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MODELING THE STRESS STATE OF A SEDIMENT BASIN IN A SUBDUCTION 
ZONE USING S. P. TIMOSHENKO'S THIN PLATE THEORY 

 
A mathematical model of the stress field in sedimentary layers within a subduction 
zone is proposed, accounting for lateral displacements, gravity, and frictional forces 
at the interface with the basement. The necessary assumptions and limitations of 
the model are discussed, enabling the application of thin-plate theory based on S. P. 
Tymoshenko's hypotheses. The stress and displacement fields are calculated, and the 
distribution of principal compressive stress in the plane-strain state is analyzed. 
Using the Coulomb–Mohr failure criterion, two sets of probable slip lines are 
constructed, predicting the orientation of thrust faults. These predictions closely 
correspond to typical thrust structures, particularly those observed in the Ukrainian 
Carpathians. 

Keywords: mathematical modeling in geology, plate theory, stresses in rocks, thrust 
structures. 

 
Introduction. Studying the stress state at the time of regional and local 

geological structure formation is crucial for understanding their characterristics 
in greater detail. The study of deformations in the upper lithosphere involves 
not only classical geological and geophysical approaches but also modern 
methods incorporating the mathematical framework of continuum mechanics 
[e.g. 11, 17, 20, 22–24]. Mathematical and computer modeling hold significant 
potential for testing both existing and emerging geological hypotheses 
regarding the formation of structures and the thermodynamic processes within 
the Earth's crust. Current issues include the geodynamic conditions for the 
formation of thrust structures, which are common in many mobile areas of the 
crust, in particular in the Carpathian region [4, 10, 21]. While field tectono-
physics methods enable the reconstruction of paleotectonic stresses based on 
empirical data – such as crack orientations and slip lines – assuming the 
statistical nature of the measurements [3, 20], an accurate mathematical model 
provides further insight by clarifying the influence of individual factors and 
tracing the evolution of the stress-strain state under varying boundary 
conditions. The initial stages of compression in a geosynclinal sedimentary basin, 
driven by the subduction-related thrusting of its basement, are of particular 
interest. This geotectonic interaction likely plays a key role in the formation of 
fault zones, which can subsequently evolve into thrusts. 

The work aims to develop a relatively simple mathematical model, based 
on the S. P. Tymoshenko plate theory, to analyze stress fields within a 
sedimentary layer affected by basement subduction. The objectives include 
adapting continuum mechanics equations for stress-strain state calculations, 
defining the geometric dimensions and physical-mechanical properties of rocks 
and massifs, and obtaining and analyzing numerical results. A specific focus is 
on addressing the little-studied factor of sliding line formation under 
compression, which may eventually lead to thrust-type faults. 

1. Hypotheses and mathematical formulation of the problem. The upper 
layers of the lithosphere are often treated as a solid body with distinct elastic 
properties. Additionally, gravity and friction forces play critical roles in 
influencing and defining the nature of mechanical interactions between 
geological bodies. 
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Quantitative calculations based on the theory of elasticity have a well-
established history and substantial results [2, 9, 17], yet this approach remains 
relevant today [12, 14, 18,]. However, rheologically more complex models that 
account for viscoplastic deformations, temperature, chemical, and phase 
transformations typically require numerical methods and advanced computer 
modeling [e.g., 5, 6, 15]. 

The choice of approach should be guided by the specific characteristics of 
the geological object under study, its spatial and temporal context on a 
geological time scale, the availability of empirical data, and the interpretability 
of the results. 

The study of the mechanisms behind the formation of fold-thrust struc-
tures is a significant and productive area in the development of mathematical 
modeling [1, 8]. A key approach to explaining the formation of fault zones is the 
'critical thrust wedge' model (also known as the Mohr–Coulomb wedge model) 
[7, 22, 19], which incorporates the effects of frictional forces and cohesive 
strength of rocks along inclined contacts or décollement horizons. 

 

 
 a) 

       
b)           c) 

Fig. 1. Plane deformation of a layered sedimentary rock element (2D model) under com-
pression caused by basement moving:  
a) Geometric dimensions and loading scheme.  
b) Forces acting on the medium's element in the section.  
c) Plate analogy based on the S. P. Tymoshenko's theory framework 

 
To substantiate our model, let us define the data and hypotheses. A 

computational model represents a balance between accurately approximating 
reality and introducing necessary simplifications. These simplifications allow the 
focus to remain on the most critical factors influencing a specific process, while 
secondary factors are neglected to derive analytical relationships or obtain 
numerical results suitable for analysis and interpretation. 

For the problem described above, several assumptions must be made 
regarding the stress-strain state, geometric dimensions, and loading conditions: 

 Linear Elasticity Assumption: The deformation process is modeled 
within the framework of linear elasticity theory, which is appropriate 
for processes dominated by brittle failure, such as crack and fault 
formation. 

 Two-Dimensional Approximation: For sufficiently elongated geological 
structures, the three-dimensional problem is simplified to a two-
dimensional vertical section. This simplification assumes that all cross-
sections remain planar and undergo deformation only within their 
planes (Fig. 1a, b). 

 Layer Geometry and Plate Theory Analogy: The sedimentary layer's 
length is assumed to be significantly greater than its thickness. This 
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permits the use of averaged values and assumptions about the 
displacement and stress through-the-thickness distributions, similar to 
the approach in plate theory (Fig. 1c). 

 Layered Structure Assumption: The real layered structure of the 
sedimentary rocks is an orthotropic or transversely isotropic material 
with effective elastic properties and an average rock density. 

 Lithostatic Pressure Balance: The lithostatic pressure  2p h g  made 
by the sedimentary layer in contact with the foundation, where g  is 
the gravitational acceleration, is balanced by the reaction forces from 
the foundation. Additionally, we neglect the deformation due to 
transverse compression and rock compaction. 

 Compression Mechanism: Lateral compression of the sedimentary layer 
is induced by the foundation moving, modeled by a rigid body. The 
tangential forces are transmitted through the friction mechanism, with 
the coefficient of mu sliding friction denoted. The left edge of the 
sedimentary basin remains stationary while undergoing significant 
lateral compression strains. 

 Sedimentary Layer Movement: At a certain distance L  from the basin 
slope, the entire sedimentary layer begins to move together with the 
underlying platform, without significant deformation. Therefore, the 
influence of the right part of the sedimentary rocks on the compression 
of the left part can be neglected, allowing the calculation model to focus 
on a segment of the layer rather than the entire vertical section. 

Based on the aforementioned hypotheses, we formulate a system of 
equations for the mathematical model using the theory of thin plates as per  
S. P. Tymoshenko's framework, which accounts for transverse shear strains. 
Considering a plate of thickness 2h  and length L  in a rectangular coordinate 
system Oxz ,   ( ; ) [0; ] [ ; ]x z L h h , subjected to mass forces (lithostatic pressure) 

 2p h g  and, in the general case, tangential stresses on the surfaces  z h , 
the governing equations are expressed as follows: 

– equilibrium equations: 

         22 ( )dN
dx

,          12 ( )dM Q h h
dx

,  dQ
p

dx
; (1) 

– the elasticity law: 

 ( ) 2 duN x hE
dx

, 


32( )
3

dh EM x
dx

,    5( )
3 S
h dwQ x G

dx
; (2) 

– linear trough-the-thickness distributions: 

    ( , )U x z u z , ( , ) ( )W x z w x . (3) 

In this context (Fig. 3b): 
 ( )N x  and ( )Q x  represent the longitudinal and transverse forces, 

respectively. 
 ( )M x  denotes the bending moment. 

 ( )u x and ( )w x are the longitudinal and vertical displacements, respectively. 

 ( )x  is the rotation angle of a linear element normal to the middle surface 
of the plate. 

The elastic constants are denoted by   2/ (1 )E E , where E  is the 
averaged Young's modulus of the sedimentary rocks,   is Poisson's ratio, and 

SG  is the shear modulus, respectively. 

We assume that the upper surface ( z h ) of the sedimentary layer is 
stress-free: 
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    ( ) 0zz h ,    ( ) 0xz h ,  (4) 

and the lower surface (  z h ) is subjected to lithostatic pressure p  and 
tangential stresses arising from the friction mechanism, as described by 
Amonton's law [11]: 

      ( )zz h p ,         ( ) 2xz h p h g . (5) 

This model assumes linear, or quadratic thru-the-thickness distributions of 
compressive and shear stresses, respectively [16]. 

   
3

( ) 3 ( )
( , )

2 2
xx

N x M x
x z z

h h
,  

    
                 ( ) ( )

2 2 2zz
zz h z g z h
h h

, (6) 

 
              

   

2 2

2 2

3 ( ) 3 1( , ) 1
2 4 3 2xz
Q x z z zx z
h hh h

. 

A feature of this model is that it is statically determinate. At the right edge 
( x L ), it is assumed that ( ) 0N x , ( ) 0M x , and ( ) 0Q x , indicating the 
absence of additional force factors causing deformation in the sedimentary 
layer. For this edge, kinematic conditions are established to simulate the 
activation of the subduction process, driven by the mechanism of basement 
rocks sliding beneath the sedimentary basin, which is transmitted to the upper 
layer. 

Given that the basement is considered a completely rigid body, the model 
assumes no deflections (  0w ) and no transverse shear forces (  0Q ). The 
boundary conditions on the right incorporate a combination of displacements 
and rotations: 

  ( ) Lu L u ,      ( ) LL . (7) 

The calculation formulas for forces, and displacements are expressed as 
follows: 

       ( ) ( ) ( ) 0N x x L p L x ,  

    ( ) ( ) 0M x ph L x , 

 
      2 2( ) ( ) ( )

4 4L L
p

u x L x u L x u
hE hE

, (8) 

 
         2 2

2
( ) ( ) ( )

2 3
L L

hp p
x L x L x

D h E
. 

On the outer surfaces, following the linear distribution between the 
displacements of the upper and lower surfaces, we obtain: 

 
 

   
( ) ( )

( )
2

L L
L

U U
u L u ,  

 
 

    
( ) ( )

( )
2

L L
L

U U
L

h
. (9) 

It is reasonable to assume that   ( ) ( ) 0L LU U , indicating that, from the 
perspective of tectonic movement interpretation, the lower layers are “pulled” 
more intensively, as shown in Fig. 2. 
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Fig. 2. The displacements on the middle surface ( )u x  and the bottom/top surfaces ( )U , 
and ( )U  along the section, relatively. The bold line indicates the difference in the 
displacements of the upper layers of the sedimentary stratum relative to the lower 
layers 

 
2. Stress field analysis. A feature of such a model is that the stresses vary 

linearly with length and have the greatest value on the left edge, and its value 
depends only on the geometric parameters adopted in the model (length and 
thickness), as well as the averaged physical properties of the rocks (elastic 
moduli and density). We also note that the stresses in each of the vertical 
sections are the sum of the compressive and bending stresses. In addition to the 
components of the stress tensor, the structural analysis [17] includes the 
principal stresses  

           2 2
max,min 0,5( ) 0,25( )xx zz xx zz xz  (10) 

and the corresponding mutually perpendicular principal axes 1  and 2 . These 
are related by the equation: 

 


     
  


1 2 1

2
tan2 , 90xz

xx zz
, (11) 

where 1  is the angle between the x -axis and the normal to the plane where 
tangential stresses are absent. 

Based on the known orientations of the principal stresses, it is possible to 
construct stress trajectories, which are important for geological interpretation 
[17, 20]. In particular, interpolation using Hermitian splines at given nodes can 
be applied [13]. 

Finally, according to the Coulomb–Mohr heuristic criterion, in the case of 
brittle fracture, faults can arise at an angle   to the principal axis, correspon-

ding to the larger compressive principal stress min  [2, 11, 20]. Note that tensile 
stresses are considered positive in this context. 

The angle   characterizes the internal friction within rocks or massives 
and is a property of the medium that must be experimentally determined 
(based on the envelope of the Mohr circles for the critical pre-fracture state). 

For sedimentary rocks, it is known that mainly    25 43 , with a mean of 
around 30° [20]. 

To perform the numerical calculations (computer modeling), minimal 
computational resources are required. In particular, MS EXCEL spreadsheets 
are used, making it feasible to apply such models in the educational process. 
Specifically, we calculate the components of the stress tensor at a given set of 
points, the principal stresses and their orientation within the sedimentary layer, 
as well as the orientation of probable sliding lines for brittle fracture (critical 
elastic state). The following numerical parameters are used: E 40 GPa;  
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  1/4,   4/10; 2h  4 km; L  50 km;   2500  kg/m3; p 120 MPa; 

  30°;  ( )
LU 0 і  ( )

LU –1 km. 

Horizontal compressive stresses xx  dominate this model, which determi-

nes the orientation of the principal stresses, min  (Fig. 3a). Notably, the smaller 
of the principal stresses undergoes a reorientation – from vertical (in the upper 
layers) to horizontal (in the lower layers). The principal stresses min  across the 
entire model are negative, meaning the rocks are in compression. Using the 
Coulomb–Mohr failure criterion, the orientation of these stresses helps deter-
mine the most likely direction for the initiation of conjugate faults [2]. 

We distinguish two sets (or generations) of such directions. The first set 
forms an angle (counterclockwise rotation) with the maximum compressive 
stress, while the second set forms the same angle but clockwise (Fig. 3b, and c). 
One of these sets aligns with the shape of the boundaries between individual 
thrusts, while the other set of faults could lead to discontinuous failures in the 
upper layers, oriented in the opposite direction (mirror reflection relative to the 
vertical line). Since the reorientation of these directions occurs at relatively 
shallow depths (above the middle surface of the sedimentary layer), the 
occurrence of a fault extending through the entire rock thickness is unlikely. 
This suggests that the model reliably simulates the orientation of faults and the 
direction of thrust propagation under the given loading conditions of the 
sedimentary basin. 

 

 

a)                                                      b) 

               

c)                                                        d) 

Fig. 3. Comparison of potential sliding lines with the fold-thrust structure of the Carpathians: 
a) Orientation of principal compressive stresses. 
b) and c) Two possible families of sliding lines determined by the Coulomb–Mohr 

criterion. 
d) A fragment of a typical geological cross-section of the Ukrainian Carpathians, 

illustrating a characteristic thrust structure (with simplifications) [10, 4, 21], where 
the dash-dotted line represents the faults 

 
Conclusions. The proposed model offers simplicity in its ability to yield 

analytical results. However, the inherent simplifications and hypotheses repre-
sent notable limitations, highlighting the need for more precise calculations 
using numerical methods, especially for spatial or generalized 2D models. Conse-
quently, the results obtained are qualitative approximations of real geological 
processes and structures. 

Despite these limitations, the model provides valuable insights into the 
heterogeneity of the stress state and key features of thrust structures, such as 
the shape of boundaries, the direction of thrust initiation and propagation, and 
structural formation characteristics. 

Future work will focus on extending this approach to related problems in 
geological mathematical modeling, aiming to further enhance our under-
standing of complex geological processes. 
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МОДЕЛЮВАННЯ НАПРУЖЕНОГО СТАНУ ОСАДОВОГО БАСЕЙНУ В ЗОНІ СУБДУКЦІЇ В 
МЕЖАХ ТЕОРІЇ ТОНКИХ ПЛАСТИН С. П. ТИМОШЕНКА 

 
Запропоновано математичну модель поля напружень шаруватої товщі осадових 
порід у зоні субдукції, що враховує дію латеральних переміщень, гравітації та сил 
тертя на контакті з фундаментом. Обговорено необхідні гіпотези та обмеження 
цієї моделі, які дають змогу застосувати теорію тонких пластин з викорис-
танням гіпотез С. П. Тимошенка. Обчислено поля напружень та переміщень, 
проаналізовано розподіл головних напружень стиску для плоского деформованого 
стану. На основі критерію руйнування Кулона–Мора побудовано два сімейства 
вірогідних ліній ковзання і передбачено орієнтацію зсувних розривних порушень, 
які добре узгоджуються з типовими насувними структурами в регіоні Укра-
їнських Карпат. 

Ключові слова: математичне моделювання в геології, теорія пластин, напруження 
в гірських масивах, насувні структури. 
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