В.П. Зинченко

АЛГОРИТМЫ И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ ПОТОКА В АЭРОДИНАМИЧЕСКИХ ТРУБАХ МАЛЫХ СКОРОСТЕЙ

Введение. Известно [1, 2], что для экспериментальных исследований (ЭИ) распределения давления на моделях летальных аппаратов (МЛА) в промышленных аэродинамических трубах малых скоростей (АДТ) используются информационно-измерительные системы (ИИС) на базе пневмокоммутаторов (ПК) [3]. Для таких ИИС актуальна задача разработки адаптивного алгоритма управления ЭИ в АДТ и на МЛА в зависимости от внутренней структуры системы [4, 5] и качества потока [3, 6, 7].

Постановка задачи: разработка алгоритмов ЭИ качества потока в АДТ для оценки точностных характеристик и быстродействия ИИС [8].

Оборудование. Для решения поставленной задачи были исследованы две дренированые МЛА — М₁ в АДТ Т-103 и М₂ в АДТ Т-101.

МЛА M_1 — это модель крыла с профилем CP-14 по центроплану и CP-16 по консолям, относительной толщиной профиля 6÷6,25 %, размахом 1,821 м, корневой хордой 0,977 м, концевой хордой 0,097 м, углом стреловидности 56° и площадью 0,852 м². Измерение давлений на M_1 производилось в 26 дренажных точках в третьем сечении, расположенном на расстоянии 0,225 м от оси симметрии.

МЛА M₂ — это модель полукрыла Ан-22 с профилем РП-151, относительной толщиной 10 %, размахом 5,985 м, корневой хордой 2,2 м, концевой хордой 0,8 м, углом стреловидности 20° и площадью 8,94 м². Давление на M₂ измерялось в первом и втором сечениях.

В ЭИ использовались ИИС₁ на базе ПК [3], ИИС₂ АДТ Т-101 на базе спиртовых батарейных манометров (БМ) и ИИС₃ АДТ Т-103 на базе групповых регистрирующих манометров (ГРМ) [8].

На рис. 1 представлена блок-схема ИИС₁ [1–3, 6, 7], где АЦП — аналогоцифровой преобразователь; ПД — датчик давления; ДС — датчик синхроимпульсов; В — вычислитель, УУ — устройство управления; V_{∞} — скорость потока в рабочей части АДТ, м/с; α — угол атаки МЛА, град.; P_0 — давление в форкамере; ω — скорость вращения ротора ПК; P_s , P_e — статическое и эталонное давления; P_i — измеряемое давление в *i*-й дренажной точке; К-сеть компьютерная сеть.

Существенное влияние на точность экспериментальных данных (ЭД) ИИС оказывают низкочастотные пульсации давления (0,1–10 Гц) как на поверхности МЛА, так и в потоке АДТ. Они исследовались в диапазоне $0 \div \pm 6 \cdot 10^4$ Па на МЛА, в форкамере АДТ и в потоке. Для этого были разработаны соответствующие алгоритмы ЭИ для ИИС₁, ИИС₂ и ИИС₃.

Стендовые ЭИ ИИС₁ проводились с целью получения оценки возможности применения ИИС₁ для измерения ожидаемых величин давлений (±1,7 \cdot 10³; ±3,9 \cdot 10³; ±9,8 \cdot 10³; ±1,5 \cdot 10⁴ Па), оценки оптимальной скорости измерения λ , изм./с, и времени выравнивания давления в пневмотрассах (ПТ) [3, 5]. ЭИ проводились в соответствии с таким алгоритмом, в котором λ варьировалась в пределах 2÷5,6 изм./с:

© В.П. ЗИНЧЕНКО, 2004 78

Шаг 1. Установить необходимое давление в резервуаре.

Шаг 2. Установить заданную ω_0 .

Шаг 3. Измерить P_i во всех ПТ.

Шаг 4. Если $\omega_0 \le \omega_{max}$, то переход на Шаг 3.

Шаг 5. Переход на Шаг 1, если программа ЭИ не выполнена.

Шаг 6. Конец.

Рис. 1

Установка состояла из ПД типа ИКД6ТДф-0,16; ПК типа ПК-420; ПТ (d_0 — диаметр дренажного отверстия, м; d, l — диаметр и длина ПТ, м) [9]; резервуара объемом 0,2 м³; автоматического задатчика давления (АЗД) класса 0,05 для поддержки $P_{\rm e}$ с точностью 0,15 %; регистрирующей аппаратуры (см. рис. 1).

Величина недовыравнивания давления определялась так:

$$\Delta P_{\rm e} = \frac{1.963(u_i - u_0)}{P_{\rm e}} \cdot 100 \ \%,$$

где u_i, u_0 — показания ПД после АЦП.

Анализ ЭИ (рис. 2) показывает, что увеличение λ с 2 до 6 приводит к увеличению ΔP от 0,1 до 7,5 %. При $l \le 2,5$, $d_0 > 6 \cdot 10^{-4}$ и $d \ge 16 \cdot 10^{-4}$ в исследуемом диапазоне давлений $\Delta P \le 0,4$ % при $\lambda \le 4,5$. Для $2,5 \le l \le 5$ необходимо применять ПТ с $d \approx (16 \div 20) \cdot 10^{-4}$ и выдерживать λ в пределах от 2,5 до 3,5 изм./с [3, 5].

ЭИ пульсаций давлений проводились для определения амплитуды пульсаций в потоке (q), форкамере (P_0) и на поверхности МЛА (P_i) .

В АТД Т-103 применялась ИИС₁ (рис. 3) с короткими ПТ (($(0,5 \le l \le 5)$), где для измерения q использовалась трубка Пито, которая устанавливалась на расстоянии 0,3 м от среза сопла или на расстоянии 0,6 м от М₁, с ПД ИКД6ТДф-0,16; для измерения P_0 использовался ПД ИКД6ТДф-0,1 и весовой элемент (ВЭ) скоростного напора аэродинамических механических весов (АМВ) [2, 8].

Параметры ЭИ были такими: M₁; $\alpha = \{6^{\circ}, 12^{\circ}, 16^{\circ}, 18^{\circ}, 20^{\circ}, 24^{\circ}\};$ $V_{\infty} = 60 \pm 2$ м/с; $\lambda = 2$ изм./ с. Пульсации P_0 измерялись только для $\alpha = 24^{\circ}$. Выполнялись стократные измерения q с помощью ИИС₁ и десятикратные — с помощью АМВ с интервалом в 20 с.

Выборочные результаты ЭИ приведены на рис. 4 (q — измеренные AMB), рис. 5 (P_0) и рис. 6 (q при разных α). Отметим, что эти ЭД представляют собой усредненные значения давлений за период $\tau = 100$ мс, измеренных со скоростью λ .

Рис. 4

Анализ ЭД показывает, что амплитуда пульсаций q в АДТ Т-103 в диапазоне частот 0,2÷1,0 Гц лежит в пределах 20÷54 Па, причем при увеличении α с 6° до 24° она возрастает в 2,5 раза. Амплитуда пульсаций q, измеренная ВЭ АМВ, составляет 49÷59 Па.

В АДТ Т-101 применялась ИИС₁ для исследования пульсации давления: непосредственно у заборной шайбы форкамеры — *P*₀ (ПД типа ИКД6ТДф-0,016); в форкамере — *q* (ВЭ АМВ); на М₂ — *P_i* (ПД типа ИКД6ТДф-0,16).

Параметры ЭИ были такими: M₂; $\alpha = \{6^{\circ}, 12^{\circ}, 16^{\circ}, 18^{\circ}, 20^{\circ}, 24^{\circ}\}; V_{\infty} = 60 \pm 2 \text{ м/c}; \lambda = 5 \div 20 \text{ изм/c}.$ Во время ЭИ выполнялось стократное измерение q и P_i со скоростью λ . Результаты ЭИ приведены на рис. 7 (q), 8 и 9 (P_i на M₂).

Анализ ЭД показывает, что амплитуда пульсации давления в форкамере АДТ Т-101 в диапазоне частот $0,05 \div 2,0$ Гц и в диапазоне углов атаки $0 \div 20^{\circ}$ меньше 10 Па, а на частотах $2,0 \div 10,0$ Гц составляют около 25 Па и мало зависят от α M₂.

Амплитуда пульсаций давления в форкамере АДТ Т-101 в диапазоне частот 0,05÷10,0 Гц при $\alpha = 0$ составляет 50÷70 Па, при $\alpha = 12^{\circ}$ — до 127 Па, а при $\alpha = 20^{\circ}$ — около 157 Па. Это примерно 4÷30 % от постоянной составляющей давления в данной точке на M₂.

ЭИ ИИС₁ и ИИС₂ проводились с целью оценки сходимости и точности регистрации ЭД на М₁.

В АДТ Т-103 использовались ПТ с параметрами $1 \le l \le 1,5$, $d_0 = 5 \cdot 10^{-4}$, $d = 2 \cdot 10^{-3}$, ПД ИКД6ТДф-0,16, а также АЗД для поддержки опорного $(1,18 \cdot 10^4 \pm 20)$ Па и эталонного $(5,2 \cdot 10^3 \pm 10)$ Па давлений. ПК и ПД из-за малых габаритов М₁ размещались в обтекателе на расстоянии 0,6 м от нее.

В ИИС₂ применялись ГРМ на два диапазона измерений $(\pm 4,415 \cdot 10^3, \pm 9,8 \cdot 10^3 \text{ Па})$ со среднеквадратической ошибкой 29 Па.

Дренажные точки M_1 подключались к ПК и ГРМ. Кроме дренажных точек M_1 через каждые 7–8 точек на ПК был подключен канал измерения скоростного напора q и статическое давление потока от трубки Пито, давление в форкамере, атмосферное давление и эталонное давление от АЗД.

ЭИ в АДТ проводились при скорости потока $V_{\infty}=60\pm2$ м/с, углах атаки М $_1$

 $\alpha = \{-6^{\circ}, 0^{\circ}, 6^{\circ}, 12^{\circ}, 16^{\circ}, 18^{\circ}, 20^{\circ}\}$ и в соответствии со следующим алгоритмом:

Шаг 1. ПТ M_1 подсоединить к ПК.

Шаг 2. Установить заданные программой ЭИ α M₁ и V_{∞} АДТ.

Шаг 3. Выполнить десятикратное измерение P_i при α — fix и $\lambda = 4$ изм./с.

Шаг 4. ПТ М1 подсоединить к ГРМ.

Шаг 5. Установить заданные программой ЭИ α M₁ и V_{∞} АДТ.

Шаг 6. Выполнить десятикратное измерение P_i при α — fix, $\lambda = 0.05$ изм./с с интервалом 5 с.

Шаг 7. Переход на Шаг 2, если программа ЭИ не выполнена.

Шаг 8. Конец.

При обработке ЭД были определены среднеарифметическое значение относительного давления в каждой дренажной точке, отклонение относительного давления разовых измерений от среднеарифметического значения и среднеквадратическая погрешность измерений.

ЭД ИИС₂ обработаны по методикам ЦАГИ, грубые ошибки были исключены из обработки. ЭД из ИИС₁ обработаны по методикам и программам, описанным в [10, 11], грубые ошибки не исключались.

На рис. 10 представлены эпюры распределения относительного давления по M_1 , полученные с использованием $ИИC_1$ и $ИИC_2$. Из эпюров следует, что средние значения давления на M_1 во всех 26 исследованных дренажных точках практически совпадают [3, 6, 7].

По результатам измерения эталонного давления ИИС₁ в реальных условиях АДТ Т-103 была определена его среднеквадратическая ошибка, равная 10 Па ($\overline{\sigma} = 0,05$ %) [12]. При этом величина недовыравнивания эталонного давления составляла примерно 20 Па для ПТ с параметрами $l \approx 10$, $d_0 = 5 \cdot 10^{-4}$, $d = 3 \cdot 10^{-3}$.

На рис. 11 представлены минимальные и максимальные значения среднеквадратической ошибки отдельных измерений $ИИC_1$ и $ИИC_2$ для различных α и в зависимости от расположения дренажных точек на M_1 .

Рис. 11

диапазоны среднеквадратических ошибок практически совпадают. Для $\alpha \ge 16^{\circ}$ на носике профиля ($\overline{x} < 5$ %) максимальное значение среднеквадратической ошибки ИИС1 выше и составляет 49÷127 Па, что объясняется наличием больших пульсаций P_i на М₁ при больших α.

Полученные ЭД показывают, что при $\bar{x} > 20$ % и 5 % < $\bar{x} < 20$ % для $\alpha \le 12^{\circ}$

ЭИ ИИС1 и ИИС3 проводились с целью оценки сходимости и точности регистрации ЭД на М2.

В АДТ Т-101 использовались ПТ с параметрами 2,5 $\leq l \leq$ 3,5, $d_0 = 1,5 \cdot 10^{-3}$, $d = 2 \cdot 10^{-3}$; ПД ИКД6ТДф-0,16 и ИКД6ТДф-0,1, а также АЗД для поддержки опорного (1,18 $\cdot 10^4 \pm 20$ Па) и эталонного (5,384 $\cdot 10^3 \pm 10$ Па) давлений. Для уменьшения влияния на ЭД инерционности длинных ПТ ($l \approx 25 \, \text{м}$) использова-

лись дополнительные объемы по $2,5 \cdot 10^{-4} \text{ м}^3$. Их эффективность изучалась путем установки объемов по $1 \cdot 10^{-4} \text{ м}^3$ и измерений давлений на конце ПТ дренажных точек 56, 58, 60, 62 и 64.

В ИИС₃ для измерения давления на M₂ применялись шесть БМ типа ИД-2 на 50 точек каждый с регистрацией показаний фотоаппаратом [8]. Общая длина ПТ от M₂ до БМ составляла около 17 м при внутреннем их диаметре $3,5 \cdot 10^{-3}$ м. После фотографирования и проявления фотопленок ЭД были расшифрованы с погрешностью $\pm 2,5 \cdot 10^{-3}$ м.

Кроме 67 дренажных точек M₂ на ПК через каждые 14÷17 точек были подключены каналы измерения скоростного напора, статическое давление потока и эталонное давление от АЗД.

Параметры ЭИ были такими: M₂; $\alpha = \{-4^{\circ}, 0^{\circ}, 4^{\circ}, 8^{\circ}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}\};$ $V_{\infty} = 40 \pm 0.25$ м/с; $\lambda = \{3, 4, 5, 7, 9, 10, 13\}$ изм./с. ЭИ проводились по такому алгоритму:

Шаг 1. ПТ М₂ подсоединить к ПК.

Шаг 2. Установить заданные программой ЭИ α M₂ и V_{∞} в АДТ.

Шаг 3. Выполнить девятикратное измерение P_i при α — fix и $\lambda = 4$ изм./с.

Шаг 4. Выполнить измерение P_i при α — fix и $\lambda = 3$ изм./с.

Шаг 5. Выполнить измерение P_i при α — fix и $\lambda = 5$ изм./с.

Шаг 6. Выполнить измерение P_i при α — fix и $\lambda = 7$ изм./с.

Шаг 7. Выполнить десятикратное измерение P_i при α — fix и $\lambda = 9$ изм./с.

Шаг 8. Выполнить измерение P_i при α — fix и $\lambda = 10$ изм./с.

Шаг 9. Выполнить измерение P_i при α — fix и $\lambda = 13$ изм./с.

Шаг 10. Переход на Шаг 2, если программа ЭИ не выполнена.

Шаг 11. Конец.

При этом на каждом α производилось восемнадцатикратное измерение P_i

на M_2 при двух режимах работы ИИС. На десятом цикле изменения α M_2 измерение P_i производилось при $\lambda = \{3, 5, 7, 9, 11, 13\}$ изм./с.

ЭИ ИИС на базе БМ проводились по следующему алгоритму:

Шаг 1. ПТ М₂ подсоединить к БМ.

Шаг 2. Установить значение V_{∞} в соответствии с программой ЭИ.

Шаг 3. Установить значение а M₂ в соответствии с программой ЭИ.

Шаг 4. Выполнить измерение P_i при α — fix и однократное фотографирование БМ.

Шаг 5. Переход на Шаг 3, если $\alpha \le 24^{\circ}$.

Шаг 6. Переход на Шаг 2, если программа ЭИ не выполнена.

Шаг 7. Конец.

Таким образом, выполнялось десять циклов изменения α (от -4° до $+24^{\circ}$) и десятикратное измерение P_i путем фотографирования БМ на каждом α .

ЭИ комбинированной ИИС₁ и ИИС₃ производилось в соответствии с таким алгоритмом:

Шаг 1. ПТ М₂ подсоединить к БМ и к ПК при помощи тройников.

Шаг 2. Установить значение V_{∞} в соответствии с программой ЭИ.

Шаг 3. Установить значение а M₂ в соответствии с программой ЭИ.

Шаг 4. Выполнить измерение P_i при α — fix и однократное фотографирование БМ.

Шаг 5. Выполнить девятикратное измерение P_i при α — fix и $\lambda = 5$ изм./с.

Шаг 6. Выполнить десятикратное измерение P_i при α — fix и $\lambda = 9$ изм./с.

Шаг 7. Переход на Шаг 3, если $\alpha \le 24^{\circ}$.

Шаг 8. Переход на Шаг 2, если программа ЭИ не выполнена.

Шаг 9. Конец.

Кроме этого, на каждом α было произведено двукратное измерение давления ПК и однократное БМ.

Материалы ЭИ ИИС₃ получены в виде негативов фотографий БМ, которые были расшифрованы и обработаны по методике и программе, изложенной в [4]. При обработке грубые ошибки не исключались.

Для оценки применения аппроксимирующих полиномов и влияния грубых ошибок на результаты ЭИ была выполнена обработка ЭД для 1-й–9-й дренажных точек первого и для 56-й–64-й дренажных точек второго сечений M_2 и углов атаки 0°, 12°, 20°, 24°.

Анализ полученных ЭД показывает [3, 6, 7], что средние значения давления на M₂ в 66 дренажных точках практически совпадают. В десяти дренажных точках, расположенных на верхней поверхности M₂ вблизи носика профиля на больших α (16°, 20°, 24°), средние значения P_i , измеренные с помощью ИИС₁, превосходят аналогичные значения P_i по данным ИИС₃ на 49÷383 Па. Это объясняется неодинаковой инерционностью ПТ и БМ при изменении давления в условиях существования переменной составляющей.

На рис. 12 представлены среднеквадратические погрешности измерения P_i от углов атаки M₂ для комбинированной ИИС₁ и ИИС₃ в диапазоне дренажных точек с координатами $0 \le \overline{x} < 5\%$, $5\% \le \overline{x} < 20\%$, $20\% \le \overline{x} \le 100\%$.

Рис. 12

Из ЭД следует, что среднеквадратические погрешности измерения давления на носике M₂ ($0 \le \overline{x} < 5$ %) ИИС₁ больше аналогичных погрешностей для ИИС₃ в 1,2÷2 раза. На основной части M₂ ($20 \% \le \overline{x} \le 100 \%$) среднеквадратические погрешности для обеих ИИС не превышают 0,25 %. Большие расхождения погрешностей измерения $\overline{P_i}$ вблизи носика M₂ вызваны большой амплитудой пульсации давления на носике профиля.

По результатам измерений эталонного давления ИИС₁ в реальных условиях АДТ была проверена гипотеза о подчинении ЭД нормальному закону на основании критерия согласия Пирсона χ^2 [12]. В нашем случае $\chi = 7,13$, что допустимо с достоверностью 0,95. При этом среднеквадратическая ошибка измерения эталонного давления $\sigma = 10$ Па ($\overline{\sigma} = 0,05$ %).

Наличие систематической ошибки в 25 Па при замере эталонного давления не является систематической ошибкой при измерении P_i на M_2 , это величина недовыравнивания давления вследствие инерционности ПТ длиной ~ 25 м и наличия объема $2,5 \cdot 10^{-4}$ м³ при $\lambda = 5$ изм./с.

Анализ ЭД показывает, что ИИС₃ в диапазоне частот $0,5 \div 5$ Гц интегрирует переменную составляющую давления на 20–40 %, а ИИС₁ при таких ПТ интегрирующими свойствами в этом диапазоне частот не обладает. Отметим, что для ПТ с параметрами $l = 2,5; d_0 = 1,5 \cdot 10^{-4}; d = 2 \cdot 10^{-3}$ наличие емкостей объемом $1 \cdot 10^{-4}$ м³ на ее конце не уменьшает переменную составляющую измеряемого давления.

Аналогично получены значения давления в 3-й, 7-й и 63-й точках M₂ при $\alpha = 20^{\circ}$, измеренные ИИС₁ при λ от 3 до 13 изм./с. Из-за наличия в 3-й точке переменной составляющей давления до 275 Па не удается обнаружить недовыравнивание давления в ПК при больших λ . В 7-й и 63-й точках при $\lambda = 10-13$ изм./с ΔP_i составляет 20÷75 Па. Результаты многократных измерений ИИС₁ эталонного давления показали, что даже в случае $\lambda = 3$ изм./с при первом съеме данных $\Delta P_i \approx 29$ Па, а при втором съеме данных давление выравнивается. С увеличением скорости до 13 изм./с при первом съеме данных ΔP_i достигает 98 Па, при втором — 29 Па. Это свидетельствует о том, что емкость объемом 2,5·10⁻⁴ м³ на конце ПТ с $l \approx 25$ м при использовании ПД ИКДБТДф-0,16 недостаточна.

На рис. 13 приведены значения $\overline{P_i}$, однократно измеренные ПК при подключенных ПТ ИИС₃. Из ЭД можно сделать вывод, что длинные ПТ после ПК практически не влияют на результаты измерений $\overline{P_i}$ на M₂. Кроме того, анализ значений $\overline{P_i}$, измеренных при $\lambda = 5 \div 9$ изм./с, показал, что средние значения во всех дренажных точках практически совпадают. А из графиков рис. 12 следует, что среднеквадратические погрешности измерения давления ИИС₁ при времени интегрирования 10 мс на 10–30 % выше, чем при времени интегрирования 100 мс, что объясняется разной разрешающей способностью ИИС (1,96 Па на младший разряд при $\tau = 100$ мс и 20 Па при $\tau = 10$ мс).

Выводы. Разработаны алгоритмы ЭИ и получены характеристики качества потока в рабочей части АДТ в диапазоне давлений испытаний МЛА, которые приведены в таблице. Показано, что ИИС₁ по своим характеристикам не уступает ИИС₂ и ИИС₃, при допустимом недовыравнивании давления в 0,4 % ИИС₁ обеспечивает скорость измерения давления 2,5÷5 изм./с, средние значения давления на поверхности МЛА, получаемые с помощью трех ИИС, в основном совпадают, за исключением давления в дренажных точках на носике профиля, где обнаружены большие пульсации давления.

Параметры	T-101		T-103	
	Ps	на М2	Ps	на M ₂
ИИС1	10	3÷157	10	5÷88
ИИС ₂	—	—	3	3÷55
ИИС ₃	—	3÷98	—	—
Амплитуда пульсаций при −4 °≤ α ≤ 12 °, Па	20÷25		39÷69	
	20÷25		88÷108	

Результаты данного исследования использованы при создании современной информационной технологии экспериментальных исследований МЛА в промышленных аэродинамических трубах.

В.П. Зінченко

АЛГОРИТМИ ТА РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ ПОТОКУ В АЕРОДИНАМІЧНИХ ТРУБАХ МАЛИХ ШВИДКОСТЕЙ

Наведено алгоритми і результати експериментальних досліджень якості потоку в промислових аеродинамічних трубах малих швидкостей. Якість потоку досліджувалася з точки зору оцінки характеристик точності, швидкості та надійності інформаційно-вимірювальних систем в діапазоні тисків, які виникають на поверхні моделей літальних апаратів.

Таблица

V.P. Zinchenko

ALGORITHMS AND OUTCOMES OF RESEARCHES OF A FLOW IN WIND TUNNELS OF LOW SPEEDS

The algorithms and outcomes of experimental researches of quality of a flow in industrial wind tunnels of low speeds are adduced. The quality of a flow was investigated from the point of view of an estimation of the characteristics of accuracy, response and reliability of informational-measuring systems in pressure range arising on a surface of models of flight vehicles.

- 1. Зинченко В.П. Автоматизация экспериментальных исследований в аэродинамической трубе // УСиМ. — 1989. — № 1. — С. 95–99.
- 2. Египко В.М., Зинченко В.П., Белоусов Б.Н., Горин Ф.Н. Системы автоматизации экспериментальных исследований в аэродинамических трубах. — Киев : Наук. думка, 1992. — 264 с.
- Разработка и исследование пневмоизмерительных систем на базе пневмокоммутаторов для многоточечного измерения давления в аэродинамических трубах / Н.В. Руденко, В.К. Артамонов, В.П. Зинченко, В.П. Каськов, Т.Г. Нациокс, Ю.М. Чумак, В.П. Резник // Тр. ЦИАМ. — 1981. — Вып. 972. — С. 78–97.
- 4. Зинченко В.П. Алгоритм адаптивного управления информационной измерительной системой // Автоматика-2000. Пр. Міжнар. конф. автомат. управлін. : В 7 т. — Львів : Держ. НДІ інформац. інфраструктури, 2000. — Т. 3. — С. 183–191.
- 5. Зинченко В.П. Исследование и реализация алгоритма адаптивного управления экспериментом // Проблемы управления и информатики. 2001. № 3. С. 58–69.
- 6. Зинченко В.П. Исследование характеристик информационно-измерительной системы распределения давления // Вестн. НТУУ «КПИ». Машиностроение. Киев : НТУУ «КПИ», 2000. Вып. 39. С. 313–321.
- 7. Зинченко В.П. Характеристики информационно-измерительной системы распределения давления // Технічна електродинаміка. 2000. № 6. С. 70–74.
- 8. Горлин С.М., Слезингер И.И. Аэродинамические измерения. М.: Наука, 1964. 720 с.
- Зинченко В.П. Результаты исследований качества потока в аэродинамических трубах малых скоростей // Открытые информационные и компьютерные интегрированные технологии / Нац. аэрокосм. ун-т им. Н.Е. Жуковского «ХАИ». Харьков, 2001. Вып. 10. С. 141–151.
- Программное обеспечение испытаний по распределению давления в трубах малых дозвуковых скоростей / В.П. Зинченко, С.Г. Безвушко, А.А. Ермоленко, Н.Г. Пятецкая // IV Всес. шк. по метод. аэрофиз. исслед. — Новосибирск : ИТПМ СО АН СССР, 1986. — С. 183.
- Алгоритм обработки результатов дренажных испытаний моделей с внутримодельными пневмокоммутаторами в аэродинамических трубах малых скоростей / Н.В. Руденко, Т.Г. Нациокс, В.П. Зинченко, В.И. Руденя, В.К. Артамонов // Ш Всес. шк. по метод. аэрофиз. исслед. — Новосибирск : ИТПМ СО АН СССР, 1982. — С. 204–208.
- 12. Химмельблау Д. Анализ процессов статистическими методами. М. : Мир, 1973. 975 с.

Получено 22.08.2001 После доработки 05.08.2003