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ON DIRECT PRODUCTS OF METACYCLIC MILLER-MORENO p -GROUPS
AND CYCLIC p -GROUPS AS ADDITIVE GROUPS OF LOCAL NEARRINGS

A finite group is called a Miller—Moreno group if it is non-abelian and all its proper
subgroups are abelian. The direct products of Miller—Moreno p -groups and cyclic

p -groups as additive groups of nearrings with identity and local nearrings are
considered.
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Introduction. A nearring R with an identity is called local if the set of all
non-invertible elements of R forms a subgroup of the additive group of R.

In paper [8] it was given a full classification of the metacyclic Miller—
Moreno p -groups which appear as the additive groups of finite local nearrings.

Moreover, if G is such an additive group, then we describe all possible
multiplications “- ” on G for which the system (G,+,-) is a local nearring.

In the paper we consider the direct products of Miller—Moreno p -groups
and cyclic p -groups as additive groups of nearrings with identity and local

nearrings.

1. Preliminaries. We also recall, that a finite group is called a Miller—
Moreno group if it is non-abelian and all its proper subgroups are abelian.

As a direct consequence of [9] we get the following statement.

Lemma 1. Metacyclic Miller—Moreno p -groups, where p is a prime number

and p >2, are isomorphic to the group G =(a)x(b) of order p™™" with
aP™ =bP" =1 and blab=aP"", where m>2 and n>1.

Consider the direct products of metacyclic Miller—Moreno p -groups and
cyclic p -groups. It is trivially obtain from Lemma 1 the following result.

Lemma 2. Let G be a direct product of metacyclic Miller—Moreno p -group
and cyclic p-group. Then G is a group of the following type: the group

m-1

G =((a)x(b))x(c) of order p™™"* with aP" =pP" =P =1, blab=al®P" ",
ca=ac and cb=bc, where m>2, n>1 and k>1.

In what follows we use the following notation: F(p™,p",pX) denotes an
additively written group from Lemma 2 with generators a, b and ¢ of orders
p™, p" and pX, respectively, so that -b+a+b=all+p™™?), c+a=a+c and

c+b=b+c,where m>2, n>1and k>1.

We will give the basic definitions (see, [4], [5]).

Definition 1. A set R with two binary operations “+ " and “-  is called a
(left) nearring if the following statements hold:

1) (R,+)=R" is a (not necessarily abelian) group with neutral element 0;
2) (R,-) is a semigroup;
3) x(y+z)=xy+xz forall x,y, zeR.

™ raeirina@imath.kiev.ua
ISSN 1810-3022. IlIpuka. npodaemu mex. i mat. — 2024, — Bum. 22. — C. 123-130.




124 I. Yu. Raievska

If Ris a nearring, then the group R* is called the additive group of R. As
it follows from statement 3), for each subgroup M of R™ and each element
xeR the set xM={x-y|yeM} is a subgroup of R*and, in particular,
x-0=0. If in addition 0-x =0, then the nearring R is called zero-symmetric,
and if the semigroup (R) is a monoid, i.e. it has an identity element i, then
R is a nearring with identity i. In the latter case the group R" of all invertible
elements of the monoid (R,-)is called the multiplicative group of R. A subgroup

M of R* is called R - invariantif rM <M for each r e R", and M isan (R,R)
-subgroup, if xMy c M for arbitrary x, yeR.
Definition 2. A nearring R with identity is said to be local if the set

L =R\R" of all non-invertible elements of R is a subgroup of R*.

Some basic properties of local nearrings are described in the following
lemma (see [2], Lemmas 3.2, 3.4 and 3.9).
Lemma 3. Let R be a local nearring with identity i and L its subgroup of

all non-invertible elements of R*. Then the following statements hold:
1) Lis an (R,R)-subgroup of R*;

2) each proper R’ -invariant subgroup of R*is contained in L ;
3) if R is finite, then y is a p -group for some prime p, the subgroup L

is normal in R* and the factor group R* /L is elementary abelian.

2. Groups F(p™,p",pX). Recall that the exponent of a finite p -group is
the maximal order of its elements. The following assertion is easily verified.
Lemma 4. The exponent of F(p™,p",p¥) is equal to p™ for m>n and

m>k, to p" for n>m and n>k, and p* for k>m and k>n. If x is an

element of maximal order in F(p™,p",p*), then there exist generators a, b, c
of this group such that either a=x, b=x or c=x and the relations

aP" —bP" =P =1, blab=a*P"", ca=ac and cb=hc, where m>2, n>1
and k >1 hold.

Lemma 5. Let a group G be isomorphic to F(p™,p",pX). Then for any
natural numbers r, s, t, u the equalities

cu+bs+ar=ar(l+sp™?)+bs+cu

and

t
(ar + bs + cu)t = ar(t + s(z] p™ 1)+ bst + cut hold.

Proof. Let q=1+p™*. Since -b+a+b=all-p™?), a+c=c+a and

b+c=c+b, then b+a=aq+b, so bs+ar =arg® +bs for arbitrary integers
r >0 and s > 0. Taking into consideration, that

q° =(1+p®)° =1+sp™* (modp™™)
by binomial’s formula, giving cu +bs +ar = ar(1+sp™*) +bs +cu.

Next, (ar +bs+cu)t =ar(L+g° +---+q%*Y) + bst + cut by induction on t.
Therefore,
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140+ +0 D =141 -sp™ )+ 4+ (L-s(t —Dp™?) =

t
=t- s[ ]pml (mod p™), thus (ar +bs + cu)t = ar(t + sp™?) + bst +cut. o
2

3. Nearrings with identity on groups F(p™,p",pX). It is clear that the
groups F(pm,p”,pk) are the direct product of metacyclic Miller—Moreno groups
of order p™ and cyclic groups of order p*. Obviously, the direct product of
nearrings with identity is a nearring with identity. Therefore, in what follows
the additive group of R is isomorphic to a group F(p™,p",p*).

Let the additive group of a nearring R with identity be isomorphic to a
group F(p™,p",p¥). Thus R* =<a >+ <b>+<c> with elements a, b, ¢ one
of which coincides with identity element of R and the relations
ap™ =bp" =cp¥ =0, a+b=b+al+p™?), a+c=c+a and b+c=c+b are
valid, where m >2, n>1 and k >1. Moreover, each element x € R is uniquely
written in the form x=ax; +bx, +cx; with coefficients 0<x, <p™,
0<x, <p" and 0< x5 < p¥.

In the paper we consider the case when a coincides with identity element
of R, so that xa =ax = x for each xeR, andp > 2. Thus R* is of exponent
p™ and m >n and m >k. Furthermore, for each x e R there exist integers
o(X), B(X), y(X), &(x), y(x) and &(x) such that xb =ao(X +bA X +cy(® and
xc = ad(X) + by(x) + c&(x) , respectively. It is clear that modulo p™, p", pX, p™,
p" and pX, respectively, these integers are uniquely determined by x and so
some mappings a:R—>me, B:R—>an, y:R—>Zpk, ¢:R—>me,
y:R—> an and £:R — Zpk are determined.

Lemma 6. Let X = ax; +bx, + cX; and y = ay; + by, + cy; be elements of R.
If a coincides with identity element of R, then

Y Y.
Xy = a(qy; + a(X)ys + §(X)Ys + (4% [ 21] + Al Yy, + a(x)ﬁ(x)( ;j +

Y
+3000¥1Ys + BOOGOYaYs + ¢(X)w(X)( ;J pm 1)+

+ b0y +BX)Y, + w(X)y3) + XYy + Y (X)Y, + E(X)Y3). *)

Moreover, for the mappings
a:R—>me, B:R—>an, y:R—>Zpk, ¢:R—>me, w:R—)an and
E:R—>Z,
the following statements hold:

(0) a(0) = B(0) = y(0) = $(0) = w(0) = £(0) =0 if and only if the nearring R is
zero-symmetric;

(1) a(a) =0, pa=1, y(@ =0, ¢(c) =0, y(c)=0 and g(c) =1;

)
(2) a(xy) = xa(y) + a(X)B(y) + d(X)y(y) + (XX, [a ) ] + o (X)X (y)B(Y) +
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B(y) )
+ a(x)ﬁ(x)[ ) ] + X0(X)au(y)y(y) + BX)O(X)B(Y)v(Y) + <1>(x)\u(x)[y ) ])lo"“‘l ;

(3) B(xy) = xpa(y) + BOX)B(Y) + w(X)r(¥) ;
(4) v(xy) = Xa(y) + y(x)B(y) + E(X)r(Y);

o(y)
(5) d(xy) = x10(y) + a(X)w(y) + d(X)&(y) + (xlxz[ ) ]+ (X)X, 0(Y)w(y) +

) )
s a(X)B(X)[W Zy ] + X0000()EW) + PO (YY) + by (x)f’zy ])pml ;

(6) wixy) = X20(y) + BO)w(Y) + w(X)E(Y) ;
(7) &(xy) = X0(y) + v (X)w(y) + E(X)E(Y) -

Proof. By the left distributive law, we have

Xy = (Xa)y; + (xXb)y, + (Xc)y; = (ax;, + bX, + cX3)y; +

+ (@a(x) + bB(x) + cy(X))y, + (@d(x) + by (x) + c5(x))ys.

Furthermore, Lemma 5 implies that

and

Thus

Y1 _
(@x; +bx; +cX3)y; = aXl(lez[ 5 ] P™ 1) + bXoyy + CXaYs,),

aa(x)(y, + ﬁ(X)[);l] P™ ) + bB(X)y; + CY(X)Y,)
Y
(@d(x) +by(x) + c&(x))ys = ad(x)(ys + \V(X)£ 23 ] P™) + by(X)ys + CE(X)ys.

Yy y
Xy = axy(y; + X, [ ;J P 1) +aa(X)(y, + B(X) [ 21] P+ Xoy,p™ ) +
Yy
+ by + B(X)Y,) + ad(X)(ys + \V(X)[ ;j P ) + by (X)y; + COGY; +

£ 109Y, + E60YS) = 8k, + 3% (3 o™ + a0y, +

©xyop™ + B00[ ¥ [P + 20000y, + wo[ % [P+
+ (%Y1 + BOYY2)P™ ) + b(xay; + B()Y,) +by(X)ys + c(Xay; + ¥(X)Y, +

Y1
+E(X)Y3) = a(Xyy; + X % [ 5 J P + aa(X)(y, + X Y1 Yo p™ T +

Y Y
+ B(X)[ 22] P ) + a(@(xX)y; + ¢(X)W(X)[ ;j P )L+
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+ Xzylpm_l + B(X)Y2pm_1) +b(Xy; + B(X)Y2) + by(X)y; +c(Xzy; +

y
+7(X)Y, + E(X)Y3) = aly; + X% [ 21] pmt) + aa(X)(y, +
y.
+ XY Y,p" T+ B(x)( ;J P ) + a(d(X)ys + X0(X)y1Ysp™ Tt +

y
+ BO)OX)Y,ysp™ + ¢(X)w(x)( 23] p™) + bOgy; +

+BX)Y2) + by(X)y; + c(X3y; + Y(X)Y, + &(X)Y3)-
Finally,

V% Y.
@0GQY; + a(X)Ys + QY3 + (9% [ 21] + AWy, + a(X)B(X)[ ;j +

y.
+ %0(X)Y1Y3 + BX)(X)Y2 Y3 + ¢(X)\v(><)( 23] pm )+

+Db0GY; + BX)Y, + w(X)ys) + C(XsYy + v(X)Yz + E(X)Y3).
Since 0-a=a-0=0, it follows that R is a zero-symmetric nearring if and
only if 0=0-b = aa(0) + bp(0) + cy(0) and 0 =0-c = ad(0) + by(0) + c£(0) . Equiva-

lently we have o(0)=0(modp™), 0<xy<pX, ¥(0)=0 (modp),
¢(0) =0 (mod p™), w(0) =0 (modp"), &(0) =0 (mod p*).
The associativity of multiplication in R implies that for all x, ye R

(xy)b =x(yb) 1)
and
(xy)e =x(yc). 2
According to xb = aa(x) + bp(x) + cy(x) , we obtain
(xy)b = ac(xy) + bB(xy) + cy(xy)  3)
and yb = aa(y) + bB(y) + cy(y) . Substituting the last equation to the right part of
equality 1), we also have

)
X(yb) = a(x;au(y) + a(X)B(Y) + d(X)y(Y) + (X%, (a ) j + a(X)x0(y)B(Y) +

B(Y)

+ OL(X)B(X)( )

J + Xa0(X)ay)y(y) + BBy (v) +

)
+ 0(X)w(X) [y ) J)pml) +b(%0(y) + BOOB(Y) + w(X)y (¥)) +

+ c(Xza(y) + v(X)BY) + EX)r(Y)). 4)

Since equality 1) implies the congruence of the corresponding coefficients
in formulas 3) and 4), we obtain statements (2)—(4).

v)
a(xy) = xa(y) + a(X)B(Y) + ¢(X)y(Y) + (X%, (a 5 J + a(X)xay)B(y) +
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B(y) )
+ a(X)B(X)( ) j +X%0(X)a(Y)y(y) + BEGB(Y)y (Y) + 0(X)w (><)(y2 ])loml ;

Bxy) = X;a(y) + BO)B(Y) + w (X)W (¥);
Y(Xy) = Xp0/y) + y(X)B(Y) + E(X)v(y).
Next, according to ¢(x) =0 (modp™) instead of y in equality 2), we get

(xy)c = ad(xy) + by (xy) + c&(xy) 5)

and yc = ap(y) + by(y) + c&(y) . Substituting the last equation to the right part of
equality 2), we also have

)
X(yc) = a(X;d(y) + a(X)w(y) + d(X)E(Y) + (XX, ((b ) J +
w(y)
+ (X)X oY)y () + a(X)B(X) ) + X,0(X)d(Y)E(Y) +

&(y)
+ B (Y)E(Y) + ¢(x)w(x)[ ) J)pm‘l) +b(9(y) +

+BOJw(Y) + w(X)E(Y)) + cX3(y) + v (X)w (y) + SX)E(Y)) - 6)

Finally, comparing the coefficients under a, b and c¢ in formulas 5) and
6), we derive statements (5)—(7) of the lemma.

y(x) =0(modp™),  w(Xy) = X0(y) + BO)W(Y) + w(X)E(y),
&(Xy) = Xa0(y) + v (X)w (y) + E(X)E(Y) - =

4. Local nearrings whose additive groups are isomorphic to F(p™,p", p*).
Let R be a local nearring whose additive group R* is isomorphic to
a(x) =0 (modp™). Then R* =(a)+(b)+(c) with elements a, b and c, where
a coincides with identity element of R and the relations y(x) =0 (mod p¥),
b-ab=a*P"", ca=ac and cbh=bc, where m>2, n>1 and k >1, are valid.
Moreover, each element &(x)=1(modpX) is uniquely written in the form
X = ax; +bx, + cx; with coefficients 0 < x; <p™, 0< X, <p" and 0 < x; < pX.

Through this section let R be a local nearring with |R:L|=p.

Consider a coincides with identity element of R, so that xa = ax = x for
each xeR, m=>n and m>k. Furthermore, for each xR there exist
integers  a(X), BX), y(X), X)), w(x) and gx) such that
xb=ao(X +bAX +c X and xc = ap(x) + by(x) + c&(x). It is clear that modulo

p™, p", pX and p™, p" p¥, respectively, these integers are uniquely deter-
mined by x and so some mappings a:R — me , B:R—> an, Yy:R-> Zpk,

$:R—> me , V:R—> an and £:R — Zpk are determined.
If R:L|=p, then L =(ap)+(b)+(c). Since R" =R\ L it follows that
R" = ax; +bx, +Cx3 | X; # 0 (mod p)
and x = ax; +bx, + cX; is invertible if and only if x; = 0 (modp). Since L is the
(R,R) -subgroup in R* by statement 1) of Lemma 3 it follows that xb e L and



On direct products of metacyclic Miller-Moreno P -groups and cyclic P -groups 129

xce L, hence ao(x) e L and ap(x) e L for each x € R. Thus a(x) =0 (mod p)
and ¢(x) =0 (modp). Therefore, for local nearrings R we have the same
multiplication as for nearrings with identity, i.e. multiplication (*). o

Lemma 7. Let X = ax; +bx, + X3 and y = ay,; + by, + cy,; be elements of R
and |[R:L|=p. If a coincides with identity element of R, then m>n, m >k

and multiplication (*) holds for the mappings from Lemma 6.
Next, we will give examples of local nearrings.

Lemma 8. Let R be a local nearring whose additive group of R* is iso-
morphic to F(p™,p",p¥), [R:L|=p, m>n and m>k. If x =ax, +bx, + CXs,
y=ay; +by, +cy; e R, then the mappings oc:R—)me, B:R—>an,
y:R—>Zpk, ¢:R—>me, w:R—)an and a:R—>Zpk can be the following:

»(X) =0 (modp™), w(X)=0(modp™), a(x) =0 (modp™),
1, if X, # 0 (mod p);

=0 (modp¥), £(x) =1 (mod p*),, B(x) = 1
y(X) =0 (mod p*), £(X) =1 (mod p*), B(X) {O, if X, =0 (mod p).

Proof. It is easy to check that the functions from the statement of the
lemma satisfy Lemma 7. m]
As a consequence of Lemma 8 we have the following result.

Theorem 1. For each odd prime p, m>n and m >k there exists a local
nearring R whose additive group R* is isomorphic to F(p™,p",pX).
Let [n,i] be the i-th group of order n in the SmallGroups library in

GAP [3].
Example 1. Let G = (Cyy xC5)x G [625,13]. If X =ax; +bx, +cx; and
y=ay, +by,+cy; e G and (G,+,7) is a local nearring, then as above “-” can

be the following multiplication:
Y3
Xy =a(Xy; + BX)X %, [ 5 J* 5)+ b0, Y, +B(X)Y2) + %Y1 + ¥s),

1, if x; # 0 (mod5);

0, if X, =0 (mod5).

The following computer program verified that the nearring obtained in
Example 1 is indeed a local nearring.

G = SmallGroup(625,13);
gen := MinimalGeneratingSet(G);
List(gen, Order);

where B(x) = {

a = gen[l];
b :=gen[2];
c:=gen[3];

mMulGR = function(x,y)
local x1,%x2,%x3,y1,y2,y3;
for x1in [0.24] do

for x2 in [0.4] do

for x3in [0.4] do
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for ylin [0.24] do
for y2 in [0.4] do
for y3in [0.4] do
if x=aX*p*2*c*® and y = a¥* *bY? *¢¥2 then return
(XL YL+x1*x2*Binomial (y12)*5) * 1y(x2*y1+y2) % C(x3*y1+y3); fi:
od; od; od; od; od; od; end;
n = ExplicitMultiplicationNearRingNC(G, mulGR);
M = MultiplicationTable(n);
muR = NearRingMultiplicationByOperationTable(G, M, AsSortedList(G));
n = ExplicitMultiplicationNearRing(G, muR);
IsLocalNearRing(n);

From [1], [7] and [6] we have the following humber of all hon-isomorphic
zero-symmetric local nearrings on the group G from Example 1.

IdGroup (R*) StructureDescription (R*) n(R")
[625, 13] (Cpo 4G ) Cs 630

1. Aichinger E., Binder F., Ecker J., Mayr P., Noebauer C. SONATA — System of Near-
rings and their Applications, Version 2.9.6, Johannes Kepler Universitit, Linz, 2022.
— https://gap-packages.github.io/sonata/

2. Amberg B., Hubert P., and Sysak Ya. Local nearrings with dihedral multiplicative
group // J. Algebra. — 2004. — 273, No. 2. — P. 700—717.
— https://doi.org/10.1016/j.jalgebra.2003.10.007.

3. GAP Group, GAP — Groups, Algorithms, Programming, Version 4.13.0 (2024),
https://www.gap-system.org

4. Meldrum J. D. P. Near-rings and their links with groups. — London: Pitman Publishing
Limited, 1985. — 273 p.

5. Pilz G. Near-rings. The theory and its applications. — North Holland, Amsterdam,
1977.

6. Raievska I., Raievska M., Sysak Y. DatabaseEndom625. Version v0.2 (2023). [Data set].
Zenodo. — https://doi.org/10.5281/zenodo.7613145

7. Raievska I. Yu., Raievska M. Yu., Sysak Ya. P. LocalNR, Package of local nearrings,
Version 1.0.4 (2024) (GAP package). https://gap-packages.github.io/LocalNR

8. Raievska I. Yu., Sysak Ya. P. Finite local nearrings on metacyclic Miller—Moreno
p -groups // Algebra Discrete Math. — 2012. — 13, No. 1. — P. 111-127.

9. Redei L. Das “schiefe Produkt” in der Gruppentheorie mit Anwendung auf die
endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Unter-
gruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehdren (in
German) // Comment. Math. Helv. — 1947. — 20. — P. 225—264.

— https://doi.org/10.1007/BF02568131.

NPO NPAMI AOBYTKUA METALUMKNIYHUX p -FPYN MJINEPA-MOPEHO TA LMKINIYHUX
p -TPYN K AQUTUBHUX M'PYN NOKANbHUX MAVXE-KINELIb

Cxinuenna epyna Hasusaemuves epynoto Misnepa—Mopero, axwo sona Heabenesa i 8Ci il
enacHi midepynu € abenesumu. Poseaadaromuves npami 0odymxu P -epyn Misepa—

Mopeno ma yuxaiunux P -2pyn ax adumusHux 2pyn matdce-Kireydb 3 odurHuuer ma
AOKAABHUX Mmatidce-Kineyb.
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