених переміщень некругової 
оболонки, оцінити її міцність, жорсткість і стійкість за дії статичного поверхневого 
навантаження. Як частинні випадки, з наведеного розв’язку випливають відповідні 
результати для моделі Кірхгофа – Лява та оболонки кругового поперечного перерізу. 
Також одержано вирази для граничних значень узагальненого геометричного параме-
тра, які визначають області стійкої та нестiйкої рiвноваги циліндричної оболонки до-
вільного поперечного перерізу. Досліджено НДС і стійкість еліптичної та овальної 
циліндричних оболонок з шарнірно закріпленими поздовжніми краями, які знаходять-
ся під дією рівномірного поверхневого навантаження. Отримані результати також мо-
жуть бути еталонними для наближених і чисельних методів. В подальшому представ-
ляє інтерес розробка методики та дослідження закономірностей НДС і стійкості ком-
позитних циліндричних оболонок некругового поперечного перерізу з врахуванням як 
особливостей деформування, так і нелінійних властивостей матеріалів [7, 19]. 

Наукові дослідження, результати яких опубліковано в даній статті, виконано за 
рахунок бюджетної програми «Підтримка пріоритетних напрямків наукових дослід-
жень» (КПКВК 6541230). 

 
 
РЕЗЮМЕ.  Дано постановку та розроблено аналітично-чисельну методику розв’язання геомет-

рично нелінійної задачі для піддатливої на поперечний зсув довгої циліндричної панелі некругового 
поперечного перерізу за дії нормального поверхневого навантаження. Основні рівняння записано 
згідно з геометрично нелінійною теорією пологих оболонок у квадратичному наближенні, з гіпоте-
зою Тимошенка і законом Гука для трансверсально-ізотропних матеріалів. Для оболонки з шарнірно 
закріпленими поздовжніми краями одержано аналітичні вирази для компонентів напружено-
деформованого стану, визначено граничні значення узагальненого геометричного параметра. Числові 
результати отримано для довгих незамкнених циліндричних оболонок еліптичного та овального по-
перечних перерізів за дії рівномірного нормального тиску. 
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рична нелінійність, стійкість, поперечний зсув, поверхневе навантаження, аналітично-чисельний роз-
в’язок. 
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