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Ðàçðàáîòêà êðèòåðèåâ ïðî÷íîñòè è ïëàñòè÷åñêîãî òå÷åíèÿ, îñíîâàííûõ

íà ñîîòíîøåíèÿõ ìåæäó óïðóãèìè è ïëàñòè÷åñêèìè äåôîðìàöèÿìè

Þ. Ëè

Âûñøàÿ øêîëà ãðàæäàíñêîãî ñòðîèòåëüñòâà, Öåíòðàëüíûé Þæíûé Óíèâåðñèòåò, ×àíøà,

Êèòàé

Ïðåäñòàâëåíû ðåçóëüòàòû èññëåäîâàíèÿ ñîîòíîøåíèé ìåæäó óïðóãèìè è ïëàñòè÷åñêèìè

äåôîðìàöèÿìè. Íà îñíîâàíèè ðåçóëüòàòîâ àíàëèçà ýòèõ ñîîòíîøåíèé ïðåäëîæåí êðèòåðèé

ïðî÷íîñòè, êîòîðûé ÿâëÿåòñÿ ìîäèôèêàöèåé êðèòåðèÿ ìàêñèìàëüíûõ ãëàâíûõ äåôîðìàöèé.

Ïîñêîëüêó ïðåäëîæåííûé ïîäõîä óâÿçûâàåò êðèòåðèè ïðî÷íîñòè è ïëàñòè÷åñêîãî òå÷åíèÿ,

äàííûé êðèòåðèé ìîæíî òðàêòîâàòü êàê íîâûé êðèòåðèé ïëàñòè÷åñêîãî òå÷åíèÿ.

Êëþ÷åâûå ñëîâà: êðèòåðèé ïðî÷íîñòè, êðèòåðèé ïëàñòè÷åñêîãî òå÷åíèÿ, óïðóãàÿ è

ïëàñòè÷åñêàÿ äåôîðìàöèè.

Introduction. Strength and yield criteria developments are two important research

directions. A relatively comprehensive introduction on their development was made in

books written by Patnaik and Yu [1, 2]. So far, although many strength and yield criteria

have been presented, they have their respective limitations, and can’t fully explain the

phenomena of yield and failure of materials. That is why these fields are still the hot spot of

research for scholars of different countries, and material strength and yield criteria are in

the process of constant development and improvement. Recent works [3–11] describe the

current situation in this domain. On the other hand, since it is problematic to determine the

yield surface under various loading conditions, the research on yield criteria is more

difficult than that on strength ones. Moreover, strength and yield criteria are often

controlled by similar equations, and it is somewhat difficult to distinguish them strictly.

Based on a new direction – the study of relationship between the elastic and plastic parts of

strain – a new strength (or yield) criterion are proposed in this paper, and the relationship

between strength and yield criteria is discussed for better insight into this domain.

1. Preliminary Results on Relationship Between Elastic and Plastic Strain.

According to unloading path, the strain of every point on stress–strain curve in Fig. 1 can

be divided into elastic strain �e and plastic strain � p , then � �e p~ curve is as in Fig. 2.

For brevity, the � �e p~ curve is called the e p� curve [12].

As an example, the experiment made by Lessels and MacGregor [13] is considered,

where 5 nickel-chrome-molybdenum alloyed steel specimens in the form of thin-walled

tubes where tested under different combinations of internal pressures and axial forces, and

2 curves for each specimens were plotted: the axial stress–strain curve and the transverse
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stress–strain curve. These curves are shown in Figs. 3 and 4. In these figures, � z is the

axial stress and � t is the transverse stress, while � �z tf� ( ) is the relationship between

transverse and axial stresses.

As it follows from Figs. 3 and 4, e p� curves can be plotted respectively for every

curve, as shown in Figs. 5 and 6. And if unloading procedure is not considered, from Figs.

5 and 6 it can be seen that the patterns of all e p� curves are nearly the same, i.e., any

e p� curve can be obtained by displacing another e p� curve along the �e axis. In the

unloading procedure, e p� curve will be parallel to axis �e , such as line ab in Fig. 5.
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Fig. 1. � �~ curve. Fig. 2. e p� curve.

Fig. 3. � �z z~ curve under combined loads. Fig. 4. � �t t~ curve under combined loads.

Fig. 5. e p� curve from Fig. 3. Fig. 6. e p� curve from Fig. 4.



Another example is the triaxial test of Carrara marble at room temperature [14]. The

stress–strain curve of this experiment is shown in Fig. 7, while the e p� curve is shown

ins Fig. 8. It can be seen from Fig. 8 that the patterns of the e p� curves under confining

pressures are quite similar.

The characteristics of the e p� curves of the isotropic, continuous, and homogenous

materials have been generalized as the following preliminary relationship [12, 15]:

(1) Under simple loading, any e p� curve of the principal strain can be obtained by

the shifting any other e p� curve of the principal strain along axis �e . That is to say, the

increments of elastic and plastic strains after yield conditions follow the same rule under

simple loading.

(2) If � �p ef� ( ) of the e p� curve of the principal strain under simple loading is

taken as a standard, then the elastic � ij
e and plastic � ij

p
parts of strain for any stress-strain

state satisfy the following relation:

� � � �ij
p

ij
e

ij ij
ef L� �[ ( , )]. (1)

The essence of Lij is shown in Fig. 9, while � is the parameter related to the loading

history.

Based on the single curve hypothesis proven by experiments under simple loading

[16], it has been corroborated that the relationship between elastic and plastic strains

mentioned above really holds for two kinds of stress-strain states [12].
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Fig. 7. Triaxial stress–strain curve of marble test [14]. Fig. 8. e p� curve of marble [14].

Fig. 9. Sketch map of e p� curve.



2. A New Strength Criterion and the Relationship between Strength and Yield

Criteria. Consider the case of simple loading. According to the above relationship for the

e p� curves, e p� curves of the maximum principal strains can be plotted as is shown in

Fig. 10 for some stress-strain states. Assume that curve 1 is the e p� curve of the

uniaxial stress-strain state, while curve 2 is the e p� curve of one stress-strain state

under consideration, and �s is the elastic limit strain of uniaxial stress-strain state. This an

apparent indication that plastic strains are the same in failure points of all of stress-strain

states. The plastic strain of failure point is assumed as K p , which yield the following

strength criterion [17]:

� i
p pK� , i� 1 2 3, , . (2)

Parameter � i
p

in Eq. (2) is the plastic strain part of the principal strain.

Currently, strength criteria are basically expressed via the principal stress, which is

convenient for applications, in contrast to the strength criterion of Eq. (2). Now, based on

e p� curve, we re-consider the strength criterion from the other standpoint.

From Fig. 10, we have

� � 	 � � � � � � �2 1 2 3 2 2max [ ( )] ( ),e b b b s e s
b
e

sE� � � � � � � �
 (3)

where � i
b (i� 1, 2, 3) are three principal stresses of failure point of curve 2, �2

s is the

elastic limit strain of the stress-strain state under consideration, and �b
e is the elastic part of

strain of failure point in the uniaxial stress-strain state (curve 1), 
� � �e
b
e

s� � .

We get

� � 	 � �2 1 2 3
s s s s E� � �[ ( )] , (4)

� � � �b
e

s b s E� � �( ) , (5)

where � i
s (i� 1, 2, 3) are three principal stresses of the yield point of curve 2, � b and � s

are the failure and yield stresses of the uniaxial stress-strain state, respectively.
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Fig. 10. The e p� curves of the maximum principal strain under simple loading conditions.



Substituting Eqs. (4) and (5) into Eq. (3) leads to

[ ( )] [ ( )] .� � � � � � � � � �1 2 3 1 2 3
b b b s s s

b s� � � � � � � (6)

If � � � � �1 2 3
s s s

s� � �( ) , Eq. (6) is

� � � � �1 2 3
b b b

b� � �( ) . (7)

Equation (7) describes the maximum principal strain strength criterion. From the

pattern of the e p� curve, we know that � � � �1 2 3
s s s� �( ) is generally not equal to � s ,

i.e., �2
s is generally not equal to �s in Fig. 10. Therefore, Eq. (6) can be treated as

modification of the maximum principal strain strength criterion.

Let k b s� �� � , k is a material constant, then Eq. (6) can be written as

[ ( )] [ ( )] .� � � � � � � �1 2 3 1 2 3
b b b s s s k� � � � � � (8)

Equation (8) is the new strength criterion expressed via the principal stress.

Equation (8) also controls a new yield criterion, since term [ ( )]� � � �1 2 3
b b b� � of

Eq. (8) is controlled by the stressed state of failure state, whereas [ ( )]� � � �1 2 3
s s s� � term of

Eq. (8) is contolled by that of the yield state. Thus, one of these two states is defined, while

another one can been determined by Eq. (8), which, therefore, establishes the relationship

between the strength and yield criteria.

Since it is easier to determine the strength limit than the yield stress through

experiment, Eq. (8) will simplify development and formulation of the yield criterion.

3. An Application Example of the Relationship between Strength and Yield

Criteria. Triaxial test of marble specimens [18] is an example to support the above

relationship between the strength and yield criteria. Specimens were manifactured from

marble was produced in Fangshan, Beijing (China). The experimental curves are given in

Fig. 11, whereas � 3 in Fig. 11 is the confining pressure (� �2 3� ). Since the confining

pressure remained unchanged during the tests, Eq. (8) can be reduced to

� � � �1 1
b s

b s� � � . (9)
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Fig. 11. Triaxial test of Fangshan marble.



Here values �1
b of each curve and � b are easily derived from Fig. 11 and tabulated in

Table 1, whereas assessment of the yield stress values of each curve is more problematic.

We take two values of the uniaxial yield stress � s: � s � 77.5 and 90.6 MPa, while �1
s of

each curve can be calculated via Eq. (9), as is shown in Table 1 and Fig. 11. In Fig. 11,

circular points correspond to � s � 77.5 MPa, whereas square points correspond to � s �

� 90.6 MPa. Taking into account the discrete nature of the rock material tests, the yield

stresses calculated via Eq. (9) are quite acceptable.

Conclusions. Plotting the e p� curve implies a new vway to describe the deformation

properties of materials. Based on the e p� curve pattern in simple loading, we consider

the respective strength and yield criteria. A new strength criterion is proposed, which can

be treated as a modification of the maximum principal strain strength criterion. Since it

establishes the relationship between strength and yield criterion, it may also be treated as a

new yield criterion. Since the proposed criteria are derived for the case of simple loading,

their applicability to complex loading cases needs further experimental verification.

Ð å ç þ ì å

Ïðåäñòàâëåíî ðåçóëüòàòè äîñë³äæåííÿ ñï³ââ³äíîøåíü ì³æ ïðóæíèìè ³ ïëàñòè÷íèìè

äåôîðìàö³ÿìè. Íà îñíîâ³ ðåçóëüòàò³â àíàë³çó öèõ ñï³ââ³äíîøåíü çàïðîïîíîâàíî íîâèé

êðèòåð³é ì³öíîñò³, ÿêèé º ìîäèô³êàö³ºþ êðèòåð³þ ìàêñèìàëüíèõ ãîëîâíèõ äåôîð-

ìàö³é. Îñê³ëüêè çàïðîïîíîâàíèé ï³äõ³ä óâ’ÿçóº êðèòåð³¿ ì³öíîñò³ ³ ïëàñòè÷íî¿ ïëèí-

íîñò³, äàíèé êðèòåð³é ìîæíà òðàêòóâàòè ÿê íîâèé êðèòåð³é ïëàñòè÷íî¿ ïëèííîñò³.
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