https://doi.org/10.15407/apmm2023.21.17-20

УДК 512.64+512.56

M. V. Styopochkina [⊠]

THE COEFFICIENTS OF TRANSITIVENESS OF THE POSETS MINIMAX ISOMORPHIC TO THE NON-PRIMITIVE SUPERCRITICAL POSET

The coefficients of transitiveness for all posets that are minimax isomorphic to the poset $N_6 = (N, 5) = \{1, 2, ..., 9 | 1 \prec 2 \prec 3 \prec 4 \prec 5, 6 \prec 7, 8 \prec 9, 6 \prec 9\}$ are calculated.

Key words: supercritical poset, minimax isomorphism, coefficient of transitiveness, MM-type, nodal element, dence subposet.

Introduction. M. M. Kleiner [10] proved that a poset *S* is of finite representation type if and only if it does not contain subsets of the form $K_1 = (1, 1, 1, 1)$, $K_2 = (2, 2, 2)$, $K_3 = (1, 3, 3)$, $K_4 = (1, 2, 5)$ and $K_5 = (N, 4)$. These posets are called the critical posets or the Kleiner's posets. On the other hand, Yu. A. Drozd [9] proved that a poset is of finite representational type if and only if its Tits quadratic form is weakly positive, i.e. it is positive on the non-zero non-negative vectors. Hence the Kleiner's posets are also critical with respect to weak positiveness of the Tits form, and there are no other such posets. In [2] the authors proved that a poset is *P*-critical (i.e. critical with respect to the positiveness of the Tits form) if and only if it is minimax isomorphism to a Kleiner's poset.

A similar situation takes place in the case of tame posets. L. A. Nazarova [11] proved that a poset *S* is tame if and only if it does not contain subsets of the form $N_1 = (1, 1, 1, 1, 1)$, $N_2 = (1, 1, 1, 2)$, $N_3 = (2, 2, 3)$, $N_4 = (1, 3, 4)$, $N_5 = (1, 2, 6)$ and $N_6 = (N, 5)$; these conditions are equivalent to weak non-negativity of the quadratic Tits form. She called these posets supercritical. So the supercritical posets are critical with respect to weak non-negativity of the Tits form and there are no other such posets. The authors proved that a poset is critical with respect to non-negativity of the Tits form if and only if it is minimax isomorphism to a supercritical poset; all such critical posets were described by them in [3].

In many papers (see e.g. [4–8] combinatorial properties were studied for various classes of posers. The present paper is devoted to the investigation of combinatorial properties of supercritical posets.

1. The list of posets of *MM*-type (*N*, 5). Let *P* be a fix poset. A poset *S* is called of *MM*-type *P* if *S* is minimax (in other words, (min, max)-) isomorphic to *P* (the notions of (min, max)-equivalence and (min, max)-isomorphism were introduced in [1]; see also [2]). From the results of [3] it follows that the table below contains all (up to isomorphism and duality) posets of *MM*-type $N_6 = (N, 5) = \{1, 2, ..., 9 \mid 1 \le 2 \le 3 \le 4 \le 5, 6 \le 7, 8 \le 9, 6 \le 9\}$.

2. Main result. Let S be a finite poset and $S_{\leq}^2 := \{(x, y) \mid x, y \in S, x < y\}$. If

 $(x, y) \in S^2_{<}$ and there is no *z* satisfying x < z < y, then *x* and *y* are called *neighboring*. Put $n_w = n_w(S) := |S^2_{<}|$ and denote by $n_e = n_e(S)$ the number of pairs of neighboring elements. On the language of the Hasse diagram H(S) (that represents *S* in the plane), n_e is equal to the number of all its edges and n_w to the number of all its paths, up to parallelity, going bottom-up (two path is called parallel if they start and terminate at the same vertices).

[™] stmar@ukr.net

ISSN 1810-3022. Прикл. проблеми мех. і мат. - 2023. - Вип. 21. - С. 17-20.

The ratio $k_t = k_t(S)$ of the numbers $n_w - n_e$ and n_w is called the *coefficient of transitiveness of S.* If $n_w = 0$ (then $n_e = 0$), we assume $k_t = 0$ (see [5]). Obviously, dual poset have the same coefficient of transitiveness.

The aim of this paper is to calculate k_t for all posets of *MM*-type $N_6 = (N, 5) = \{1, 2, ..., 9 | 1 \prec 2 \prec 3 \prec 4 \prec 5, 6 \prec 7, 8 \prec 9, 6 \prec 9\}$. All the coefficients of transitiveness k_t are calculated up to the second decimal place.

Ν	n _e	n _w	k _t	Ν	n _e	n _w	k _t	Ν	n _e	n _w	k _t
1	9	19	0.52632	12	8	15	0.46667	23	9	17	0.47059
2	9	21	0.57143	13	8	15	0.46667	24	7	21	0.66667
3	9	33	0.72727	14	9	15	0.4	25	7	17	0.58824
4	9	29	0.68966	15	9	17	0.47059	26	8	25	0.68
5	9	25	0.64	16	7	13	0.46154	27	8	19	0.57895
6	9	25	0.64	17	8	19	0.57895	28	8	21	0.61905
7	9	29	0.68966	18	8	15	0.46667	29	9	25	0.64
8	10	33	0.69697	19	8	17	0.52941	30	9	25	0.64
9	10	33	0.69697	20	8	17	0.52941	31	9	23	0.60870
10	8	15	0.46667	21	9	19	0.52632	32	8	27	0.70370
11	8	13	0.38462	22	9	19	0.52632	33	8	23	0.65217

Theorem. *The following holds for posets* 1–33:

The proof is carried out by direct calculations.

Recall that an element of a poset T is called *nodal*, if it is comparable with all elements of T. A subposet X of T is said to be dense if there is not $x_1, x_2 \in X$, $y \in T \setminus X$ such that $x_1 < y < x_2$.

It is easy to see that the theorem emplies the following statement.

Corollary. A poset of *MM*-type N_6 has the largest coefficient of transitiveness if and only if it contains a dense subposet with five nodal element.

- Bondarenko V. M. On (min, max)-equivalence of posets and applications to the Tits forms // Visn. Kyiv Univ. Ser. Fiz. Mat. – 2005. – No. 1. – P. 24–25.
- 2. *Bondarenko V. M., Styopochkina M. V.* (Min, max)-equivalence of partially ordered sets and Tits quadratic form // Analysis and Algebra Problems. 2005. **2**, No. 3. P. 18–58 (in Russian).
- Bondarenko V. M., StyOpochkina M. V. Description of posets critical with respect to the nonnegativity of the quadratic Tits form // Ukrainian Math. J. – 2009. – 61, No. 5. – P. 734–746.
- Bondarenko V. M., StyOpochkina M. V. On properties of the Hasse diagram of nonserial posets with positive quadratic Tits form // Nauk. Visn. Uzhgorod. Univ. Ser. Mat. Inf. – 2016. – 29, No. 2. – P. 31–34.
- Bondarenko V. M., Styopochkina M. V. Coefficients of transitiveness of P-critical posets // Analysis and appl. – 2017. – 14, No. 1. – P. 46–51.
- 6. Bondarenko V. M., Styopochkina M. V. Combinatorial properties of *P*-posets of width 2 // Appl. problems of mech. and mat. 2017. 15 P. 21–23.
- 7. Bondarenko V. M., Styopochkina M. V. On properties of posets of MM-type (1, 3, 5) // Nauk. Visn. Uzhgorod. Univ. Ser. Mat. – 2018. – 32, No. 1. – P. 50–53.
- Bondarenko V. M., Styopochkina M. V. On transitivity coefficients for posets of MM-type to be oversupercritical non-primitive // Nauk. Visn. Uzhgorod. Univ. Ser. Mat. Inf. – 2021. – 39, No. 2. – P. 22–29.

- 9. Drozd Yu. A. Coxeter transformations and representations of partially ordered sets // Funkc. Anal. i Priložen. – 1974. – 8, No. 3. – P. 34–42 (in Russian).
- 10. *Kleiner M. M.* Partially ordered sets of finite type // Zap. Nauch. Semin. LOMI. 1972. 28. P. 32–41 (in Russian).
- 11. Nazarova L. A. Partially ordered sets of infinite type // Izv. Akad. Nauk SSSR. Ser. Mat. 1975. 39, No. 5. P. 963–991 (in Russian).

КОЕФІЦІЄНТИ ТРАНЗИТИВНОСТІ Ч. В. МНОЖИН, МІНІМАКСНО ІЗОМОРФНИХ НЕПРИМІТИВНІЙ СУПЕРКРИТИЧНІЙ Ч. В. МНОЖИНІ

Обчислено коефіцієнти транзитивності для всіх ч. в. множин, мінімаксно ізоморфних ч. в. множині $N_6 = (N, 5) = \{1, 2, ..., 9 \mid 1 \prec 2 \prec 3 \prec 4 \prec 5, 6 \prec 7, 8 \prec 9, 6 \prec 9\}$.

Ключові слова: суперкритична ч. в. множина, мінімаксний ізоморфізм, коефіцієнт транзитивності, ММ-тип, вузловий елемент, щільна ч. в. підмножина.

Polissia National University, Zhytomyr

Obtained 01.11.23