М.М. Копец

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ПРОЦЕССОМ КОЛЕБАНИЙ ТОНКОГО ПРЯМОУГОЛЬНОГО СТЕРЖНЯ

Введение

В природе и технике довольно часто встречаются волновые и колебательные процессы. Например, в акустике, аэродинамике, квантовой теории поля, теории упругости, электродинамике и т.д. Все эти процессы, как правило, описываются дифференциальными уравнениями с частными производными гиперболического типа второго порядка, содержащими в качестве одной из независимых переменных — время t. К тому же многие прикладные задачи приводят к дифференциальным уравнениям с частными производными гиперболического типа более высокого порядка. Здесь можно упомянуть задачи о колебаниях стержней, пластин, вращающихся валов и т. д. Настоящая статья посвящена исследованию линейно-квадратической задачи оптимального управления процессом колебаний тонкого прямоугольного стержня. С помощью метода множителей Лагранжа для рассматриваемой задачи оптимизации получены необходимые условия оптимальности. Исходя из этих условий, выведена система интегро-дифференциальных уравнений Риккати с частными производными. Решение этой системы представлено в замкнутой форме.

Постановка задачи

Пусть управляемый процесс описывается следующим линейным дифференциальным уравнением с частными производными:

$$\frac{\partial^2 z(t,x)}{\partial t^2} = a^4 \frac{\partial^4 z(t,x)}{\partial x^4} + u(t,x),\tag{1}$$

где $a^4 = \frac{EJ}{\rho S}$, E — модуль упругости материала стержня, J — момент инерции прямоугольного сечения стержня относительно его горизонтальной оси, S — площадь поперечного сечения стержня, ρ — плотность материала стержня, $0 \le x \le l$, $t_0 \le t \le t_1$ — действительные числа l > 0, $t_0 \ge 0$, $t_1 > t_0$ известны. Для уравнения (1) заданы начальные условия

$$z(t_0, x) = f(x), \frac{\partial z(t_0, x)}{\partial t} = g(x), \tag{2}$$

где функции $f(x) \in L_2(0,l)$ и $g(x) \in L_2(0,l)$ предполагаются также известными, символ $\frac{\partial z(t_0,x)}{\partial t}$ обозначает значение частной производной $\frac{\partial z(t,x)}{\partial t}$ при $t=t_0$.

Подобным образом трактуются символы $\frac{\partial z(t_1,x)}{\partial t}$, $\frac{\partial z(t,0)}{\partial x}$, $\frac{\partial^2 z(t,l)}{\partial x^2}$, $\frac{\partial^3 z(t,l)}{\partial x^3}$.

Краевые условия для уравнения (1) являются однородными

$$\frac{\partial z(t,0)}{\partial x} = 0, \quad \frac{\partial^2 z(t,l)}{\partial x^2} = 0, \quad \frac{\partial^3 z(t,l)}{\partial x^3} = 0.$$
 (3)

Известно, что соотношения (1)—(3) описывают процесс колебаний тонкого прямоугольного стержня [1, с. 143]. Обозначим символом Ω множество $\Omega = \{(t,x):$ $t \in [t_0,t_1], \ x \in [0,l]\}$. Функция $u(t,x) \in L_2(\Omega)$ называется допустимым управлением. Для фиксированного допустимого управления u(t,x) под решением z(t,x) задачи (1)—(3) подразумеваем ее обобщенное решение $z(t,x) \in W_2^{1,0}(\Omega)$. На решениях задачи (1)—(3) рассматривается функционал

$$I(u,z) = \frac{1}{2} \int_{0}^{l} z^{2}(t_{1}, x) dx + \frac{1}{2} \int_{0}^{l} \left[\frac{\partial z(t_{1}, x)}{\partial t} \right]^{2} dx + \frac{1}{2} \int_{t_{0}}^{t_{1}} \int_{0}^{l} \left[z^{2}(t, x) + u^{2}(t, x) \right] dx dt.$$
 (4)

Задача оптимального управления (1)—(4) состоит в определении допустимого управления u(t,x) и соответствующего ему решения z(t,x) задачи (1)—(3), на которых функционал (4) принимает наименьшее возможное значение.

Необходимые условия оптимальности

Одним из возможных методов для нахождения решения сформулированной выше задачи оптимального управления (1)—(4) является метод множителей Лагранжа [2, с. 31]. Сущность его состоит в замене функционала (4) следующим вспомогательным функционалом:

$$J(p, u, z) = \frac{1}{2} \int_{0}^{l} z^{2}(t_{1}, x) dx + \frac{1}{2} \int_{0}^{l} \left[\frac{\partial z(t_{1}, x)}{\partial t} \right]^{2} dx + \frac{1}{2} \int_{t_{0}}^{l} \int_{0}^{l} \left[z^{2}(t, x) + u^{2}(t, x) \right] dx dt + \int_{t_{0}}^{t_{1}} \int_{0}^{l} p(t, x) \left[a^{4} \frac{\partial^{4} z(t, x)}{\partial x^{4}} + u(t, x) - \frac{\partial^{2} z(t, x)}{\partial t^{2}} \right] dx dt,$$
 (5)

где p(t, x) — неизвестная функция (множитель Лагранжа). В результате такой замены задача на условный экстремум (1)—(4) сводится к задаче минимизации функционала (5) с учетом условий (2) и (3). Дальше находим выражение ΔJ для приращения функционала (5):

$$\Delta J = J(p + \varepsilon \delta p, u + \varepsilon \delta u, z + \varepsilon \delta z) - J(p, u, z).$$

Используя соотношение (5), выражение для ΔJ запишем

$$-\frac{1}{2}\int_{t_0}^{t_1}\int_{0}^{l} \left[z^2(t,x) + u^2(t,x)\right] dxdt - \int_{t_0}^{t_1}\int_{0}^{l} p(t,x) \left[a^4 \frac{\partial^4 z(t,x)}{\partial x^4} + u(t,x) - \frac{\partial^2 z(t,x)}{\partial t^2}\right] dxdt. \quad (6)$$

Выполнив очевидные преобразования, вместо соотношения (6) получим такое равенство:

Поскольку должно выполняться соотношение

$$a^4 \left[\frac{\partial^4 z(t,x)}{\partial x^4} + \varepsilon \frac{\partial^4 \delta z(t,x)}{\partial x^4} \right] + u(t,x) + \varepsilon \delta u(t,x) - \left[\frac{\partial^2 z(t,x)}{\partial t^2} + \varepsilon \frac{\partial^2 \delta z(t,x)}{\partial t^2} \right] = 0,$$

то, принимая во внимание уравнение (1), получим равенство

$$a^4 \frac{\partial^4 \delta z(t, x)}{\partial x^4} + \delta u(t, x) - \frac{\partial^2 \delta z(t, x)}{\partial t^2} = 0.$$
 (8)

Учитывая очевидные соотношения $\delta z(t_0,x) = f(x) - f(x) = 0$, $\frac{\partial \delta z(t_0,x)}{\partial t} = g(x) - g(x) = 0$ и дважды используя формулу интегрирования по частям, приходим к такому равенству:

$$\int_{t_0}^{t_1} \int_{0}^{l} p(t, x) \frac{\partial^2 \delta z(t, x)}{\partial t^2} dx dt = \int_{0}^{l} p(t_1, x) \frac{\partial \delta z(t_1, x)}{\partial t} dx - \int_{0}^{l} p(t_0, x) \frac{\partial \delta z(t_0, x)}{\partial t} dx - \int_{0}^{t_1} \frac{\partial p(t, x)}{\partial t} \frac{\partial \delta z(t, x)}{\partial t} dx dt = \int_{0}^{l} p(t_1, x) \frac{\partial \delta z(t_1, x)}{\partial t} dx - \int_{0}^{l} \frac{\partial p(t_1, x)}{\partial t} \delta z(t_1, x) dx + \int_{0}^{l} \frac{\partial p(t_0, x)}{\partial t} \delta z(t_0, x) dx + \int_{t_0}^{l} \frac{\partial^2 p(t, x)}{\partial t^2} \delta z(t, x) dx dt = \int_{0}^{l} p(t_1, x) \frac{\partial \delta z(t_1, x)}{\partial t} dx - \int_{0}^{l} \frac{\partial p(t_1, x)}{\partial t} \delta z(t_1, x) dx + \int_{0}^{l} \frac{\partial^2 p(t, x)}{\partial t} \delta z(t_1, x) dx dt = \int_{0}^{l} p(t_1, x) \frac{\partial \delta z(t_1, x)}{\partial t} dx - \int_{0}^{l} \frac{\partial p(t_1, x)}{\partial t} \delta z(t_1, x) dx + \int_{0}^{l} \frac{\partial^2 p(t, x)}{\partial t^2} \delta z(t, x) dx dt = \int_{0}^{l} p(t_1, x) \frac{\partial \delta z(t_1, x)}{\partial t} dx - \int_{0}^{l} \frac{\partial p(t_1, x)}{\partial t} \delta z(t_1, x) dx + \int_{0}^{l} \frac{\partial^2 p(t, x)}{\partial t} \delta z(t_1, x) dx + \int_{0}^{l} \frac{\partial^2 p(t, x)}{\partial t} \delta z(t_1, x) dx dt. \tag{9}$$

Предполагая выполнение краевых условий

$$p(t,0) = 0, \ \frac{\partial p(t,0)}{\partial x} = 0, \ \frac{\partial^2 p(t,l)}{\partial x^2} = 0, \ \frac{\partial^3 p(t,l)}{\partial x^3} = 0$$
 (10)

и принимая во внимание очевидные соотношения $\delta z(t,0) = 0 - 0 = 0$, $\frac{\partial \delta z(t,0)}{\partial r} = 0$

 $=0-0=0, \quad \frac{\partial^2 \delta z(t,l)}{\partial x^2}=0-0=0, \quad \frac{\partial^3 \delta z(t,l)}{\partial x^3}=0-0=0, \quad \text{после четырехкратного применения формулы интегрирования по частям получаем такое равенство:}$

$$= -\int_{t_0}^{t_1} \int_{0}^{l} \frac{\partial^3 p(t,x)}{\partial x^3} \frac{\partial \delta z(t,x)}{\partial x} dx dt = -\int_{t_0}^{t_1} \frac{\partial^3 p(t,l)}{\partial x^3} \delta z(t,l) dt + \int_{t_0}^{t_1} \frac{\partial^3 p(t,0)}{\partial x^3} \delta z(t,0) dt + \int_{t_0}^{t_1} \int_{0}^{l} \frac{\partial^4 p(t,x)}{\partial x^4} \delta z(t,x) dx dt = \int_{t_0}^{t_1} \int_{0}^{l} \frac{\partial^4 p(t,x)}{\partial x^4} \delta z(t,x) dx dt.$$

$$(11)$$

Равенства (8), (9) и (11) позволяют представить соотношение (7) следующим образом:

$$\Delta J = \varepsilon \int_{0}^{l} \left[z(t_{1}, x) + \frac{\partial p(t_{1}, x)}{\partial t} \right] \delta z(t_{1}, x) dx + \varepsilon \int_{0}^{l} \left[\frac{\partial z(t_{1}, x)}{\partial t} - p(t_{1}, x) \right] \times \frac{\partial \delta z(t_{1}, x)}{\partial t} dx + \varepsilon \int_{0}^{l} \int_{0}^{l} \left[\left[z(t, x) + a^{4} \frac{\partial^{4} p(t, x)}{\partial x^{4}} - \frac{\partial^{2} p(t, x)}{\partial t^{2}} \right] \delta z(t, x) + \left[u(t, x) + p(t, x) \right] \delta u(t, x) \right] dx dt + \varepsilon \int_{t_{0}}^{l} \int_{0}^{l} \delta p(t, x) \left[a^{4} \frac{\partial^{4} z(t, x)}{\partial x^{4}} + u(t, x) - \frac{\partial^{2} z(t, x)}{\partial t^{2}} \right] dx dt + \frac{\varepsilon^{2}}{2} \int_{0}^{l} \left[\delta z(t_{1}, x) \right]^{2} dx + \frac{\varepsilon^{2}}{2} \int_{0}^{l} \left[\left[\delta z(t, x) \right]^{2} + \left[\delta u(t, x) \right]^{2} \right] dx dt.$$

$$(12)$$

Подводя итоги вышеприведенным рассуждениям, приходим к следующему утверждению.

Теорема 1. Единственное оптимальное управление u(t, x) определяется из такой системы соотношений:

$$\begin{cases} \frac{\partial^2 z(t,x)}{\partial t^2} = a^4 \frac{\partial^4 z(t,x)}{\partial x^4} + u(t,x), \\ z(t_0,x) = f(x), & \frac{\partial z(t_0,x)}{\partial t} = g(x), \\ z(t,0) = 0, & \frac{\partial z(t,0)}{\partial x} = 0, & \frac{\partial^2 z(t,l)}{\partial x^2} = 0, \frac{\partial^3 z(t,l)}{\partial x^3} = 0, \\ \frac{\partial^2 p(t,x)}{\partial t^2} = a^4 \frac{\partial^4 p(t,x)}{\partial x^4} + z(t,x), \\ p(t_1,x) = \frac{\partial z(t_1,x)}{\partial t}, & \frac{\partial p(t_1,x)}{\partial t} = -z(t_1,x), \\ p(t,0) = 0, & \frac{\partial p(t,0)}{\partial x} = 0, & \frac{\partial^2 p(t,l)}{\partial x^2} = 0, \frac{\partial^3 p(t,l)}{\partial x^3} = 0, \\ u(t,x) + p(t,x) = 0. & \frac{\partial p(t,0)}{\partial x} = 0, & \frac{\partial^2 p(t,l)}{\partial x^2} = 0, \frac{\partial^3 p(t,l)}{\partial x^3} = 0, \end{cases}$$

Доказательство. Необходимым условием экстремума функционала (5) является равенство нулю его первой вариации. Это условие будет выполнено, если имеют место следующие соотношения:

$$z(t_1, x) + \frac{\partial p(t_1, x)}{\partial t} = 0, \quad \frac{\partial z(t_1, x)}{\partial t} - p(t_1, x) = 0, \quad a^4 \frac{\partial^4 z(t, x)}{\partial x^4} + u(t, x) - \frac{\partial^2 z(t, x)}{\partial t^2} = 0,$$
$$z(t, x) + a^4 \frac{\partial^4 p(t, x)}{\partial x^4} - \frac{\partial^2 p(t, x)}{\partial t^2} = 0, \quad u(t, x) + p(t, x) = 0.$$

Если присоединить к этим равенствам начальные условия (2), краевые условия (3) и соотношения (10), то получим систему уравнений (13). В случае выполнения этих соотношений выражение (12) примет вид

$$\Delta J = \frac{\varepsilon^2}{2} \int_0^l [\delta z(t_1, x)]^2 dx + \frac{\varepsilon^2}{2} \int_0^l \left[\frac{\partial \delta z(t_1, x)}{\partial t} \right]^2 dx + \frac{\varepsilon^2}{2} \int_{t_0}^{t_1} \int_0^l [[\delta z(t, x)]^2 + [\delta u(t, x)]^2] dx dt.$$
(14)

При условии, что $\delta u(t,x)$ не равно нулю, имеем неравенство $\Delta J > 0$. Это означает, что на управлении u(t,x) реализуется минимум функционала (4). Дальше предположим, что $u(t,x) = u(t,x) + \delta u(t,x)$ также является оптимальным управлением. Тогда оно также должно удовлетворять соотношениям (13) и, кроме того, должно выполняться равенство $\Delta J = 0$, поскольку оба управления u(t,x) и u(t,x) оптимальны. Но тогда из выражения (14) следует, что равенство $\Delta J = 0$ возможно только в том случае, если $\delta u(t,x) = 0$. Отсюда следует, что u(t,x) = u(t,x), и теорема 1 полностью доказана.

Вывод системы интегро-дифференциальных уравнений Риккати

Исходя из равенств $p(t_1,x)=\frac{\partial z(t_1,x)}{\partial t}$ и $\frac{\partial p(t_1,x)}{\partial t}=-z(t_1,x)$, предполагаем существование зависимости между p(t,x) и z(t,x):

$$\frac{\partial p(t,x)}{\partial t} = -\int_{0}^{l} R_{11}(t,x,y)z(t,y)dy - \int_{0}^{l} R_{12}(t,x,y)\frac{\partial z(t,y)}{\partial t}dy,$$
(15)

$$p(t,x) = \int_{0}^{l} R_{21}(t,x,y)z(t,y)dy + \int_{0}^{l} R_{22}(t,x,y)\frac{\partial z(t,y)}{\partial t}dy,$$
 (16)

где функции $R_{ij}(t,x,y)$, i=1,2; j=1,2, требуется найти. Дифференцируя равенство (15) по переменной t, приходим к соотношению

$$\frac{\partial^{2} p(t, x)}{\partial t^{2}} = -\int_{0}^{l} \left[\frac{\partial R_{11}(t, x, y)}{\partial t} z(t, y) + R_{11}(t, x, y) \frac{\partial z(t, y)}{\partial t} \right] dy -$$

$$-\int_{0}^{l} \left[\frac{\partial R_{12}(t, x, y)}{\partial t} \frac{\partial z(t, y)}{\partial t} + R_{12}(t, x, y) \frac{\partial^{2} z(t, y)}{\partial t^{2}} \right] dy. \tag{17}$$

Поскольку из системы (13) имеем u(t,x) = -p(t,x), то уравнение (1) примет вид $\frac{\partial^2 z(t,y)}{\partial t^2} = a^4 \frac{\partial^4 z(t,y)}{\partial y^4} - p(t,y) .$ Используя выражение (16), имеем

$$\frac{\partial^2 z(t,y)}{\partial t^2} = a^4 \frac{\partial^4 z(t,y)}{\partial y^4} - \int_0^l R_{21}(t,y,s) z(t,s) ds - \int_0^l R_{22}(t,y,s) \frac{\partial z(t,s)}{\partial t} ds.$$
 (18)

Затем, учитывая соотношение (18), равенство (17) преобразуем следующим образом:

$$\frac{\partial^{2} p(t,x)}{\partial t^{2}} = -\int_{0}^{l} \left[\frac{\partial R_{11}(t,x,y)}{\partial t} z(t,y) + R_{11}(t,x,y) \frac{\partial z(t,y)}{\partial t} + \frac{\partial R_{12}(t,x,y)}{\partial t} \frac{\partial z(t,y)}{\partial t} + \frac{\partial R_{12}(t,x,y)}{\partial t} \frac{\partial z(t,y)}{\partial t} + \frac{\partial R_{12}(t,x,y)}{\partial t} \frac{\partial z(t,y)}{\partial t} - R_{12}(t,x,y) \int_{0}^{l} R_{21}(t,y,s) z(t,s) ds - \frac{\partial z(t,y)}{\partial t} ds \right] dy. \tag{19}$$

После этого, предполагая выполнение краевых условий

$$R_{12}(t, x, 0) = 0$$
, $\frac{\partial R_{12}(t, x, 0)}{\partial y} = 0$, $\frac{\partial^2 R_{12}(t, x, l)}{\partial y^2} = 0$, $\frac{\partial^3 R_{12}(t, x, l)}{\partial y^3} = 0$ (20)

и принимая во внимание краевые условия (3), с помощью четырехкратного применения формулы по частям получим

$$\int_{0}^{l} R_{12}(t,x,y) \frac{\partial^{4} z(t,y)}{\partial y^{4}} dy = R_{12}(t,x,t) \frac{\partial^{3} z(t,t)}{\partial y^{3}} - R_{12}(t,x,0) \frac{\partial^{3} z(t,0)}{\partial y^{3}} - \frac{1}{\partial y^{3}} - \frac{1}{\partial y^{3}} \frac{\partial^{2} z(t,y)}{\partial y^{3}} dy = -\int_{0}^{l} \frac{\partial R_{12}(t,x,y)}{\partial y^{3}} \frac{\partial^{3} z(t,y)}{\partial y^{3}} dy = \frac{1}{\partial y^{3}} \frac{\partial^{2} z(t,y)}{\partial y^{3}} dy = \frac{1}{\partial y^{3}} \frac{\partial^$$

Двойной интеграл $\int\limits_0^l R_{12}(t,x,y) \int\limits_0^l R_{21}(t,y,s) z(t,s) ds dy$ преобразуем таким образом.

Меняя в нем порядок интегрирования, переобозначаем переменные интегрирования y на s и, наоборот, s на y. Это приводит к следующему соотношению:

$$\int_{0}^{l} R_{12}(t, x, y) \int_{0}^{l} R_{21}(t, y, s) z(t, s) ds dy = \int_{0}^{l} \int_{0}^{l} R_{12}(t, x, y) R_{21}(t, y, s) z(t, s) dy ds =$$

$$= \int_{0}^{l} \int_{0}^{l} R_{12}(t, x, s) R_{21}(t, s, y) ds z(t, y) dy.$$
(22)

Аналогично находим

$$\int_{0}^{l} R_{12}(t, x, y) \int_{0}^{l} R_{22}(t, y, s) \frac{\partial z(t, s)}{\partial t} ds dy = \int_{0}^{l} \int_{0}^{l} R_{12}(t, x, y) R_{22}(t, y, s) \times \frac{\partial z(t, s)}{\partial t} dy ds = \int_{0}^{l} \int_{0}^{l} R_{12}(t, x, s) R_{22}(t, s, y) ds \frac{\partial z(t, y)}{\partial t} dy.$$

$$(23)$$

На основании соотношений (21)-(23) равенство (19) примет вид

$$\frac{\partial^{2} p(t,x)}{\partial t^{2}} = -\int_{0}^{l} \left[\frac{\partial R_{11}(t,x,y)}{\partial t} z(t,y) + R_{11}(t,x,y) \frac{\partial z(t,y)}{\partial t} + \frac{\partial R_{12}(t,x,y)}{\partial t} \frac{\partial z(t,y)}{\partial t} + \right. \\
+ a^{4} \frac{\partial^{4} R_{12}(t,x,y)}{\partial y^{4}} z(t,y) - \int_{0}^{l} R_{12}(t,x,s) R_{21}(t,s,y) ds z(t,y) - \\
- \int_{0}^{l} R_{12}(t,x,s) R_{22}(t,s,y) ds \frac{\partial z(t,y)}{\partial t} dy. \tag{24}$$

С другой стороны, на основании равенства (16) имеем

$$\frac{\partial^4 p(t,x)}{\partial x^4} = \int_0^l \frac{\partial^4 R_{21}(t,x,y)}{\partial x^4} z(t,y) dy + \int_0^l \frac{\partial^4 R_{22}(t,x,y)}{\partial x^4} \frac{\partial z(t,y)}{\partial t} dy.$$

Подставляя это выражение в уравнение $\frac{\partial^2 p(t,x)}{\partial t^2} = a^4 \frac{\partial^4 p(t,x)}{\partial x^4} + z(t,x)$ и пользуясь

очевидным соотношением $z(t,x) = \int\limits_0^l \delta(x-y)z(t,y)dy$, приходим к равенству

$$\frac{\partial^2 p(t,x)}{\partial t^2} = \int_0^l \left[a^4 \frac{\partial^4 R_{21}(t,x,y)}{\partial x^4} z(t,y) + a^4 \frac{\partial^4 R_{22}(t,x,y)}{\partial x^4} \frac{\partial z(t,y)}{\partial t} + \delta(x-y)z(t,y) \right] dy. \tag{25}$$

Сопоставление соотношений (24) и (25) приводит к следующим уравнениям:

$$\frac{\partial R_{11}(t, x, y)}{\partial t} + a^4 \frac{\partial^4 R_{12}(t, x, y)}{\partial y^4} + a^4 \frac{\partial^4 R_{21}(t, x, y)}{\partial x^4} - \int_0^l R_{12}(t, x, s) R_{21}(t, s, y) ds + \delta(x - y) = 0,$$
(26)

$$\frac{\partial R_{12}(t,x,y)}{\partial t} + a^4 \frac{\partial^4 R_{22}(t,x,y)}{\partial x^4} + R_{11}(t,x,y) - \int_0^l R_{12}(t,x,s) R_{22}(t,s,y) ds = 0.$$
 (27)

Дифференцируя равенство (16) по переменной t, получаем соотношение

$$\frac{\partial p(t,x)}{\partial t} = \int_{0}^{l} \left[\frac{\partial R_{21}(t,x,y)}{\partial t} z(t,y) + R_{21}(t,x,y) \frac{\partial z(t,y)}{\partial t} \right] dy + \int_{0}^{l} \left[\frac{\partial R_{22}(t,x,y)}{\partial t} \frac{\partial z(t,y)}{\partial t} + R_{22}(t,x,y) \frac{\partial^{2} z(t,y)}{\partial t^{2}} \right] dy.$$

Подставляя выражение (18) в последнее соотношение, находим

$$\frac{\partial p(t,x)}{\partial t} = \int_{0}^{l} \left[\frac{\partial R_{21}(t,x,y)}{\partial t} z(t,y) + R_{21}(t,x,y) \frac{\partial z(t,y)}{\partial t} + \frac{\partial R_{22}(t,x,y)}{\partial t} \frac{\partial z(t,y)}{\partial t} \right] ds$$

$$R_{22}(t,x,y) \int_{0}^{l} R_{22}(t,y,s) \frac{\partial z(t,s)}{\partial t} ds dy. \tag{28}$$

Полагая выполнение краевых условий

$$R_{22}(t, x, 0) = 0, \quad \frac{\partial R_{22}(t, x, 0)}{\partial y} = 0, \quad \frac{\partial^2 R_{22}(t, x, l)}{\partial y^2} = 0, \quad \frac{\partial^3 R_{22}(t, x, l)}{\partial y^3} = 0, \quad (29)$$

и принимая во внимание краевые условия (3), после применения формулы интегрирования по частям имеем

$$\int_{0}^{l} R_{22}(t,x,y) \frac{\partial^{4} z(t,y)}{\partial y^{4}} dy = R_{22}(t,x,l) \frac{\partial^{3} z(t,l)}{\partial y^{3}} - R_{22}(t,x,0) \frac{\partial^{3} z(t,0)}{\partial y^{3}} - R_{22}(t,x,y) \frac{\partial^{3} z(t,y)}{\partial y^{3}} dy = -\int_{0}^{l} \frac{\partial R_{22}(t,x,y)}{\partial y} \frac{\partial^{3} z(t,y)}{\partial y^{3}} dy = -\frac{\partial R_{22}(t,x,l)}{\partial y} \frac{\partial^{2} z(t,l)}{\partial y^{2}} + \frac{\partial R_{22}(t,x,y)}{\partial y^{2}} \frac{\partial^{2} z(t,y)}{\partial y^{2}} + \int_{0}^{l} \frac{\partial^{2} R_{22}(t,x,y)}{\partial y^{2}} \frac{\partial^{2} z(t,y)}{\partial y^{2}} dy = \int_{0}^{l} \frac{\partial^{2} R_{22}(t,x,y)}{\partial y^{2}} \frac{\partial^{2} z(t,y)}{\partial y^{2}} dy = \frac{\partial^{2} R_{22}(t,x,y)}{\partial y^{2}} \frac{\partial^{2} z(t,y)}{\partial y^{2}} dy = \frac{\partial^{2} R_{22}(t,x,l)}{\partial y^{2}} \frac{\partial^{2} z(t,y)}{\partial y^{2}} dy = \frac{\partial^{2} R_{22}(t,x,y)}{\partial y^{2}} \frac{\partial^{2} z(t,y)}{\partial y^{2}} dy = \frac{\partial^{2} R_{22}(t,x,y)}{\partial y^{2}} \frac{\partial^{2} z(t,y)}{\partial y^{2}} dy = \frac{\partial^{2} R_{22}(t,x,y)}{\partial y^{2}} \frac{\partial^{2} z(t,y)}{\partial y} dy = \frac{\partial^{2} R_{22}(t,x,y)}{\partial y} \frac{\partial^{2} z(t,y)}{\partial y} dy = \frac{\partial^{2} R_{22}(t,x,y)}{\partial y} \frac{\partial^{2} z(t,y)}{\partial y} dy = \frac{\partial^{2} R_{22}(t,x,y)}{\partial y} dy = \frac{\partial^{2} R_{22}(t,x,y)}{\partial$$

Дальше в двойном интеграле $\int\limits_0^l R_{22}(t,x,y) \int\limits_0^l R_{21}(t,y,s) z(t,s) ds dy$ сначала

меняем порядок интегрирования, затем переобозначаем переменные интегрирования y на s и, наоборот, s на y. В результате получим

$$\int_{0}^{l} R_{22}(t, x, y) \int_{0}^{l} R_{21}(t, y, s) z(t, s) ds dy = \int_{0}^{l} \int_{0}^{l} R_{22}(t, x, y) R_{21}(t, y, s) z(t, s) dy ds =$$

$$= \int_{0}^{l} \int_{0}^{l} R_{22}(t, x, s) R_{21}(t, s, y) ds z(t, y) dy.$$
(31)

Аналогично имеем

$$\int_{0}^{l} R_{22}(t, x, y) \int_{0}^{l} R_{22}(t, y, s) \frac{\partial z(t, s)}{\partial t} ds dy = \int_{0}^{l} \int_{0}^{l} R_{22}(t, x, y) R_{22}(t, y, s) \frac{\partial z(t, s)}{\partial t} dy ds =$$

$$= \int_{0}^{l} \int_{0}^{l} R_{22}(t, x, s) R_{22}(t, s, y) ds \frac{\partial z(t, y)}{\partial t} dy.$$
(32)

Соотношения (30)–(32) дают возможность переписать равенство (28) следующим образом:

$$\frac{\partial p(t,x)}{\partial t} = \int_{0}^{l} \left[\frac{\partial R_{21}(t,x,y)}{\partial t} z(t,y) + R_{21}(t,x,y) \frac{\partial z(t,y)}{\partial t} + \frac{\partial R_{22}(t,x,y)}{\partial t} \frac{\partial z(t,y)}{\partial t} + \right. \\
+ a^{4} \frac{\partial^{4} R_{22}(t,x,y)}{\partial y^{4}} z(t,y) - \int_{0}^{l} R_{22}(t,x,s) R_{21}(t,s,y) ds z(t,y) - \\
- \int_{0}^{l} R_{22}(t,x,s) R_{22}(t,s,y) ds \frac{\partial z(t,y)}{\partial t} dy. \tag{33}$$

Сравнивая соотношения (15) и (33), получаем

$$\frac{\partial R_{21}(t,x,y)}{\partial t} + a^4 \frac{\partial^4 R_{22}(t,x,y)}{\partial y^4} + R_{11}(t,x,y) - \int_0^l R_{22}(t,x,s) R_{21}(t,s,y) ds = 0, \quad (34)$$

$$\frac{\partial R_{22}(t,x,y)}{\partial t} + R_{12}(t,x,y) + R_{21}(t,x,y) - \int_{0}^{l} R_{22}(t,x,s)R_{22}(t,s,y)ds = 0.$$
 (35)

Условия $p(t_1, x) = \frac{\partial z(t_1, x)}{\partial t}$, $\frac{\partial p(t_1, x)}{\partial t} = -z(t_1, x)$ и соотношения (15), (16) приводят к таким равенствам:

$$\begin{cases}
R_{11}(t_1, x, y) = \delta(x - y), & R_{12}(t_1, x, y) = 0, \\
R_{21}(t_1, x, y) = 0, & R_{22}(t_1, x, y) = \delta(x - y).
\end{cases}$$
(36)

Принимая во внимание вышеизложенные рассуждения, приходим к такому выводу.

Теорема 2. Функции $R_{ij}(t, x, y)$, i = 1, 2; j = 1, 2, удовлетворяют системе уравнений (26), (27), (34), (35), краевым условиям (20), (29) и дополнительным условиям (36).

Этой системе уравнений можно поставить в соответствие матрицу \mathbf{A}_n четвертого порядка:

$$R_{22}(t, x, y) = R_{22}(t, y, x), R_{12}(t, x, y) = R_{21}(t, y, x).$$

Исходя из соотношения $\delta(x-y) = \frac{2}{l} \sum_{n=1}^{\infty} \sin \frac{\pi n x}{l} \sin \frac{\pi n y}{l}$ [1, с. 272], будем искать функции $R_{ij}(t,x,y)$, i=1,2; j=1,2, в следующем виде:

$$\begin{cases} R_{11}(t, x, y) = \frac{2}{l} \sum_{n=1}^{\infty} r_{n11}(t) \sin \frac{\pi nx}{l} \sin \frac{\pi ny}{l}, \\ R_{12}(t, x, y) = \frac{2}{l} \sum_{n=1}^{\infty} r_{n12}(t) \sin \frac{\pi nx}{l} \sin \frac{\pi ny}{l}, \\ R_{21}(t, x, y) = \frac{2}{l} \sum_{n=1}^{\infty} r_{n21}(t) \sin \frac{\pi nx}{l} \sin \frac{\pi ny}{l}, \\ R_{22}(t, x, y) = \frac{2}{l} \sum_{n=1}^{\infty} r_{n22}(t) \sin \frac{\pi nx}{l} \sin \frac{\pi ny}{l}, \end{cases}$$

$$(37)$$

где $r_{nij}(t)$, i=1,2, j=1,2, — неизвестные функции. Очевидно, что при таком выборе функций $R_{ij}(t,x,y)$, i=1,2; j=1,2, краевые условия (20) и (29) выполняются. Поэтому соотношения (37) с учетом системы уравнений (26), (27), (34), (35) и условий (36) дают возможность сформулировать такое утверждение.

Теорема 3. Для нахождения функций $r_{nij}(t)$, i = 1, 2, j = 1, 2, получим систему обыкновенных дифференциальных уравнений:

$$\begin{cases} \frac{dr_{n11}(t)}{dt} + \left(\frac{a\pi n}{l}\right)^{4} [r_{n12}(t) + r_{n21}(t)] - r_{n12}(t)r_{n21}(t) + 1 = 0, \\ \frac{dr_{n12}(t)}{dt} + \left(\frac{a\pi n}{l}\right)^{4} r_{n22}(t) + r_{n11}(t) - r_{n12}(t)r_{n22}(t) = 0, \\ \frac{dr_{n21}(t)}{dt} + \left(\frac{a\pi n}{l}\right)^{4} r_{n22}(t) + r_{n11}(t) - r_{n21}(t)r_{n22}(t) = 0, \\ \frac{dr_{n22}(t)}{dt} + r_{n12}(t) + r_{n21}(t) - r_{n22}^{2}(t) = 0. \end{cases}$$
(38)

При этом имеют место дополнительные условия

$$r_{n11}(t_1) = 1$$
, $r_{n12}(t_1) = 0$, $r_{n21}(t_1) = 0$, $r_{n22}(t_1) = 1$, $n = 1, 2, ...$ (39)

Замечание. Сравнение второго и третьего уравнений системы (38) и соответствующих условий (39) указывает на существование зависимости $r_{n12}(t) = r_{n21}(t)$. Принимая во внимание этот вывод, систему уравнений (26), (27), (34), (35) и соотношения (37), приходим к следующим соотношениям:

$$R_{11}(t, x, y) = R_{11}(t, y, x), R_{12}(t, x, y) = R_{21}(t, y, x), R_{22}(t, x, y) = R_{22}(t, y, x).$$

Затем функции z(t,x) и p(t,x) представим с помощью соответствующих рядов Фурье

$$z(t,x) = \sum_{n=1}^{\infty} z_n(t) \sin \frac{\pi nx}{l}, \quad p(t,x) = \sum_{n=1}^{\infty} p_n(t) \sin \frac{\pi nx}{l},$$

где $z_n(t) = \frac{2}{l} \int_0^l z(t, x) \sin \frac{\pi nx}{l} dx$, $p_n(t) = \frac{2}{l} \int_0^l p(t, x) \sin \frac{\pi nx}{l} dx$. Таким способом на основании системы соотношений (13) получим следующую систему равенств:

$$\begin{cases}
\frac{d^{2}z_{n}(t)}{dt^{2}} = \left[\frac{a\pi n}{l}\right]^{4} z_{n}(t) + u_{n}(t), \\
z_{n}(t_{0}) = f_{n}, & \frac{dz_{n}(t_{0})}{dt} = g_{n}, \\
\frac{d^{2}p_{n}(t)}{dt^{2}} = z_{n}(t) + \left[\frac{a\pi n}{l}\right]^{4} p_{n}(t), \\
p_{n}(t_{1}) = \frac{dz_{n}(t_{1})}{dt}, & \frac{dp(t_{1})}{dt} = -z_{n}(t_{1}), \\
u_{n}(t) + p_{n}(t) = 0,
\end{cases} (40)$$

где $u_n(t)$, f_n , g_n заданы выражениями

$$u_n(t) = \frac{2}{l} \int_{0}^{l} u(t, x) \sin \frac{\pi nx}{l} dx, \quad f_n = \frac{2}{l} \int_{0}^{l} f(x) \sin \frac{\pi nx}{l} dx, \quad g_n = \frac{2}{l} \int_{0}^{l} g(x) \sin \frac{\pi nx}{l} dx.$$

Если сделать замену $\frac{dz_n(t)}{dt} = y_n(t)$, $\frac{dp_n(t)}{dt} = -q_n(t)$, то вместо системы соотношений (40) получим следующую систему обыкновенных дифференциальных уравнений первого порядка:

$$\begin{cases} \frac{dz_n(t)}{dt} = y_n(t), \\ \frac{dy_n(t)}{dt} = \left[\frac{a\pi n}{l}\right]^4 z_n(t) - p_n(t), \\ \frac{dq_n(t)}{dt} = -z_n(t) - \left[\frac{a\pi n}{l}\right]^4 p_n(t), \\ \frac{dp_n(t)}{dt} = -q_n(t). \end{cases}$$

$$(41)$$

Дополнительные условия для системы уравнений (41) имеют вид

$$z_n(t_0) = f_n, \ y_n(t_0) = g_n, \ q_n(t_1) = z_n(t_1), \ p_n(t_1) = y_n(t_1).$$
 (42)

С учетом выбранных выше обозначений вместо соотношений (15) и (16) получим выражения

$$\begin{cases} q_n(t) = r_{n11}(t) z_n(t) + r_{n12}(t) y_n(t), \\ p_n(t) = r_{n21}(t) z_n(t) + r_{m22}(t) y_n(t). \end{cases}$$
(43)

Если ввести обозначения

$$\mathbf{R}_{n}(t) = \begin{bmatrix} r_{n11}(t) & r_{n12}(t) \\ r_{n21}(t) & r_{n22}(t) \end{bmatrix}, \ \ \mathbf{P}_{n} = \begin{bmatrix} 0 & 1 \\ \frac{a\pi n}{l} \end{bmatrix}^{4} \quad 0 \end{bmatrix}, \ \ \mathbf{S}_{n} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \ \ \mathbf{Q}_{n} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$

то систему уравнений (38) можно представить как одно матричное дифференциальное уравнение Риккати:

$$\frac{d\mathbf{R}_n(t)}{dt} = -\mathbf{R}_n(t)\mathbf{P}_n - \mathbf{P}_n^T\mathbf{R}_n(t) + \mathbf{R}_n(t)\mathbf{S}_n\mathbf{R}_n(t) - \mathbf{Q}_n. \tag{44}$$

Условия (39) приводят к матричному соотношению

$$R_n(t_1) = I, (45)$$

где I — единичная матрица, т.е. $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Равенства (43) с помощью матрицы

 $R_n(t)$ можно представить таким образом:

$$\begin{bmatrix} q_n(t) \\ p_n(t) \end{bmatrix} = \begin{bmatrix} r_{n11}(t) & r_{n12}(t) \\ r_{n21}(t) & r_{n22}(t) \end{bmatrix} \begin{bmatrix} z_n(t) \\ y_n(t) \end{bmatrix}.$$
(46)

Системе уравнений (41) можно поставить в соответствие следующую матрицу четвертого порядка:

$$\mathbf{A}_{n} = \begin{bmatrix} \mathbf{P}_{n} & -\mathbf{S}_{n} \\ -\mathbf{Q}_{n} & -\mathbf{P}_{n}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \left[\frac{a\pi n}{l} \right]^{4} & 0 & 0 & -1 \\ -1 & 0 & 0 & -\left[\frac{a\pi n}{l} \right]^{4} \\ 0 & 0 & -1 & 0 \end{bmatrix}.$$

Собственные числа матрицы \mathbf{A}_n равны

$$\lambda_{n1} = -\alpha_n - i\beta_n, \ \lambda_{n2} = \alpha_n + i\beta_n, \ \lambda_{n3} = -\alpha_n + i\beta_n, \ \lambda_{n4} = \alpha_n - i\beta_n,$$

где
$$\alpha_n = \sqrt{\frac{\sqrt{\left(\frac{a\pi n}{l}\right)^8+1}+\left(\frac{a\pi n}{l}\right)^4}}{2}}, \ \beta_n = \sqrt{\frac{\sqrt{\left(\frac{a\pi n}{l}\right)^8+1}-\left(\frac{a\pi n}{l}\right)^4}}{2}}$$
 .

Решение системы уравнений (41) можно построить с помощью матричной экспоненты $\exp(\mathbf{A}_n t)$. Для ее нахождения задействован пакет прикладных программ Mathematica 5.2 [3, с. 266]. В результате получено следующее утверждение.

Теорема 4. Матрица $\exp(\mathbf{A}_n t)$ имеет вид

$$\exp(\mathbf{A}_n t) = \mathbf{S}_n(t) = \begin{bmatrix} s_{n11}(t) & s_{n12}(t) & s_{n13}(t) & s_{n14}(t) \\ s_{n21}(t) & s_{n22}(t) & s_{n23}(t) & s_{n24}(t) \\ s_{n31}(t) & s_{n32}(t) & s_{n33}(t) & s_{n34}(t) \\ s_{n41}(t) & s_{n42}(t) & s_{n43}(t) & s_{n44}(t) \end{bmatrix},$$

где

$$s_{n11}(t) = \cosh(\alpha_n t)\cos(\beta_n t), \ s_{n21}(t) = \alpha_n \sinh(\alpha_n t)\cos(\beta_n t) - \beta_n \cosh(\alpha_n t)\sin(\beta_n t),$$

$$s_{n31}(t) = -\alpha_n \cosh(\alpha_n t) \sin(\beta_n t) - \beta_n \sinh(\alpha_n t) \cos(\beta_n t), \ s_{n41}(t) = \sinh(\alpha_n t) \sin(\beta_n t),$$

$$s_{n12}(t) = \frac{\alpha_n \sinh(\alpha_n t) \cos(\beta_n t) + \beta_n \cosh(\alpha_n t) \sin(\beta_n t)}{\alpha_n^2 + \beta_n^2}, \ s_{n22}(t) = \cosh(\alpha_n t) \cos(\beta_n t),$$

$$s_{n32}(t) = -\sinh(\alpha_n t)\sin(\beta_n t), \ s_{n42}(t) = \frac{\alpha_n \cosh(\alpha_n t)\sin(\beta_n t) - \beta_n \sinh(\alpha_n t)\cos(\beta_n t)}{\alpha_n^2 + \beta_n^2},$$

$$s_{n13}(t) = \frac{\alpha_n \cosh(\alpha_n t) \sin(\beta_n t) - \beta_n \sinh(\alpha_n t) \cos(\beta_n t)}{\alpha_n^2 + \beta_n^2}, \quad s_{n23}(t) = \sinh(\alpha_n t) \sin(\beta_n t),$$

$$s_{n33}(t) = \cosh(\alpha_n t)\cos(\beta_n t), \quad s_{n43}(t) = -\frac{\alpha_n \sinh(\alpha_n t)\cos(\beta_n t) + \beta_n \cosh(\alpha_n t)\sin(\beta_n t)}{\alpha_n^2 + \beta_n^2},$$

$$s_{n14}(t) = -\sinh(\alpha_n t)\sin(\beta_n t), \ s_{n24}(t) = -\alpha_n \cosh(\alpha_n t)\sin(\beta_n t) - \beta_n \sinh(\alpha_n t)\cos(\beta_n t),$$

$$s_{n34}(t) = -\alpha_n \sinh(\alpha_n t) \cos(\beta_n t) + \beta_n \cosh(\alpha_n t) \sin(\beta_n t), \quad s_{n44}(t) = \cosh(\alpha_n t) \cos(\beta_n t).$$

Если ввести обозначения

$$\mathbf{x}_{n}(t) = \begin{bmatrix} z_{n}(t) \\ y_{n}(t) \end{bmatrix}, \quad \lambda_{n}(t) = \begin{bmatrix} q_{n}(t) \\ p_{n}(t) \end{bmatrix}, \quad \mathbf{F}_{n11}(t) = \begin{bmatrix} s_{n11}(t) & s_{n12}(t) \\ s_{n21}(t) & s_{n22}(t) \end{bmatrix},$$

$$\mathbf{F}_{n12}(t) = \begin{bmatrix} s_{n13}(t) & s_{n14}(t) \\ s_{n23}(t) & s_{n24}(t) \end{bmatrix}, \quad \mathbf{F}_{n21}(t) = \begin{bmatrix} s_{n31}(t) & s_{n32}(t) \\ s_{n41}(t) & s_{n42}(t) \end{bmatrix}, \quad \mathbf{F}_{n22}(t) = \begin{bmatrix} s_{n33}(t) & s_{n34}(t) \\ s_{n43}(t) & s_{n44}(t) \end{bmatrix},$$

то можно записать следующие равенства:

$$\mathbf{x}_{n}(t_{1}) = \mathbf{F}_{n+1}(t_{1}-t)\mathbf{x}_{n}(t) - \mathbf{F}_{n+2}(t_{1}-t)\lambda_{n}(t), \ \lambda_{n}(t_{1}) = \mathbf{F}_{n+1}(t_{1}-t)\mathbf{x}_{n}(t) + \mathbf{F}_{n+2}(t_{1}-t)\lambda_{n}(t).$$
(47)

Из соотношений $q_n(t_1) = z_n(t_1)$, $p_n(t_1) = y_n(t_1)$, n = 1, 2, ..., следует, что $\lambda_n(t_1) = \mathbf{x}_n(t_1)$, n = 1, 2, ... Поэтому на основании соотношения (47) имеем

$$\lambda_n(t) = [\mathbf{F}_{n12}(t_1 - t) - \mathbf{F}_{n22}(t_1 - t)]^{-1} [\mathbf{F}_{n21}(t_1 - t) - \mathbf{F}_{n11}(t_1 - t)] \mathbf{x}_n(t), \tag{48}$$

где $\lambda_n(t) = \mathbf{R}_n(t)\mathbf{x}_n(t)$. Сравнение равенства (48) и соотношения $\lambda_n(t) = \mathbf{R}_n(t)\mathbf{x}_n(t)$ приводит к следующему заключению.

Теорема 5. Матрицу $\mathbf{R}_n(t)$ можно найти с помощью соотношения

$$\mathbf{R}_{n}(t) = \left[\mathbf{F}_{n12}(t_{1}-t) - \mathbf{F}_{n22}(t_{1}-t)\right]^{-1} \left[\mathbf{F}_{n21}(t_{1}-t) - \mathbf{F}_{n11}(t_{1}-t)\right].$$

Заключение

Перспективным исследованием является обобщение результатов, полученных в данной работе, на случай систем с дробными производными [4, 5] с помощью метода разрешающих функций [6, 7]. Также важно исследовать сходимость рядов Фурье (37).

М.М. Копець

ОПТИМАЛЬНЕ КЕРУВАННЯ ПРОЦЕСОМ КОЛИВАНЬ ТОНКОГО ПРЯМОКУТНОГО СТРИЖНЯ

Розглянуто лінійно-квадратичну задачу оптимального керування процесом коливань тонкого прямокутного стрижня. Для цієї задачі оптимізації отримано необхідні умови оптимальності, аналіз яких дав можливість вивести систему інтегродиференціальних рівнянь Ріккаті, розв'язок якої подано в замкненій формі.

M.M. Kopets

OPTIMAL CONTROL OF THE PROCESS OF OSCILLATIONS OF A THIN RECTANGULAR SHANK

The linear-quadratic optimal control of the process of oscillations of a thin rectangular shank is considered. For a considered optimization problem the necessary conditions of optimality are obtained. The analysis of these conditions has given the chance to deduce the system of Riccati integro-differential equations which solution is presented in closed form.

- Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 736 с.
- 2. *Сиразетдинов Т.К.* Оптимизация систем с распределенными параметрами. М.: Наука, 1977. 480 с.
- 3. Васильев А.Н. Mathematica. Практический курс с примерами решения прикладных задач. К.: ВЕК+, СПб.: КОРОНА-ВЕК, 2008. — 448 с.
- Чикрий А.А., Эйдельман С.Д. Игровые задачи управления для квазилинейных систем с дробными производными Римана-Лиувилля // Кибернетика и системный анализ. — 2011. — № 6. — С. 66–99.
- Эйдельман С.Д., Чикрий А.А. Динамические игровые задачи сближения для уравнений дробного порядка // Укр. мат. журн. — 2000. — 52, № 11. — С. 1566–1583.
- Chikrii A.A., Rappoport J.S., Chikrii K.A. Multivalued mapping and their selectors in the theory of conflict-controlled processes // Cybernetics and Systems Analysis. 2007. 43, N 5. P. 719–730.
- Chikrii A.A., Dzyubenko K.J. Bilinear Markov processes of searching for moving targets // Journal of Automation and Information Sciences. 2001. 33, N 5. P. 62–74.

Получено 10.06.2014

Статья представлена к публикации членом редколлегии чл.-корр. НАН Украины А.А. Чикрием.