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Abstract. The results of optimization of a force mode of the tower crane slewing mech-

anism start-up, with a steady motion of changing the crane arm, are presented. The horizon-
tal boom of a tower crane model is used for the research. A dynamic model is developed and 
the differential equations of motion are derived by using the second-order Lagrange equa-
tions. An optimization problem is stated. It includes the differential equations of the boom 
system motion during crane slewing and trolleying, the optimization criterion, and the bounda-
ry conditions of motion. A complex dimensionless criterion is used. The boundary conditions 
are derived as the kinematic characteristics of the slewing mechanism. They allow to elimina-
tion of the load pendulum oscillations. A solution to the problem of optimal motion control is 
presented in the form of a polynomial with two іtems, the first provides the boundary condi-
tions for еру crane slewing under a steady mode of trolleying, and the second minimizes the 
optimization criterion by determining the unknown coefficients. By using the Rot-Ring-PSO 
method the optimal mode of the slewing mechanism during steady trolleying is obtained. 
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Вступ. 
Для підвищення продуктивності баштових кранів при виконанні транспортно-

технологічних операцій в деяких випадках здійснюють поєднання роботи окремих 
механізмів. Досить часто є поширеним суміщення руху механізмів зміни вильоту та 
повороту баштових кранів. За такого руху кранових механізмів в їхніх елементах та 
металоконструкціях виникають підвищені динамічні навантаження, які впливають на 
енергетичні витрати приводів та надійність роботи крана. При цьому найбільші дина-
мічні навантаження спостерігаються під час проходження перехідних процесів (пуск, 
гальмування). Динамічні навантаження в елементах механізмів конструкції крана в 
значній мірі залежать від величини та характеру зміни рушійного моменту приводу. 
Значно зменшити динамічні навантаження в елементах крана можна шляхом вибору 
режиму руху приводних механізмів в процесі пуску. Тому виникає задача вибору ре-
жиму руху механізму повороту при усталеній зміні вильоту вантажу, який забезпечує 
мінімізацію згідно з критерієм, що включає середньоквадратичне та максимальне зна-
чення рушійною моменту приводу. При цьому перша складова критерію впливає на 
надійність роботи механізму, а друга – на розрахунок міцності та жорсткості його 
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елементів. Отже, поставлена проблема оптимізації режиму руху механізму повороту 
при усталеній зміні вильоту вантажу є актуальною, оскільки дозволяє підвищити ефе-
ктивність роботи баштових кранів. 

При використанні вантажопідйомних кранів з метою підвищення продуктивності 
виконання транспортно-технологічних операцій здійснюють суміщення роботи де-
кількох механізмів [5, 10, 14, 18, 19]. В цьому випадку підвищуються динамічні на-
вантаження в елементах приводних механізмів та конструкцій кранів, а також збіль-
шується розгойдування вантажу на гнучкому підвісі [5, 6, 19]. Вивченню динамічних 
процесів в елементах вантажопідйомних машин приділена значна увага дослідниками 
різних країн [1 – 4, 17]. В роботах [1, 17] досліджувалась динаміка зміни вильоту та 
підйому вантажу для різних типів вантажопідйомних машин та встановлювались при-
чини виникнення коливань вантажу. В роботах [5, 19] розглянуто спільний рух меха-
нізмів зміни вильоту та повороту вантажопідйомних кранів, зокрема баштових. В них 
здійснювалось керування приводом механізму зміни вильоту при повороті крана з 
підвішеним вантажем на гнучкому підвісі для зменшення його коливань. В роботі [6] 
досліджувалась динаміка спільного руху механізмів зміни вильоту та повороту баш-
тового крана, де встановлений вплив кожного з механізмів на динаміку руху крана в 
цілому. На основі цих досліджень визначені кінематичні, силові та енергетичні харак-
теристики механізмів. Зокрема, виявлені значні силові перевантаження приводних 
механізмів і просторові коливання вантажу. 

Для зменшення коливань вантажу на гнучкому підвісі розв’язувались оптиміза-
ційні задачі вибору режимів руху при роботі окремих механізмів [7, 9, 10, 13]. В робо-
ті [13] розв’язана задача мінімізації коливань вантажу на гнучкому підвісі при роботі 
механізму повороту баштового крана. В роботі [7] оптимізовано перехідний процес 
пуску механізму зміни вильоту вантажу шляхом керування рушійним моментом при-
воду для мінімізації динамічних навантажень. 

При оптимізації режимів руху механізмів вантажопідйомних машин важливим за-
лишається питання вибору критеріїв оцінки руху. Поширення отримали динамічні 
критерії, які є інтегральними функціоналами з підінтегральними функціями у вигляді 
середньоквадратичних значень, кінематичних, силових та енергетичних характерис-
тик [11, 12]. В роботі [13] наведено розв’язок задачі оптимізації режиму руху механі-
зму зміни вильоту баштового крана при усталеному режимі його повороту. Виникає 
також потреба у визначенні режиму повороту крана при усталеному режимі зміни 
вильоту вантажу, що забезпечує мінімізацію рушійного моменту приводного механі-
зму. 

Метою роботи є мінімізація рушійного моменту приводного механізму повороту 
баштового крана за усталеної зміни вильоту вантажу шляхом оптимізації режиму пуску. 

§1. Постановка задачі оптимального керування. 
Стрілову систему баштового крана при сумісному русі механізмів повороту та 

зміні вильоту вантажу (рис. 1) представлено як механічну систему, що складається з 
абсолютно твердих ланок, окрім приводу 1 механізму повороту та гнучкого підвісу 2 
вантажу 3. При цьому привод 1 механізму повороту має пружні властивості з коефіці-
єнтом жорсткості C . Вантаж 3 на гнучкому підвісі 2, з постійною довжиною H   

const , відхиляється від вертикалі на кут   при повороті крана. Окрім того, візок 4 
разом з вантажем рухається вздовж стріли 5 зі сталою швидкістю constV  . 

В такій динамічній моделі стрілової системи баштового крана за узагальнені ко-
ординати використані кутові координати приводу механізму повороту  , поворотної 
частини крана зі стрілою   та вантажу на гнучкому підвісі  , а також лінійна коор-

дината центру мас візка x . Оскільки візок рухається з постійною швидкістю, то коор-
дината x визначається наступною залежністю 

0x x Vt  ,                                                         (1.1) 

де t – час; 0x  – початкове положення візка вздовж стріли.  
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Рис. 1 

Отже, лінійна координата візка x  є відомою. Тому представлена динамічна мо-
дель стрілової системи має три степені свободи. При цьому гнучкий підвіс вантажу 
відхиляється від вертикалі на кут 

 .х

H
                                                         (1.2) 

Для отримання рівнянь руху прийнятої динамічної моделі стрілової системи при 
спільному русі механізмів повороту та зміни вильоту вантажу використовуємо рів-
няння Лагранжа другого роду, які для прийнятої динамічної моделі мають вигляд 
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де drM  – рушійний момент приводу механізму повороту; 0M  – момент сил опору по-

воротної частини крана; ,T П  – кінетична та потенціальна енергія системи, відповідно. 

Кінетична енергія стрілової системи визначається наступною залежністю: 

           2 2 2 22 2(1) (1) 2 (1) (1)
1 0 0 0 0

1 1 1 1
,

2 2 2 2
T I I m V x Vt m x Vt           

 
(1.4) 

де 0,m m  – маси візка та вантажу, відповідно; 0 1,I I  – моменти інерції поворотної 

частини крана зі стрілою та приводу механізму повороту стосовно осі повороту крана, 
відповідно. 

Потенціальна енергія стрілової системи має вигляд 

 21
(1 cos ),

2
П C mgH                                             (1.5) 

де g  – прискорення вільного падіння.  

Визначимо похідні від виразів (1.4) і (1.5), необхідні для системи рівнянь (1.3) 

0
T T T
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;                                               (1.6) 
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( ) sin
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
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Оскільки максимальне значення кута v  не перевищує 12 , то можна прийняти, 
що  )sin( . Взявши похідні від виразу (1.2), з урахуванням залежності (1.1), за ко-

ординатами   та   і підставивши їх у залежності (1.11) і (1.12) з урахуванням прий-

нятої вище заміни, отримаємо 
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.                                       (1.14) 

В результаті підстановки виразів (1.6) – (1.10), (1.13), (1.14) в рівняння (1.3) отри-
маємо систему диференціальних рівнянь руху механізму повороту за усталеної зміни 
вильоту вантажу 
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     (1.15) 

Оскільки метою роботи є мінімізація рушійного моменту приводу механізму по-
вороту в процесі пуску, тому за критерій оптимізації оберемо комплексний безрозмі-
рний показник, який враховує середньоквадратичне та максимальне значення рушій-
ного моменту в процесі руху, який має такий вигляд: 
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де 1  та 2  – вагові коефіцієнти, які показують важливість мінімізації кожної складо-

вої комплексного критерію; t  – координата часу; 1t  – тривалість процесу пуску меха-

нізму повороту; Ineq – штрафний компонент критерію, який впливає на дотримання 

обмеження 0drM  і визначається наступним чином: 

 

0, якщо  0;

min( )
, якщо 0,

min max( )

dr

dr
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dr
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                         (1.17) 

де ineg  – штрафний коефіцієнт, який впливає на збільшення величини Ineq , якщо 

обмеження 0drM   порушене. 

Зазначимо, що для знаходження знаменників першого і другого доданків крите-
рію (1.16) необхідно розв’язати наступні оптимізаційні задачі: 

 
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1 0

1
min min першa; min max( ) min друга.
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Таким чином, критерій (1.16) відображає вимоги до дотримання обмеження 
0drM  , мінімізації середньоквадратичного та максимального значень рушійного 

моменту. Дві останні вимоги досягаються на компромісній основі. 

§2. Розв’язання задачі. 
З першого рівняння системи (1.15) виразимо рушійний момент приводу: 

(2)
1 ( ).drM I C                                                   (2.1) 

В залежність рушійного моменту (2.1) входять координати приводу механізму по-
вороту   та поворотної частини крана  . Знайдемо їх через координати вантажу та 
їхні похідні за часом. Використаємо спочатку останнє рівняння системи (1.15), з якого 
знайдемо координату поворотної частини крана 
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                                          (2.2) 

Підставивши в друге рівняння системи (1.15) вираз (2.1), отримаємо 
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З останнього виразу (2.3) знайдемо координати приводу механізму повороту 
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( ) 2 ( ) .

I m x Vt m x Vt V
C

m x Vt m x Vt V M

   

 

      

    

                    (2.4) 

У вираз рушійного моменту приводу (2.1) входить друга похідна за часом від ку-
тової координати приводу, тому знайдемо її 

 


(1) (1) 2 (3) (2)
0 0 0 0 0

2 (1) 2 (3) (2) 2 (1)
0 0 0

1
( ) 4 ( )

2 ( ) 4 ( ) 2 ;

I m x Vt m V x Vt
C

m V m x Vt mV x Vt mV

   

   

      

     
             (2.5) 
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 


(2) (2) 2 (4) (3)
0 0 0 0 0

2 (2) 2 (4) (2) 2 (2)
0 0 0

1
( ) 6 ( )

6 ( ) 6 ( ) 6 .

I m x Vt m V x Vt
C

m V m x Vt mV x Vt mV

   

   

      

     

           (2.6) 

У вирази (2.3) і (2.6) входять похідні за часом від координати поворотної частини 
крана включно до четвертого порядку, тому знайдемо їх, використавши залежність (2.4) 

(2) (1)
(1) (1) (3) 0

2
0

( )
2

( )

x Vt VH
V

g x Vt

   
  

     
;                           (2.7) 

(3) 2 (2) 2 (1)
(2) (2) (4) 0 0

3
0

( ) 2 ( ) 2
2

( )

x Vt V x Vt VH
V

g x Vt

    
    

     
;          (2.8) 


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(3) (3) (5) (4) 3 2 (3)
0 04
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2 2 (2) 3 (1)
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2
( ) 3 ( )
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6 ( ) 6 ;

H V
x Vt V x Vt

g x Vt

V x Vt V

    

 


       

  

            (2.9) 


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(4) (4) (6) (5) 4 3 (4)
0 05

0

2 2 (3) 3 (2) 4 (1)
0 0

2
( ) 4 ( )

( )

12 ( ) 24 ( ) 24 .

H V
x Vt V x Vt

g x Vt

V x Vt V x Vt V

    

  


       

    

           (2.10) 

Для мінімізації критерію (1.16), в який входить рушійний момент приводу меха-
нізму повороту в процесі пуску при усталеному режимі зміни вильоту вантажу, необ-
хідно розв’язати варіаційну задачу. Ця задача передбачає мінімізацію динамічного 
критерію (1.16) з урахуванням виразів (2.1), (2.3), (2.6) при забезпеченні наступних 
крайових умов руху на початку пуску, коли 0t   і в кінці руху, коли 1t t  

(1) (1) (1)
0

(1) (1) (1)
1 1 0 1

0 : 0, 0, / , 0, 0, 0;

: / 2, , / ( / 2), ,

t M C

t t t M C t

     

         

      

       
           (2.11) 

де   – кутова швидкість усталеного руху поворотної частини крана. 
Наведені вище крайові умови (2.11) відповідають уникненню маятникових коли-

вань вантажу на гнучкому підвісі. Таким чином, ця задача відноситься до класу задач 
оптимального керування маятниковими системами [1 – 4, 6, 10 – 13, 15, 20]. 

В наведеній оптимізаційній задачі виразимо крайові умови (2.11) через узагальне-
ну кутову координату повороту вантажу   та її похідні за часом. 

Розглянемо початковий момент пуску, коли 0t  . З початкових умов (2.11) маємо 

 0 0   і    1 0 0  , крім того, в момент початку пуску  0 0   і    1 0 0  , за 

якими із залежностей (2.2) та (2.6) знаходимо, що    2 0 0  ,    3 0 0  . Також з 

початкових умов пуску 0 0 /M C   отримаємо із залежності (2.3), що    2 0 0  . 

Тоді із виразу (2.8) маємо    4 0 0  . З умови    1 0 0   за допомогою (2.5) знахо-

димо, що    3 0 0  , з отриманої умови із формули (2.9) маємо    4 0 0  . 

Тепер розглянемо кінцевий момент пуску, коли 1tt  . З кінцевих умов (2.11) має-

мо 1 1( ) / 2t t   і (1)
1( )t  . Також з кінцевих умов пуску відомо, що 1 1( ) / 2t t   

і (1)
1( )t  . Тоді з виразів (2.3) і (2.6) знаходимо 



 75 

(2)
1

0 1

2
( )

V
t

x Vt

  


;   
2

(3)
1 2

0 1

2
( ) 6 .

( )

V
t

x Vt

 


                         (2.12) 

В кінці пуску маємо координату приводу 1 0 1( ) / ( / 2)t M C t   , врахувавши 

яку, за формулою (2.8) знаходимо 
(2) 0 0 1

1 2
0 0 0 1

2 ( )
( ) .

( )

m x Vt V
t

I m x Vt

 
 

 
                                         (2.13) 

Із врахуванням виразу (2.13), за формулою (2.8) визначаємо 

3
(4) 0

1 3
00 1 0 1

0 2
0 1

2 24
( ) 1 .

( ) ( )
( )

mgV V
t

IH x Vt x Vtm
x Vt
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 
 
   

     

               (2.14) 

З кінцевої умови (1)
1( )t   із виразу (2.5), знаходимо 

2 2
(3) 0 0 0 1

1 2 2
0 0 0 1 0 0 0 1

2 4 ( )
( ) 1 .

( ) ( )

m V m x Vt
t

I m x Vt I m x Vt


 

       
                   (2.15) 

Врахувавши (2.15), за допомогою залежності (2.9), знайдемо п’яту похідну за ча-
сом від координат вантажу в кінці процесу пуску 

22
(5) 0 0 0 1

1 2 2 2
0 0 0 1 0 0 0 1 0 1

2
2 2 0

0 14
00 1

0 2
0 1

4 ( )2 3
( ) 1

( ) ( ) ( )

4
30 ( ) 1 .

( )
( )

m m x VtgV
t

H I m x Vt I m x Vt x Vt

mV g
V x Vt

IHx Vt m
x Vt





  
             

  
  
     
       

(2.16) 

Виходячи з попередньо проведених розрахунків, мінімізація критерію (1.16) здій-
снюється при виконанні наступних крайових умов руху механізму повороту при уста-
леному режимі зміни вильоту вантажу: 

(1) (2) (3) (4) (5)

(1) (2) (2) (3) (3) (4) (4) (5) (5)1
1 1 1 1 1

0 : 0, 0, 0, 0, 0, 0;

: , , ( ), ( ), ( ), ( ).
2

t

t
t t t t t t

     

          

      

      
(2.17) 

Останні чотири умови при 1t t  визначаються за формулами (2.12), (2.14) та 

(2.16), відповідно. 
Варіаційну задачу, в якій мінімізується критерій (1.16), при крайових умовах 

(2.17) розв’язати аналітично не можливо, оскільки вона є нелінійною, тому викорис-
таємо наближений метод розв’язку. 

Для наближеного розв’язку поставленої варіаційної задачі використаємо шукану 
функцію у вигляді поліному з двома доданками 

0 1 1( ) ( ) ( ), 0 .t t t t t                                            (2.18) 

У залежності (2.18) перший доданок 0( )t  – це вибраний поліном, який задо-

вольняє крайовим умовам (2.17), а другий 1( )t  – поліном, що включає вільні коефі-

цієнти і задовольняє нульовим крайовим умовам 
(1) (2) (3) (4) (5)

1 1 1 1 1 1(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0;            
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(1) (2) (3) (4) (5)
1 1 1 1 1 1 11 1 1 1 1( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0.t t t t t t                 (2.19) 

0( )t  виберемо у вигляді поліному 11-го степеня для забезпечення крайових умов (2.17) 
6

6 1
0 1 1

1

( ) ( ) , 0 .i
i

i

t t C t t t t 


                                    (2.20) 

Оскільки в крайових умовах (2.17) використовується значення похідних від вира-
зу (2.20) на початку та в кінці руху включно до п’ятого порядку, тому знайдемо ці 
похідні 
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   (2.25) 

При такому виборі функції )(0 t  крайові умови (2.17) у початковий момент часу 

0t  вже виконані. Коефіцієнти 1 2 3 4 5 6, , , , ,C C C C C C  обираємо так, щоб виконува-

лись ненульові крайові умови (2.17) в кінцевий момент часу 1t . В результаті підста-

новки крайових умов (2.17) в момент часу 1t  в залежності (2.21) – (2.25) отримаємо 

систему лінійних рівнянь, з якої визначені невідомі коефіцієнти 

1 1 2
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(2.26) 

Отже, поліном 0( )t  вигляду (2.20) з коефіцієнтами (2.26) задовольняє крайові 

умови (2.19). 
Поліном 1( )t  представимо у наступному вигляді 

6 6
1 1 1

0

( ) ( ) , 0 ,
n

j
j

j

t t t t D t t t


                                   (2.27) 

де множник 6 6
1( )t t t  гарантує виконання нульових крайових умов (2.19) при будь-

яких значеннях коефіцієнтів 0 1, , ..., nD D D , тобто ці коефіцієнти залишаються віль-

ними і використовуються для знаходження мінімуму функціоналу Cr  (1.16). 
Підставляючи залежності (2.20) і (2.25) з коефіцієнтами (2.26) і залежність (2.27) у 

вираз (2.18), знайдемо явний вигляд функції 1( )t , який включає вільні коефіцієнти 

0 1, , ..., nD D D . Маючи явний вигляд функції 1( )t , знайдемо вигляд функцій ( )t , 

( )t за допомогою залежностей (2.2), (2.4). При цьому функції ( )t , ( )t  також 

включають вільні коефіцієнти 0 1, , ..., nD D D . Підставляючи 1( )t , ( )t  і ( )t  у 

вираз (2.1), отримаємо залежність для моменту drM , що входить у підінтегральний 

вираз функціоналу Cr  (1.16). 
Після проведення інтегрування функціоналу Cr  залежатиме від вільних коефіціє-

нтів 0 1, , ..., nD D D , тобто критерій Cr  є функцією аргументів 0, ..., nD D . Отже, 

наближений розв’язок задачі (1.16) з урахуванням виразів (2.1) – (2.10) та крайових 
умов (2.17) зводиться до знаходження мінімуму функції багатьох змінних. 

При цьому функціонал (1.16) представимо як функцію, залежну від шести невідо-
мих коефіцієнтів 

 0 1 2 3 4 5, , , , , .Cr Cr D D D D D D                                      (2.28) 

Зазначимо, що функція (2.28) нелінійна і визначення її мінімуму є складною зада-
чею. Тому для розв’язування задачі використано модифікацію метаевристичного ме-
тоду рою часточок PSO [8] із обертовою кільцевою топологією зв’язків між часточка-
ми Ring-Rot-PSO [16]. 

Розрахунки оптимального силового режиму руху механізму повороту при устано-
вленому режимі зміни вильоту вантажу здійснено при таких значеннях параметрів 

стрілової системи баштового крана: 5000 кгm  ; 0 300 кгm  ; 6 2
0 4,92 10 кг мI    ; 

5 2
1 5,51 10 кг мI    ; 20,85 м/c  ; 0,075 рад/с  ; 0 39890 НмM  ; 10 мH  ; 

29,81 м/сg  ; 66,627 10 Нм/радc   ; 0 10 мx  ; 1 5,0 ct  . 
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Для цих даних визначалися розв’язки знаменників складових критерію (1.16) на 
коефіцієнтах поліномів. У результаті отримано  

1
2

1
0

min (1/ ) 155278 Нм
t

drt M dt
 
  
 
 

 ;  min max ( ) 291039 НмdrM  .  

Ці значення використані для нормування окремих складових критерію (1.16). 
Зменшення величини критерію (1.16) при застосуванні методу Ring-Rot-PSO для 

різних значень вагових коефіцієнтів 1  та 2  показано на рис. 2. 

 

 
а 

 
б 

Рис. 2 
 

З рис. 2 видно, що для кожного варіанту (рис. 2, а – 1 1  ; 2 0  ; рис. 2, б – 

1 0  ; 2 1  ) відбувається стрімке зменшення величини критерію оптимізації (1.16), 

яке асоціюється з стрибкоподібним зменшення величини Ineq до нуля. Аналогічний 
характер зміни величини критерію (1.16) спостерігається при інших значеннях ваго-
вих коефіцієнтів: 1 0,1  , 2 0,9  ; 1 0,5  , 2 0,5  ; 1 0,9  , 2 0,1  . 

В результаті застосування методу Ring-Rot-PSO отримано значення коефіцієнтів 
поліному при різних значеннях вагових коефіцієнтів в оптимізаційному комплексно-
му критерії (1.16), які наведено у табл. 1. 
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                                                                                                           Таблиця 1 

Коефіцієнт 
полінома 

Значення вагових коефіцієнтів 

1 1  ; 2 0   1 0,9  ; 2 0,1   1 0,5  ; 2 0,5   1 0,1  ; 2 0,9   1 0  ; 2 1   

D0 1,528E-8 8,289E-9 – 1,972E-9 – 3,867E-10 – 3,171E-9 

D1 2,962E-9 8,621E-10 2,680E-9 1,224E-8 – 2,482E-8 

D2 6,755E-9 1,445E-8 3,392E-9 1,993E-8 3,393E-8 

D3 1,443E-8 – 4,394E-9 – 1,949E-9 – 9,797E-9 – 9,649E-9 

D4 – 6,921E-9 3,030E-10 1,130E-9 1,436E-9 7,417E-10 

D5 7,489E-10 – 1,289E-11 – 1,896E-10 – 8,236E-11 – 2,648E-12 

§3. Аналіз результатів розв’язання задачі. 
Результати оптимізації за комплексним силовим критерієм режиму пуску меха-

нізму повороту при усталеному режимі зміни вильоту вантажу проілюструємо за до-
помогою графічних залежностей (рис. 3, 4). 

 

а 

 
б 
 

 
в 

Рис. 3 
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Усі отримані залежності мають коливальний характер в процесі пуску механізму 
повороту, але при завершенні перехідного процесу спостерігаються тенденції до зату-
хання цих коливань. Найбільшу амплітуду коливань рушійного моменту (рис. 3, а), 
пружного моменту в колоні (рис. 3, б) та потужності приводу (рис. 3, в) має режим 
руху з ваговими коефіцієнтами комплексного критерію 1 1   і 2 0  . При усіх зна-

ченнях вагових коефіцієнтів критерію рушійний момент приводу приймає тільки до-
датні значення. Разом з тим, в графічних залежностях зміни пружного моменту в ко-
лоні та потужності приводного механізму спостерігаються від’ємні значення цих ха-
рактеристик. В той же час існує режим пуску при значеннях вагових коефіцієнтів 

1 0,5   і 2 0,5  , коли пружний момент в колоні приймає тільки додатні значення і 

має досить плавний характер зміни. 
З фазового портрету пружних коливань в колоні (рис. 4, а) видно, що найбільші 

деформації і швидкості їхньої зміни спостерігаються при режимі пуску, коли в ком-
плексному критерії 1 1,0   і 2 0  , а найменші – при 1 0,5   і 2 0,5  . Коливання 

вантажу на гнучкому підвісі (рис. 4, б) є близькими при всіх режимах пуску і затуха-
ють до кінця перехідного процесу. 

 

 

a 

 

б 

Рис. 4 

На основі отриманих розв’язків знайдено числові значення оціночних показників 
(табл. 2).  
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Таблиця 2 

Показник 
Одиниця 
вимірю-

вання 

Значення вагових коефіцієнтів 

1 1; 
2 0   

1 0,9; 
2 0,1   

1 0,5; 
2 0,5   

1 0,1; 
2 0,9   

1 0; 
2 1   

Середньоквадратичне 
значення рушійного моменту 

Нм 155278 156379 162670 156579 157636 

Максимальне значення 
рушійного моменту 

Нм 496961 333482 404523 345035 301519 

Середньоквадратичне  
значення моменту в колоні 

Нм 232959 179398 165727 172361 173804 

Максимальне значення 
моменту в колоні 

Нм 449188 370467 333930 363324 353628 

Максимальне значення 
потужності 

Вт 37272 23218 28196 24620 23267 

Середньоквадратичне 
значення крутної деформації 

колони 
рад 0,0351 0,0270 0,0250 0,0260 0,0262 

Амплітуда пружних коливань 
колони 

рад 0,0677 0,0559 0,0503 0,0548 0,053 

Середньоквадратичне  
значення відхилення вантажу 

від вертикалі 
рад 0,0260 0,0267 0,0272 0,0268 0,0272 

Амплітуда маятникових  
коливань вантажу 

рад 0,0459 0,0482 0,0486 0,0478 0,0487 

Максимальне прискорення 
колони 

рад/с2 0,829 0,518 0,640 0,536 0,460 

Максимальне прискорення 
стріли 

рад/с2 0,080 0,0651 0,058 0,0637 0,0617 

Максимальне прискорення 
вантажу 

рад/с2 0,037 0,0403 0,0417 0,0400 0,0411 

 
Аналіз табл. 2 показує, що найменше середньоквадратичне значення рушійного 

моменту приводу має місце при вагових коефіцієнтах в комплексному критерії 1 1   

і 2 0  , а найменше максимальне значення цього моменту – при 1 0   і 2 1.   Се-

редньоквадратичне і максимальне значення пружного моменту в колоні досягають 
мінімальних значень при режимі пуску з ваговими коефіцієнтами 1 0,5   і 2 0,5  . 

При цьому ж режимі пуску найменші середньоквадратичне значення відхилення ван-
тажу від вертикалі, його амплітуда маятникових коливань і максимальні прискорення 
стріли і вантажу. Максимальне значення потужності приводу є мінімальним при ре-
жимі пуску з ваговими коефіцієнтами 1 0,9   і 2 0,1  . 

 
Висновок. 
Розроблено динамічну модель механізму повороту баштового крана при устале-

ному режимі зміни вильоту вантажу. Для такої моделі складено математичну модель, 
яка описується системою диференціальних рівнянь руху механізму повороту стріло-
вої системи. На базі розробленої математичної моделі руху стрілової системи сфор-
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мульовано і розв’язано оптимізаційну задачу силового режиму пуску. В цій задачі  за 
критерій оптимізації режиму повороту стрілової системи обрано комплексний безро-
змірний динамічний критерій, який враховує середньоквадратичне і максимальне зна-
чення рушійного моменту приводу механізму повороту. В оптимізаційній задачі за 
крайові умови руху обрані кінематичні характеристики механізму повороту, які усу-
вають коливання вантажу на гнучкому підвісі при виході на усталений режим руху. 
Розв’язок оптимізаційної задачі представлений у вигляді суми двох поліномів з неві-
домими коефіцієнтами. Перший поліном забезпечує виконання крайових умов, а дру-
гий – мінімізує комплексний критерій. Для розв’язування оптимізаційної задачі вико-
ристано модифікацію метаевристичного методу рою часточок із обертовою кільцевою 
топологією зв’язків між часточками Ring-Rot-PSO. Отриманий оптимальний режим 
пуску механізму повороту забезпечує мінімізацію середньоквадратичного і максима-
льного значень рушійного моменту на компромісній основі. В отриманому оптималь-
ному режимі руху механізму повороту спостерігаються низько- та високочастотні 
коливання кінематичних, силових та енергетичних характеристик, які викликані роз-
гойдуванням вантажу на гнучкому підвісі та характером зміни рушійного моменту. 
На ділянці усталеного руху механізму повороту ці коливання усуваються, виходячи з 
умов отриманого оптимального режиму руху. 

Новизною проведеного дослідження у порівнянні із відомими роботами є поєд-
нання декількох вимог у постановочній частині задачі: мінімізації комплексного кри-
терію, що враховує дві складові, обмеження на знак рушійного момента механізму 
повороту крана, а також умови усунення маятникових коливань вантажу. Крім того, 
новою є методика розв’язання задачі, яка полягає у зведенні вихідної задачі до задачі 
безумовної оптимізації та використання метаевристичного методу Ring-Rot-PSO. 

 
Стаття підготовлена в рамках виконання україно-ізраїльської науково-дослідної 

роботи «Розробка нових модифікацій методу PSO та їх застосування у задачах інже-
нерії» (договір №М/67-2023 від 29.08.2023 р.). 

 
 
РЕЗЮМЕ. Представлено результати оптимізації силового режиму пуску механізму повороту 

баштового крана при усталеному русі механізму зміни вильоту вантажу. Для дослідження викорис-
тано балочну стрілову систему баштового крана. Вибрано динамічну модель і за допомогою рівнянь 
Лагранжа другого роду складено диференціальні рівняння руху. Поставлено оптимізаційну задачу, 
яка включає диференціальні рівняння руху стрілової системи при повороті крана та зміні вильоту 
вантажу, критерій оптимізації та крайові умови руху. За критерій оптимізації використано комплекс-
ний безрозмірний критерій. За крайові умови вибрані кінематичні характеристики механізму поворо-
ту, які усувають коливання вантажу на гнучкому підвісі. Розв’язок задачі оптимального керування 
рухом представлено у вигляді поліному з двома доданками, перший з яких забезпечує крайові умови 
повороту крана за усталеного режиму зміни вильоту, а другий мінімізує критерій оптимізації шляхом 
вибору невідомих коефіцієнтів. За допомогою методу Rot-Ring-PSO отримано оптимальний режим 
пуску механізму повороту при сталій зміні вильоту вантажу.  

 
КЛЮЧОВІ СЛОВА: баштовий кран, механізми повороту та зміни вильоту, рушійний мо-

мент, оптимізація. 
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