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CLASSIFICATION OF MINIMAL AND MAXIMAL NON-SERIAL POSITIVE
POSETS

The finite posets with positive Tits quadratic form, which are called positive, are
analogs of Dynkin diagrams. They were first described in 2005 by the authors. In
particular, according to this result such a poset can be serial if it belongs to an
infinite strictly increasing sequence of positive posets, or non-serial otherwise. In the
following years the authors studied various classes of posets that are related to the
Tits quadratic form. In this paper, positive posets are studied in more detail, namely
in relation to their ordering. The main theorems classify all non-serial positive posets
that are minimal or maximal. The case of serial posets are trivial: there are no
maximal posets and all minimal posets are one-element. The number of non-serial
minimal posets up to isomorphism and duality is 10, and the number of maximal
ones is 66 (out of a total 108).

Keywords: Tits quadratic form, positive poset, serial and non-serial poset, minimal and
maximal non-serial poset, Dynkin diagram.

Introduction. In [9] P. Gabriel introduced the notion of representation of
a finite quiver Q =(Q,,Q;) (with the set of vertices Qo and the set of arrows

Qi) over a field k and defined a quadratic form q, : Z"—>Z,n = |Qo|, called by
him the Tits quadratic form of the quiver Q:

Uo (2) = 0o (21n20) = 2 2 = 3 77,
ieQo i—>j
where i—j runs through the set Q1. He proved that the quiver Q has finite
representation type if and only if its Tits form is positive. He also received a
criterion of finiteness representation type in terms of the quivers themselves.
Namely in the main case, when Q is connected, it has finite type if and only if
it is a Dynkin diagram (if one does not take into account the orientation of
arrows).
In [8], Yu. A. Drozd showed that a poset 0 ¢ S has finite representation
type if and only if its Tits quadratic form

0s(2)=25+2. 2+ D zzj-2) 7.
ieS i<j,i,jeS ieS

is weakly positive, i.e. takes positive value on any nonzero vector with non-
negative coordinates (representations of posets were introduced by L. A. Na-
zarova and A. V. Roiter [11]). A criterion of finiteness type in terms of the
posets themselves was obtained by M. M. Kleiner [10]. Namely, a poset S is of
finite representation type if and only if it does not contain subsets of the form
Ki=(1, 1, 1, 1), Ko=(2, 2, 2), K3=(1, 3, 3), Ka=(1, 2, 5); and Ks=(N, 4).

For posets, in contrast to quivers the sets of posets with weakly positive
and with positive Tits quadratic form do not coincide. Since the posets with
positive Tits form, which are called positive, are analogs of the Dynkin diagrams,
their study is an important problem. Such posets were studied by the authors
(from different points of view) in many papers (see e.g. [2—7]). Note that the
paper [3] is practically inaccessible, but its main ideas and many results are
outlined in the first part of [1].
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In this paper, positive posets are studied in more detail. The main theorems
classified all non-serial positive posets that are minimal or maximal in the set
of all non-serial positive ones. The case of serial posets are trivial (there are no
maximal posets and all minimal posets are one-element).

1. The main result. Throughout the paper all posets are finite of order
n>0 (without an element 0). We consider only complete subposets (i.e. with
partial orders induced by those on the posets). One-element subsets are
identified with the elements themselves. The dual poset for S is denoted by
Sop) i.e. SOP and S are equal as usual sets, and x<y in S°P if and only if x>y in
S). Posets T and S are called anti-isomorphic if T and S°P are isomorphic.

A finite poset S is called positive if so is its Tits quadratic form qg(z) (see

Introduction). They were classified in [3]. According to this result such a poset
can be both serial, when it belongs to an infinite strictly increasing sequence of
positive posets, or non-serial, when otherwise.

The following two theorems are classified all non-serial positive posets S
that are minimal (i.e. do not contain proper non-serial complete subposets) or
maxinal (i.e. are not contained in other non-serial positive posets as proper
complete subposets).

Theorem 1. Let S be a non-serial positive poset. Then the following
conditions are equivalent:

(1) S is minimal;

(2) S is of order 5;

(3) S is isomorphic or anti-isomorphic to a poset from Theorem 6 (see
below).

Theorem 2. Let S be a non-serial positive poset. Then the following
conditions are equivalent:

(1) S is maximal,

(2) S is of order 7;

(3) S is isomorphic or anti-isomorphic to a poset from Theorem 8 (see
below).

For a better understanding these theorems see below Theorem 5.

A subposet X of a poset S is called lower (respectively, upper) if xXe X
whenever X <y (resp. X > y) and y e X. We call a subposet extremal if it is

lower or upper.
From the proof of Theorem 2 it will be followed the next theorem.

Theorem 3. Let n,m {5,6,7} and n < m. Then for any non-serial positive

poset S of order n, there exists a non-serial positive poset T of order m such that
S is isomorphic to a subposet of T. One can assumed that the image of
isomorphism is an exstremal subposet

Finally, we have the following theorem which follows from Theorem 3 and
the classifying the serial positive posets [3, 5].

Theorem 4. Let m be a natural number. For a non-maximal positive poset
S of order m, there exists a positive poset T of order m+1 such that S is
isomorphic to a subposet of T.

2. Non-serial positive posets. The positive posets were classified by the
authors in [3]. Such a poset can be serial or non-serial (see Section 1).

Theorem 5. Any positive poset of order n <5 or n > 7 is serial.

In the case of serial posets the answer was obtained on the set-theoretic
language (more precisely, in the terms of various sums of chains and almost
chains (see also [1] and [5]). In the case of non-serial posets the answer was
obtained in the terms of Hasse diagrams. In this section we indicate the
classification of non-serial positive posets on the set-theoretic language (in
terms of sums of chains) following the paper [6].

For subposets X,Y of a poset S, let us denote by X IIY their direct sum

(ie. such union that elements xe X and yeY are incomparable). From
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Dilworth's theorem it follows that any poset can be represented in the form
", X; with X; being chains and additional relations y<z for y and z belonging
to different components. Note that additional relations are indicated up to
transitivity. By A,,B;,C, are denoted, respectively, the chains g <..<a,,
b <..<by, ¢ <..<¢.

Now we formulate three theorems which classify the non-serial positive
posets and which are a set-theoretic reformulation of our classification of non-
serial positive posets in [3].

By m in parentheses is denoted the corresponding number from [3], and
m° means that we must take the poset dual to that with number m. Partial

order relations are denoted by =.
Theorem 6. The non-serial posets of order 5 are exhausted, up to
isomorphism and duality, by the following 10 posets:

NSP5.1(3) A, LIB;, & <b,;

NSP5.2(4) A, LIB;, @, <by;

NSP53(5) A,IIB;, a <h,, a,<b;;
NSP54(1) A lIB,, a <by;

NSP55(2) A,1IB;, a <b;, a, <bs;
NSP56(46) A, LIB, [IC,;

NSP5.7(48) A LIB,LIC,, b <c,;
NSP58(49) A IIB,1IC,, a <b,, b <cy;
NSP5.9(47) A LB LIC;, by <cj;
NSP510(50) A, LIB,1IC,, a <bs;, b <c,.

Theorem 7. The non-serial

posets of order 6 are exhausted, up

to

isomorphism and duality, by the following 32 posets:

NSP6.1(12) A, LIB;, a; <b,;

NSP6.2(20) A;LIB;, a <h,, a,<bs;
NSP6.3(10) A,1IB,, a; <by;

NSP64(11) A,1IB,, a <by;

NSP65(13) A,LIB,, a, <b,;

NSP6.6(14) A, LIB,, a; <b,, a, <b;s;
NSP6.7(16) A, LIB,, a; <b,, a, <b,;
NSP6.8(18) A,I1IB,, a; <b;, a, <by;
NSP6.9(19°) AgLIB;, a <by, ag <by;
NSP6.10(14%) A LIB;, a, <b,, a5 <by;
NSP6.11(15) AglIB;, a <b;, a,<hby, a;<b;;
NSP6.12(6) A LIBs, & <bs;

NSP6.13(8) A LIBs, a <by;

NSP6.14(7) A, 1IB,, a <b, a,<bs;
NSP6.15(9) A,1IB,, a <b;, a; <b,;
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NSP6.16(58)
NSP6.17(66)
NSP6.18(51)
NSP6.19(55)
NSP6.20(56)
NSP6.21(57)
NSP6.22(60)
NSP6.23(61)
NSP6.24(62)
NSP6.25(63)
NSP6.26(59)
NSP6.27(67)
NSP6.28(52)
NSP6.29(54)
NSP6.30(64)
NSP6.31(64)
NSP6.32(53)

Theorem 8. The non-serial

A 1IB, 1IC,,
A, 11B, 111G,
A LB, IICs;
A DB, IIG;,
A DB, [IG;,
A 1B, IICs,
A 1IB, IICs,
A 1IB, IIC;,
A LB LIG,,
A 1IB; 1IG,,
A 1IB, LIGs,
A TIB; 1IGC,,
A LTB ITC,,
A 1IB, 1IC,,
A 1IB,IIC,
A IIB,IIC,
A 1IB, IICs,

b <cy;

a; < b,,

b <cy;
b <cg;
b <cg;
a; <b,,
a; < by,
a; < bs,
a; < bs,
b, <c,,
a; < bs,
b, < c5;
b, <cy;
a; <bg,
a; < by,

b <¢c,

by <y,

b, <c,;
b, <c3;
b <¢c;
b, <cy;
b, < cs;

b <¢, b=<cy

by <¢;
b <¢;

b, < c5.

posets of order 7 are exhausted, up

isomorphism and duality, by the following 66 posets:

NSP7.1(29) A 1IB,, a <bs;

NSP7.2(30) A;LIB,, a, <by;

NSP7.3(42) A;1IB,, a; <b,, a;<by;
NSP7.4(43) AsllB,, a; <bs, a, <by;
NSP7.5(44) AsllB,, a; <bs, a, <by;
NSP7.6(45) AgllB,, a; <hby, a,<b;, ag<bhy;
NSP7.7(26) A, 1IBs, a <by;

NSP7.8(27) A, LIBs, & <by;

NSP7.9(28) A,1IB;, a, <bs;

NSP7.10(31) A, LIB;, a; <b,, a, <bs;
NSP7.11(33) A, LIBs;, a; <b,, a, <by;
NSP7.12(36) A,LIBs, a <b,, a, <bs;
NSP7.13(38) A,LIBs, a <b;, a, <bs;
NSP7.14(40) A,IIBs, a <b,, a, <bs;
NSP7.15(35%) AglIB,, @, <b,, as<bs;
NSP7.16(41%) A,LIB;, a <b, —a, <by;
NSP7.17(39%) A,LIB,, &, <b,, a, <b;;

to
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NSP7.18(37%) A, LIB;, a;<b,, a, <by;

NSP7.19(32) A;1IB,;, a <b;, a,<b,, a;<bs;
NSP720(34) A;1IB,, a <b;, a;<b,, az=<by;
NSP7.21(21) A, LIBs, & <by;

NSP7.22(24) A 1IBg, & <bs;

NSP7.23(22) A,LIBs, a, <b;, a,<b;;
NSP7.24(25) A,1IBs, a <b;, a,<bs;
NSP7.25(23) A;1IB,, a, <b, a3 <bs;
NSP7.26(75) A LIB;1IC;, by <cy;

NSP7.27(78) A,LIB,1IC;, by <cy;

NSP7.28(79) ALIB,1IC;, b <cy;

NSP7.29(80) A,IIB,IIC,, b <cy;

NSP730(89) A LIB;IIC;, a; <b,, b <cs;
NSP731(91) A IIB;IIC;, & <bs, by <cy;
NSP7.32(91) A LIB;LIC;, a; <bs, b <cs;
NSP7.33(99) A, LIB,1IC;, a <b,, by <cy;
NSP7.34(100) A, LIB,1IC;, a <b,, b <cs;
NSP7.35(101) A, IIB;IIC,, a; <b;, b <cy;
NSP7.36(102) A, LIB;1IC,, a, <bs, by <c;
NSP7.37(85) A LIB;LIC;, by <c,, by <cg;
NSP7.38(86) A,IIB,1IC;, by <c,, b, <cs;
NSP7.39(108) A, IIB;1IC,, a, <bs, by <c;, by <cy;
NSP7.40(107%°) A, LIB;1IC,, & <b,, & <b;, b <¢;
NSP7.41(68) A 1IB,1IC,;

NSP7.42(72) A LIB,1IC,, b, <cy;

NSP7.43(73) A LIB,IIC,, b, <c;;

NSP7.44(74) A 1IB,IIC,, b, <cy;

NSP7.45(76) A, 1IB,1IC,, b, <c5;

NSP7.46(87) A LIB,LIC,, a; <b,, b <cy;
NSP7.47(88) A LIB,1IC,, a <hb,, b <cy;
NSP7.48(90) A IIB;IIC;, a <b;, b <cj;
NSP7.49(93) A 1IB,IIC,, a <bh;, b <c;
NSP7.50(94) A IIB,IIC,, & <bs, by <cy;
NSP7.51(95) A IIB,IIC,, a <b,, by <cy;
NSP752(81) A IIB,1IC,, by <c, by <cs;
NSP753(83) A LIB,1IC,, b <c,, b, <c,;
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NSP7.54(84%) A LIB;LIC;, b, <cp, b, <
NSP7.55(77) A, LIB,LIC;, b <cy, b, <cs;
NSP756(103) A LIB;1IC;, a; <b;, b <c, by <cy;
NSP757(104) A LIB;1IC;, a <bs, by <c, by, <cy;

NSP758(105) A IIB,IIC,, a <b,, by <c;, by <cy;

NSP7.59(106) A, 1IB,IIC,, a <b,, by, <c, by<cy;

(
(
(
(
(
(

NSP7.60(82) A IIB;1IC;, by <c, by =<cy,, by=<cs;

NSP7.61(69) A 1IB, IICs, by <cy;

NSP7.62(71) A LB, IIC;, b <cs;

NSP7.63(96) A LIBsLIC;, a <b;, by <c;

NSP7.64(96) A LIB;1IC,, a <b,, b <c;

NSP7.65(96) A LIB;1IC;, a <bs, by <c;

NSP7.66(70) A LIB,LIC,, b <c, b, <c.

3. Proof of Theorem 1. The implication (3) = (2) is obvious and (2) = (1)

follows from Theorem 5. The implication (2) = (3) follows from Theorem 6.
Obviously, to complete the proof of the theorem it is sufficient to prove
the implication (1) = (2). Since S and S°" are simultaneously minimal or not

minimal all further reasoning can be carried out with precision up to duality.
So, in essence, we need to show that all posets indicated in Theorems 7
and 8 are not minimal. This follows from the following easily verifiable facts:

(a.1) each of the posets 6.1-6.2; 64—6.9; 6.13; 6.15—6.16; 6.26—6.27; 6.31—
6.32 of Theorem 7 without the elementb,; is isomorphic or anti-isomorphic to
one of the posets from Theorem 6;

(a.2) each of the posets 6.6; 610—6.11; 6.14; 6.21-6.22; 6.24; 6.28 of
Theorem 7 without the element a; is isomorphic or anti-isomorphic to one of
the posets from Theorem 6;

(a.3) each of the posets 6.17—6.20; 6.23; 6.25; 6.29—6.30 of Theorem 7
without the element c; is isomorphic or anti-isomorphic to one of the posets
from Theorem 6;

(a4) each of the posets 6.3; 6.12 of Theorem 7 without the element b, is
isomorphic or anti-isomorphic to one of the posets from Theorem 6;

(b.1) each of the posets 7.1-7.6; 7.8—7.9; 7.11-7.14; 7.16—7.17; 7.20; 7.22;
7.24; 7.26—7.27; 7.29; 7.35—7.39; 7.51—7.60; 7.64—7.66 of Theorem 8 without the
element b, is isomorphic or anti-isomorphic to one of the posets from
Theorem 7,

(b.2) each of the posets 7.10; 7.15; 7.18—7.19; 7.23; 7.25; 7.28; 7.45—7.46;
748; 761 of Theorem 8 without the element a, is isomorphic or anti-
isomorphic to one of the posets from Theorem 7;

(b.3) each of the posets 7.30—7.24; 7.40—7.44; 747; 7.49—7.50; 7.62—7.63 of
Theorem 8 without the element ¢, is isomorphic or anti-isomorphic to one of
the posets from Theorem 7;
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(b.4) each of the posets 7.7; 7.21 of Theorem 8 without the element b, is

isomorphic or anti-isomorphic to one of the posets from Theorem 7.
Theorem 1 is proved.

4. Proof of Theorem 2. The implication (3) = (2) is obvious and (2) = (1)
follows from Theorem 5. The implication (2) = (3) follows from Theorem 6.

Obviously, to complete the proof of the theorem, it is sufficient to prove
the implication (1) = (2). Since S and S°" are simultaneously minimal or not

minimal, all further reasoning can be carried out with precision up to duality.
So in essence,we need to show that all posets indicated in Theorems 6 and
7 are not maximal. This follows from the following easily verifiable facts:

(c1) 51=7.7\{b,.bs}, 52=736\{c,C}, 53 =7.10\{b,,bs},
54=721\{bg,bs}, 55=723\{bs,bs}, 56=741\{c;,c,}, 57=729\{a,,a5},
58=7.46\{c;,¢;}, 59=7.61\{c;,C5}, 510=7.63\{b,,bs};

(c2) 61=72%\{b}, 62=76\{b,}, 63=77\{bs}, 64=71\{a},
6.5=7.23\{as}, 6.6 =7.11\ {bs}, 6.7=73\{bs}, 6.8=74\{az},
69=73%"\{b}, 610=715\{b,}, 611=719\{b,}, 612=7.21\{by},
613=78\{a,}, 614=723\{b}, 615=716®\{b}, 6.16=729\{a;},
617=733\{c;}, 618=741\{c,}, 619=742\{c,}, 6.20=7.32\{b;},
621=745\{c,}, 622=746\{c,}, 623=733\{a,}, 6.24=748\{c},
625=7510\{b,}, 626=752\{c,}, 627=756\{c;}, 628=761\{cs},

6.29=747\{b,}, 630=7.63\{bs}, 631=7.64\{bs}, 632=7.66\{c,}.

Theorem 2 is proved.
5. Proof of Theorem 3. The case n = 5, m = 7 follows from (c.1) and the
case n = 6, m = 7 from (c.2) (see the proof of Theorem 2).

The case n = 5, m = 6 follows from the isomorphisms 5.1=63\{b,};
52=61"\{b}; 53=66\{b,}; 54 =612\ {bs} ; 55=6.14\{b,};
5.6 =6.18\{cs}; 57=6.16\{a,}; 58=6.22\{c;}; 59=6.28\{c,};

5.10 = 6.30\ {b,} which in turn follows from (c.1).

Obviously, inany casen =5 m=7,n=6,m=7,n=5 m = 6 all right
parts of isomorphisms are lower subposets in the corresponding positive posets
of order 7, 7, 6, respectively.

Note that S=T imply S° =T°%. Hence if we will repeat previous
reasoning for all posets dual to those from Theorems 6, 7 and 8, we obtain that
the right parts of isomorphisms are upper subposets.

Theorem 3 is proved.
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KNACU®IKALIISA MIHIMANIBHUX | MAKCUMATNbHUX HECEPIMHUX AOOATHUX YACTKOBO
BMNOPAOKOBAHUX MHOXWH

Cxinuenni wacmxoeo 8nopaodKosaHi MHOMCUHU 3 0o0amHoto Keadpamuuroro Hopmoro
Timca, axi Haszusaromuves 0odamuumu, € anarozamu Oiazpam Juukina. Bonu enepwe
onucani 8 2005 p. asmopamu. 3a Yum pe3yabMamMom MaKa MHONCUHA MOdce OYymu
CepliHOo0, AKUW,0 B0HA HANEHUMDb HECKIHUeHHIU CmpPozo 3pocmaroniti nmocaidogHocmi
dodamHuxr wacmKoeo noPsOKOBAHUX MHOMCUH, aOO HecepitiHol, AKWO UYe He Mmax.
YV nacmynui poxu asmopamu OYau BueueHi PI3HI KAACU UACTNKOBO B8NOPAIKOBAHUL
MHONUCUH, AKTI noes'azani 3 keadpamuunoro @gopmoro Timca. ¥ yiti cmammi dodamui
4acmKo8o 8nOPA0K0BAHT MHOMCUHU BUBHLAOMBCA OiAbUL 0emanbHO, a came 8i10HOCHO TXHBOL
enopadxosanocmi. OcrosHi meopemu KaacuPixyoms 8ci Hecepilini 0odamui uacmroeo
8NOPAOKOBAHT MHONCUHU, AKL € MAKCUMALDHUMU AO0 MIHIMAAbHUMU. Bunadox cepitinux
4acmrogo 6NnopPAOKOBAHUX MHONCUH € MPUBLAALLHUM. MAKCUMAABHUX MHOMCUH HeMAE
83azanl, a 6Ci MIHIMAABHI € O00HoesemenmHumu. Kinvkicms HecepliiHux MIHIMAALHUX
4acmro8o 8NOPAOKOBAHUX MHONCUH 3 mouHicmio 0o i3omopdiamy ma OyaavbHocmMmi
cmanosumd 10, a maxcumarvrux — 66 (i3 3azanvnoi Kiavkocms 108).

Kaiouoei caosa: keadpamua ggopma Timea, dodamua vacmxoso 6nopadkosanHa MHONUHA,
ceplint 1 HecepiliHl 4acmKo8o 8NOPAOK08AHT MHOHCUHU, MIHIMANGHT T MAKCUMAALHT
HecepiliHi 4acmKoeo 8nopAadKo8aHt MHOHCUHU, Olazpama JuHKIHA.
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