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SOLVABLE LIE ALGEBRAS OF DERIVATIONS OF POLYNOMIAL RINGS
IN THREE VARIABLES

Let K be an algebraically closed field of characteristic zero, A = K[x,,x,,x;] be
the polynomial ring in three variables and R = K(x;,x,,x;) be the field of rational
functions. If L is a subalgebra of the Lie algebra W;(K) of all K -derivations of
A, then RL is a Lie algebra over K and dimgRL will be called the rank of L
over R. We study solvable subalgebras L of W;(K) of rank 3 over R. It is
proved that L is isomorphic to a subalgebra of the general affine Lie algebra
aff;(K) if L contains an abelian ideal I of rank 3 over R.If L has an ideal I
with rkgl =2, then L is contained in a subalgebra L of W3(K)=DerKR such

that L is an extension of a subalgebra of aff,(F) by a subalgebra of dimension
<2, where F is the field of constants of I in R .

Introduction. Let K be an algebraically closed field of characteristic
zero, A=K[x;,x,,x;] the polynomial ring in three wvariables and
R =K(x,,x,,x;) the field of rational functions. Recall that a K -linear
operator D: A —> A is called a K-derivation on A if D satisfies the
Leibniz’s rule: D(fg) = D(f)g + fD(g) for all f,ge A. The Lie algebra W;(K)
of all K -derivations on A is a very interesting mathematical object closely
connected with groups of symmetries of partial differential equations. In case
K is the field of real or comlpex numbers, all finite dimensional subalgebras
of W;(K) and W,(K) were described in works of S. Lie, P. Olver, N. Kamran.
The natural problem of classification of all finite dimensional subalgebras of
W;(K) remains still open. S. Lie [7] began to study such subalgebras, but his
classification even of nilpotent subalgebras is incomplete. U. Amaldi [1, 2]
continued study of subalgebras of W,;(K) but his classification is unsatisfac-
tory. Note that the problem of classifying even nilpotent finite-dimensional
subalgebras of W,(K) is wild (i.e. it contains a hopeless problem of classifying

pairs of square matrices up to simultaneous similarity [3]).
We study finite dimensional solvable subalgebras of rank 3 over R of

the Lie algebra W;(K) (nilpotent subalgebras of W;(K) were studied in [10]).
The main results of the paper: it is proved in Theorem 1 that a solvable finite
dimensional subalgebra L of W,(K) possessing an abelian ideal of rank 3
over R is isomorphic to a subalgebra of the general affine Lie algebra
aff;(K). It L has an abelian ideal I of rank 2 over R, then L can be

embedded in a subalgebra L of W3(K) = Derg R such that L is an extension

of a subalgebra of aff,(F) by a subalgebra of dimension <2, where F is the

field of constants for the ideal I in the field R.
Notations in the paper are standard. The ground field K is algebraically
closed of characteristic zero. If L is a subalgebra of the Lie algebra W;(K),

then F = F(L) is the field on constants of L in R=K(x;,x,,x;) (we consider

any derivation D e W;(K) as derivation of R in the natural way:

D(f / g) = (D(f)g — fD(g)) / 92 ). If V is an m-dimensional vector space over
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K and gl(V) the Lie algebra of all linear operators on V we can consider the
semidirect product gl(V) AV, where V is considered as an abelian Lie algeb-
ra. The Lie algebra gl(V) <V will be called the general affine Lie algebra and
denoted by aff, (K) (in case K =R the Lie algebra aff, (R) corresponds to
the general affine Lie group GA, (R)).

Subalgebras with an abelian ideal of rank 3 over R.

The next two lemmas contain standard facts about derivations (see for
example, [8]). More information about derivations of polynomial rings can be
found in [9].

Lemma 1. Let D,,D, € Wy(K) and a,b € R. Then

[aD,,bD,] = ab|D,, D,] + aD, (b)D,, — bD,(a)D,;.

If [D;,D,] =0, then [aD,,bD,] = aD,(b)D, —bD,(a)D,.
Lemma 2. If L ¢ W,(K) and F = F(L) the field of constants for L in R,

then FL is a Lie algebra over F.If L 1is abelian, nilpotent or solvable then so
is FL.

Lemma 3. Let D,,...,D, be a basis of the vector space W3(K) over the
. n _
field R. Then ()|'_KerD, =K.

Proof. Suppose that ﬂ:;lKerDi #K and let f € ﬂ?=lKerDi, fi e R\ K.
Then there exists a transcendence basis {f;,...,f,} of R over K and the
subfield K(f;,...,f,) is isomorphic to the field K(x,,...,a,). The function f
defines the derivation S of the field K(f,...,f,) and this derivation can be

uniquely extended to the derivation S of K(xi,...,x,) (we keep the same

notation for the extended derivation). But S = Z:;l s;D; for some s, € R and

n
=1

therefore S(f))= Z

impossible because S(f;) =1. The obtained contradiction shows that

n J—
ﬂi=1KerDi =K.

s;D;(f;) =0 by the choice of the element f, . This is

Corollary 1. If L is an abelian subalgebra of W3(K) and rkzL = n, then
dimy L=n.

Proof. Let D,,...,D, be a basis of L over R.Then any element D € L is
of the form D = Z?zl s;D, for some s, € R. Since [D;,D] =0 = z;:l D,(s;)D;
we have that Di(sj) =0, ¢,j=1,...,n. By Lemma 3, s;, e K and D,,...,D, is
a basis of L over K. Thus dimy L=mn.

Theorem 1. Let L be a solvable subalgebra of the Lie algebra W;(K). If L

has an abelian ideal I of rank 3 over R, then L 1is isomorphic to a solvable
subalgebra of the general affine Lie algebra aff;(K). In particular

3<dimy L<9.
Proof. Take any basis D,,D,,D, of the ideal I over the field R. Then
any element D € L can be written in the form
D =s,D, +s,D, +s;D;, s, €R.



Solvable Lie algebras of derivations of polynomial rings in three variables 9

Since [D,,D] = D,(s,)D, + D,(s,)D, + D,(s3)D; €I we have by Lemma 4 that
D,(s;) € K, 4,7 =1,2,3. So we can correspond to any element D e L the matrix
D,(s;) Di(sy) Di(s5)
By = | Dy(s;) Dy(sy) Dy(sg) | € Ms(K). (1)
Dy(s;) Dslsy) Dy(sy)

Denote by S the set of all columns of such matrices Bj, where D runs
over the subalgebra L. Since S < Kg, the three-dimension vector space over
K, we have d =1k, S <3.If d =0, then all columns for all D € L are zero
and therefore s, €K, ¢=1,2,3 by Lemma 3. This means L =1. So we can
assume that d > 1.

Case 1. d =1. Then there exists an element D e L\I which can be
written in the form D = s,D, +s,D, +s;D; such that all columns of S are
proportional to the column (Dl(sl),D2(sl),D3(sl))T (here ‘T denotes the trans-

pose of the row) of the corresponding matrix B,. Take any element

(Dl(t),Dz(t),Dg(t))T € S. Then there exists y € K such that

(D1(1), Dy(0), Dy (1)) = 7(Dy(51), Dy(s,), Dy(sy)) -
It follows from the last equality that

D, (t —vs;) = Dy(t —vs;) = Dy(t —vys;) = 0.
By Lemma 3 we obtain t —ys, =06 for some 6 €K, ie. t =ys, +5. The latter
means that for any element D e L, D =t,D, +t,D, +t;D;,t, € R, the corres-
ponding matrix B, has the columns (Dl(ti),DZ(ti),D3(ti))T, i=1,2,3, with
t, = f,(s),deg f; <1, f, € K[t]. Since (Dl(sl),D2(sl),D3(sl))T is nonzero we can
assume without loss of generality that D,(s;) =1, D,(s;) = v, Ds(s;) =y for
some 7v,,vs € K. Put

Dy, =D,, Dy =D,-v,D;, Dy =D;-v3D.
Then D, (s;) =1, Dy(s;) =0, Dy(s;) =0 and D,,D,,D, form a basis of I over
R. Let D=tD +t,D, +t;D; be an arbitrary element in L and

; = VS, +9;,7=1,2,3. Then the map ¢:L — aff;(K) which is defined by

the rule: @o(D;) = x,, ¢(s,D;) = x;x;, and further by linearity, is an embedding
of L into the Lie algebra aff;(K).

Case 2. d = rky S = 2. Then there exist linearly independent columns on
the set S of the form

T T
(Dl(sl),D2(Sl),D3(Sl )) ,(D1(32)7D2(32),D3(32 )) (2)
(these columns can belong to different matrices B, D € L). Therefore any

column (Dl(t),D2(t),D3(t))T € S is a linear combination of columns in (2). One

can easily show that t = f(s;,s,) for some polynomial f e K[u,v], degf <1.
Note that the rank of the matrix
D, (s;) Dj(s,)
Dy(s;)  Dy(sy) (3)
Ds(sy)  Dy(sy)
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is equal to 2. Without loss of generality one can assume that the first and
second rows of this matrix are linearly independent. But then there exist

Y1,72 € K such that

(1,0) = v, (Dy(5)), Dy(s5)) + ¥ (Dy(s,), Dy (55))- (4)
Denoting D, =7v,D, +v,D, we have D, (s;) =1, D;(s,) =0. Analogously one
can find 6,,5, € K such that the element D, =3§,D, +3,D, has properties
Dy(s;) =0, Dy(sy) =1.

Further, the third row of the matrix (3) is a linear combination of the
first and second rows and therefore (D;—p,D, —p,D,)(s;)=0,7=1,2.
Denoting D, = Dy — D, —u,D, we obtain Di,(sj) = Si]., 1=1,2,3,j=1,2. If
DeL is an arbitrary element, then D =tD, +t,D, +t,D; for some
t,,t,,t; € R. Since t; = f,(s;,s,), deg f; <1 we see that L can be embedded
in the Lie algebra aff,(K).

Case 3.rky S = 3 can be considered analogously.

Subalgebras with abelian ideals of 7k <2 over R.

Lemma 4. Let L be a subalgebra of the Lie algebra Wx(K) and I be an
ideal of L. If F =F() is the field of constants for I in R, then D(F)c F
for any element D e L.

Proof. Let De L and r € F be arbitrarily chosen. Then for any D, €1

we have D,(r) =0 and therefore

0 = D(D,(r)) = D,(D(r)) +[D, D;](r).
Since [D,D;] el we have [D,D,](r) =0 and consequently D,(D(r)) = 0. The
latter means that D(r) € F' because the element D, was arbitrarily chosen in
the ideal I. Thus D(F)c F.

Theorem 2. Let L be a solvable finite dimensional subalgebra of the Lie
algebra W;(K) with rkzL =3. If L has an ideal I of rank 2 over R and

F =F(L) is the field of constants of I in R, then the Lie algebra L is
contained in the subalgebra L=FI+L of W3(K) where I= (RI)N L. The Lie
algebra L is solvable, FI is its ideal of rank 2 over R which is isomorphic to
a subalgebra of aff,(F). The Lie algebra L is an extension of the ideal FI by
a Lie algebra of dimension 1 or 2 over K.

Proof. The intersection 1= (RI) N L is an ideal of the Lie algebra L with

rk,L =2 and dimgL /I <2 (see [8]). Let F be the field of constants for I in

R. Since D(F)c F for any D e L (by Lemma 4), the subalgebra FI of the
algebra W3(K) is an ideal of the Lie algebra FI+L. One can easily show
that rlch = 2. By Theorem 1 of the paper [6], the Lie algebra FI (as a Lie
algebra over the field F) is isomorphic to a subalgebra of the Lie algebra
aff,(F). Since dimyL /I<2, it holds obviously dimyL+FI/FI<2. Note
that the Lie algebra L+FI is in general case of infinite dimension over K
although dirnFFj <7 (the sum FI+L is not in general a Lie algebra over F

but only over the field K). The proof is complete.
Further notations are taken from Theorem 2. Let I, = KD, be a one-

dimensional ideal of L lying in I and KD, + I, be an ideal of the quotient
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algebra L /I, lying in I /I, (such ideals do exist because L is solvable and
K is algebraically closed). Let KD, +1 be one-dimensional ideal of the Lie
algebra L / I. Then D,,D,,D, are linearly independent over R and form a
basis of RL over R. By the choice of D, and D, there exist A,,A, € K and
g, € F such that
[D;,D,] = A,Dy, [Dy,D,]=2,D, +g,D,.

The next statement gives more detailed description of the Lie algebra
L=FI+L.

Proposition 1. Let L ¢ W,(K) be a solvable finite dimensional subalgebra
of rank 3 over R with dimL > 6. Under conditions of Theorem 2 either
there exist 1,1, € R with Di(rj) = 51]" 1,7 =1,2, and every element D e FI is
of the form D = f(r,,1,)D; + f,(ry,75)D,, f; €K[t,t,], degf, <1, or there
exists 1, e R, 1 =1 or 1 =2, with Di(rj) = Sij and every element D e FI is of
the form D =g,(r;)D; +9,(1;,)D,, degg; <1. Then Djy(r})=—-A1 —goTy,
Dy(1,) = —Ay7y. If dimy L /f =2, then there exists DelL \ (KD, + j) such
that D = 13Dy +8,D,, 73 € R, Dy(r5) =1, Dj(r3) = Dy(r5) =0, D;(s;) =0, and
in this case A, =0, g, =0, s, =A,nry +f, fekK.

Proof. Repeating considerations from the proof of Theorem 1 one can
find either elements n,n, with Di(”r'].) = Sij,i,j =1,2, or an element re€ R
such that either D,(r) =1, D,(r) =v or D,(r) =39, D,(r) =1 using only trans-
D;(s;) Dj(sy)
Dy(s;)  Dy(s,)
consider elements D, =D, -06D,, D, =D, and in this case D;(r)=0,
D, (r)=1. So we can assume that either D;(r) =1, D,(r)=0 or D;(r)=0,

formations of columns of the matrix Bp =( ] If 80 we can

D,(r) =1 and r is either 7, or w,.
Let us consider the action of elements D, on r;, S;, 1,7 =1,2,3.
Since D, (r;) =1 we have Dy(D;(7;)) = 0 and therefore
D, (Dy4(1y)) = Dg(D;(1y)) = [Dg, D, 1(1y) = 0 = XDy (17) = —A4.

It follows from the equalities D,(D4(7y)) = —-A; and D;(=A;n;) = -2, that
D,(Dy(1;) + An) =0, ie. Dg(r;) =—Amn +s  for some s e KerD,. Analogously
the equality

D, (d3(17)) = D3(Dy(17)) — [Ds, Dy 1(77)
implies Dy(1) = —gy7, + s" for some s” e KerD,. Applying D; to both sides of
the obtained equality -Am +s =—g,m +s’ we get —A, =D(s"). After
applying D, to the same equality we get D,(s)=-g,. But then
s+ A1 € KerD, . Since s+ A1 € KerD, we have
s"+Mm € KerD, " KerD, = F. Thus s"=-\n +v, for some v, €F. It follows
from the equality —A,n +s'=—g, —A,m, +v, that s'=—g,n, +v,. Finally we get

Dy(r) = —A1 —go1y, +v;, v, € F.

Analogously it follows from the equalities
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Dy, (Dy(13)) = D3(Dy(13)) —[Dy, Dy I(1) = 0 = (AyDy + 95Dy )(13) = 2y
that D,(n,) = —A,m, +t' for some t' € KerD, and finally

Dy(1y) = —Aymy +v,,0, € F.
Without loss of generality we can change D, by D, = D; —v,D, —v,D, . Then
D, (1) = —Mm —gy7y, Dgy(ry) = —Ay7y. Returning to the old notation we have
Dy(1y) = —A1y —goTy, D3(15) = —AyT;,.

Let now dimy L /f =2 and D= 1,D; + 5D, +s,D, be any element of

L\ (KD, +1I). Then

[D,D,] = [,D + 5,D; +s,D,,D;] =

= —Dg(73)Dg — D5(s;)D; —5,[D;,D5] — D5(s5)D;, — 8,[D,, D5] =
= =Dy (13)Dg + (=D5(sy) + XSy + 8995 )D; + (=D5(8y) + AySy)D, .

It follows from these equalities that Dg(r;) = —y, where y is taken from the
equality [B, D;]=vyD; + D, where D e I. Analogously the equality

[13D5 +5,D; +5,D,,D;] = uD,
for some p e K implies D;(r;) = 0,D,(s,) = 0. The equality

[13Dg + 5,D, +s,D,,D,] = f,D, + f,D,
for some f}, f, € F yields Dy(ry) = 0. Summarizing we get

Dy (13) = Dy(r5) =0, Dg(r5) =1, D(sy)=0. (5)
Since [B, D,;]= 6D, for some 6 € K we have

[15D5 + 5,D; + 8,D,,D;] = (A13 — D, (s,))D;
and therefore A1 —Di(s;)=6. Thus D(s;)=A1+60, 0eK. Further
[D,D,] = f,D, + f,D, for some fi,fo € F. Analogously [15Ds +s,D; +58,Dy,D,] =
= (1399 — Dy(81))D; +(Agmy — Dy(s5))D, and therefore

Dy(s)) = go15 = for Dy(sy) = Ayry — £ (6)
But we have

81 = 0oyl —Tofy + fss Sy = AgTyTy —ofy + )
for some f;,f, € F. It was proved early that D,(s;) = A1, +0, 0 €K, so we
have s, =An7y +0n, + f; for some f;, € F. Applying D, to the both sides of
the equality

ANt +0n + i = gonyry — 1 f + fy (7)
we get g,7, — f, =0. But n, 7,7, are linearly independent over F, so the last
equality yields g, = 0. The equality (7) is now of the form

At +0n + f = -nf, + f;.
Applying D, to the both sides of this equality we get f, =0. Therefore
Amnrs +0n + f; = f;. Applying D, to the both sides of the last equality we get
A7m; +0=0.Since r; £ K we have A, =0 and therefore s; = 0. Analogously
we can assume that f, =0 and s, = A,1,75. So we have

5 =0, s, =Am1, g,=0, f,=0, A =0.
These equalities means that
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[D3’D1]=07 [D3,D2]=7"2D2’ D=T3D3+82D2’

where s, = A, 7y, Di(rj) = Sij, 1,7 =1,2,3. The proof is complete.
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3

PO3B’A3HI AINMEBPU NI AUPEPEHLIIOBAHb KIJIELLb MHOIOYJEHIB BIf] TPbOX 3MIHHUX

Hexaili K — anzedOpaiuno samiuene mose xapaxmepucmuxu Hyav, A = Klx,,x,,x5] —
Kiavye mHozouaenis 6i0 mpwvox sminHux i R =K(x,x,,x;) — nose payioHarvHux
Ppynyil. dxwo L — nidareedpa anzebpu Ji Wy(K) ecix K -dugepenyirosans wiavysa
A, mo RL e aneeoporo JIi nad K ¢ dimzRL nasusaemvcsa panzom anzedpu L wad R .
Busuatomucs nidanzedbpu L paney 3 nad R aazebpu JIi W;(K). Josederno, wo saruo
L micmumb abenesuti i0ean I paney 3 nad R, mo L i3omopgra nidareedpi 3azans-
not aginnoi anzedbpu Ji affy(K). Axwo L mae idean I 3 rvkxl =2, mo L micmumsbca
8 nidanzebpi L anzebpu Wg(K)=DerKR, de L — poswupenus Oesoi nidanze6pu 3

aff,(F) sa donomozoto nidaneedpu posmiprocmi <2, F — none xoncmaum oaa I 6 R.

PA3PELUUMBIE ANFEBPbI NI OU®SEPEHLUNPOBAHUA KOJNEL MHOMOYNIEHOB
OT TPEX NEPEMEHHbIX

IMyems K —  aazebpaurecku  3aMKHYmMoOe  nodse  XAPAKMepucmuKku - HYyab,
A =Klx,,xy,x5] — KOABYO MHOOUNEHO08 OM Mmpex nepemennblx u R = K(x;,x,,x) —

none PaYUoHarvHulx Pynryul. Ecau L -nodanzebpa aneedpvr Ju Wy (K) ecex K-
Oupepernyuposanutl koavya A, mo RL sasasemca anzeopou Jlu nad K u dimgRL

Hazvleaemcs pareom anzebpsvt L wad R . Mccaedyromes nodanzebpour L panea 3 Had R
aneeopur JTu W, (K). Hoxasano, wmo ecau L codepicum abeses udean I panza 3 nad

R, mo L usomoppua nodaszedbpe obweil apunnot aazedpvt Ju affy(K). Ecau L
codepacum udear I ¢ rhkxl =2, mo L codepicumcsa & mnodaazedpe L  anze6pot

W3(K) = DeryR, 20e L — pacwupenue Hekomopoti nodaizebpol u3 aff,(F) ¢ nomowwto

nodanzedpovl pazmepHocmu <2, a F — nose xoncmarm oasn I 6 R.
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