УПРАВЛЕНИЕ И ОПТИМИЗАЦИЯ СИСТЕМ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

УДК 517.9

Н.В. Горбань, А.В. Капустян, Е.А. Капустян, О.В. Хоменко

СИЛЬНЫЙ ГЛОБАЛЬНЫЙ АТТРАКТОР ТРЕХМЕРНОЙ СИСТЕМЫ УРАВНЕНИЙ НАВЬЕ–СТОКСА В НЕОГРАНИЧЕННОЙ КАНАЛОПОДОБНОЙ ОБЛАСТИ*

Введение

Важной задачей исследования качественного поведения решений эволюционных диссипативных систем является изучение глобального аттрактора (минимального компактного множества, притягивающего все траектории системы) [1, 2]. При этом использование современных методов нелинейного и многозначного анализа дает возможность обобщения результатов теории глобальных аттракторов на класс диссипативных некорректно поставленных задач [3, 4]. Особое место среди таких задач занимает 3D-система Навье-Стокса [5]. В данном направлении проводились исследования как в случае ограниченной области [1], так и в неограниченных областях [6]. Однако на сегодняшний день для трехмерной системы уравнений Навье-Стокса известны результаты лишь в слабой топологии фазового пространства [7–9]. Один из методов изучения данной проблемы заключается в анализе различных модификаций системы с дальнейшим граничным переходом. В данной работе рассмотрена одна из таких модификаций [10, 11]), совпадающая с немодифицированной 3D-системой Навье-Стокса при ограниченных градиентах скоростей. В [10] задача рассмотрена в ограниченной области, для исследуемой системы доказано существование глобального аттрактора соответствующей полугруппы в сильной топологии, а также показана его сходимость ко множеству ограниченных полных траекторий немодифицированной системы. В данной работе эти результаты обобщены на случай неограниченных областей, удовлетворяющих неравенству Пуанкаре. Отметим, что ранее близкий круг вопросов был рассмотрен в [12], где рассматривалась система Бенара с указанной модификацией в неограниченной области. Однако результаты [12], применяемые к исследуемой системе, гарантируют лишь потраекторное притяжение в слабой топологии фазового пространства. Таким образом, полученные в данной работе результаты о существовании и свойствах глобального аттрактора в сильной топологии являются новыми.

Постановка задачи

Пусть $\Omega \subset \mathbb{R}^3$ — область, удовлетворяющая неравенству Пуанкаре:

$$\exists \lambda_1 > 0 : \forall \varphi \in H_0^1(\Omega) \int_{\Omega} \varphi^2(x) \, dx \le \frac{1}{\lambda_1} \int_{\Omega} \|\nabla \varphi\|^2(x) \, dx.$$

^{*} Исследования частично поддержаны грантами Президента Украины GP/F50/049, GP/F61/017. © Н.В. ГОРБАНЬ, А.В. КАПУСТЯН, Е.А. КАПУСТЯН, О.В. ХОМЕНКО, 2015

Международный научно-технический журнал «Проблемы управления и информатики», 2015, № 6

Положим, что

$$V = \{u \in (C_0^\infty(\Omega))^3 \, \big| \, \mathrm{div} \, u = 0 \}; \ H = c l_{(L^2(\Omega))^3} V, \ \mathsf{V} = c l_{(H_0^1(\Omega))^3} V.$$

Тогда H и V — гильбертовы пространства со скалярными произведениями и нормами:

$$\forall u, v \in H \ (u, v) = \sum_{i=1}^{3} \int_{\Omega} u_i(x) v_i(x) dx, \ \|u\| = \sqrt{(u, u)},$$

$$\forall u, v \in V \quad (u, v)_1 = \sum_{i,j=1}^3 \int_{\Omega} \frac{\partial u_i(x)}{\partial x_j} \frac{\partial v_i(x)}{\partial x_j} dx, \ \|u\|_1 = \sqrt{(u, u)_1}.$$

Таким образом, вложение $V \subset H \subset V^*$ плотно и непрерывно. Кроме того, выполняется неравенство Пуанкаре:

$$\forall u \in \mathsf{V} \ \|u\|^2 \le \frac{1}{\lambda_1} \|u\|_1^2.$$

В цилиндре $Q = (0, T) \times \Omega$ рассмотрим задачу,

$$\begin{cases} \frac{\partial u}{\partial t} - v\Delta u + F_N(\|u\|_1)(u\nabla)u = f - \nabla p, \\ \operatorname{div} u = 0, \\ u\big|_{\partial\Omega} = 0, \end{cases}$$
 (1)

где v>0, $f:\Omega\to \mathbb{R}^3$ заданы, $u\nabla=\sum_{i=1}^3 u_i\frac{\partial}{\partial x_i}$, модифицирующий множитель $F_N:\mathbb{R}_+\to\mathbb{R}_+$ для каждого $N\ge 1$ задан равенством

$$F_N(r) = \begin{cases} 1, & r = 0, \\ \min\left\{1, \frac{N}{r}\right\}, & r > 0. \end{cases}$$

Рассмотрим слабую постановку задачи (1): найти такой элемент u = u(t, x), что

$$u \in W_T = L^2(0, T; V) \cap L^{\infty}(0, T; H),$$

$$\frac{d}{dt}(u, v) + v(u, v)_1 + b_N(u, u, v) = (f, v) \ \forall v \in V,$$

(2)

где $b_N(u, v, w) = F_N(\|v\|_1)b(u, v, w), b: V \times V \to R$ — трилинейная непрерывная форма, заданная равенством

$$b(u, v, w) = \sum_{i,j=1}^{3} \int_{\Omega} u_i \frac{\partial v_j}{\partial x_i} w_j dx.$$

В дальнейшем покажем, что для $\forall u_0 \in H$ задача (2) имеет единственное решение u, удовлетворяющее начальному условию $u(0) = u_0$. Продолжим это решение на $(0, +\infty)$ и в результате получим корректно определенную полугруппу $\{S(t): H \to H\}_{t \ge 0}$:

$$S(t)u_0 = u(t), \ u(0) = u_0,$$
 (3)

где $u(\cdot)$ — решение (2).

Определение 1. Компактное множество $A = A(N) \subset H$ называют глобальным аттрактором [2] полугруппы $\{S(t)\}_{t\geq 0}$, если

- 1) $A = S(t) A \quad \forall t \ge 0$;
- 2) для произвольного непустого ограниченного множества $B \subset H$ $dist(S(t)B,A) \to 0, t \to \infty$.

Основной целью работы является доказательство существования связного глобального аттрактора A = A(N) полугруппы (3), а также сходимости A(N) при $N \to \infty$ ко множеству полных ограниченных траекторий 3D-системы Навье—Стокса.

Основные результаты

В дальнейшем рассмотрим эквивалентную (2) операторную постановку задачи в пространстве V^* :

$$\frac{du}{dt} + vAu + B_N(u, u) = f, (4)$$

где $A: V \to V^*$ — оператор Стокса, оператор $B_N: V \times V \to V^*$ задан равенством

$$\langle B_N(u, v), w \rangle = b_N(u, v, w).$$

Кроме того, справедливо неравенство

$$||B_N(u,v)||_{V^*} \le N \cdot c \cdot ||u||_1.$$
 (5)

В силу (5) произвольное решение задачи (2) принадлежит классу

$$W(0,T) = \left\{ u \in L_2(0,T;V) : \frac{du}{dt} \in L_2(0,T;V^*) \right\}.$$

Теорема 1. Для каждого $u_0 \in H$ существует единственное решение (2), удовлетворяющее начальному условию $u(0) = u_0$.

Доказательство. Воспользуемся схемой из [5]. Пусть $\{w_i\}_{i\geq 1}\subset V$ — система линейно независимых элементов, тотальная в V. Каждое приближенное решение

 $u^{n}(t,x) = \sum_{i=1}^{n} e_{in}(t) w_{i}(x)$ удовлетворяет системе обыкновенных дифференциаль-

ных уравнений:

$$\left(\frac{du^n}{dt}, w_j\right) + \nu(u^n, w_j)_1 + b_N(u^n, u^n, w_j) = (f, w_j), \ j = \overline{1, n},$$
 (6)

с начальным условием

$$u^{n}(0) = u_{0}^{n} \rightarrow u_{0}$$
 в H при $n \rightarrow \infty$. (7)

Для каждого $n \ge 1$, для всех $u, v \in \mathsf{V}$ функция F_N удовлетворяет оценке [11]

$$|F_N(||u||_1) - F_N(||v||_1)| \le \frac{1}{N} F_N(||u||_1) F_N(||v||_1) ||u - v||_1.$$
(8)

Таким образом, функция

$$\mathbb{R}^n \ni \{e_1, \dots, e_n\} \mapsto F_N \left(\left\| \sum_{i=1}^n e_i w_i \right\|_1 \right)$$

является локально липшицевой. Из теоремы Пикара получаем, что задача Коши (6), (7) имеет единственное решение u^n на $[0, T_n]$. Поскольку $b_N(u, v, v) = 0$, из (6) получаем

$$\frac{1}{2}\frac{d}{dt}\|u^{n}(t)\|^{2} + v\|u^{n}(t)\|_{1}^{2} = (f, u^{n}(t)), \tag{9}$$

$$\|u^{n}(t)\|^{2} + 2v \int_{0}^{t} \|u^{n}(p)\|_{1}^{2} dp = \|u^{n}(0)\|^{2} + 2\int_{0}^{t} (f, u^{n}(p)) dp.$$
 (10)

Используем неравенство Пуанкаре и лемму Гронуолла. Получаем оценку

$$\|u^n(t)\|^2 \le \|u^n(0)\|^2 e^{-\nu\lambda_1 t} + \frac{2}{\nu^2 \lambda_1^2} \|f\|^2.$$
 (11)

Из (10), (11) следует, что $T_n = T$ и

$$\{u^n\}_{n\geq 1}$$
 — ограниченная в $W(0,T)$ последовательность. (12)

Таким образом, существует такое $u \in W(0,T)$, что, по крайней мере, по подпоследовательности справедливы сходимости

$$u^n \to u$$
 *-слабо в $L^\infty(0,T;H)$;
$$u^n \to u$$
 слабо в $L^2(0,T;\mathsf{V}),\ n\to\infty.$

В силу (5), (12) последовательность $\{f^n = f - vAu^n - B_N(u^n, u^n)\}_{n \ge 1}$ ограничена в $L^2(0,T;V^*)$. Аналогично [5] получаем существование таких $\gamma > 0$, c > 0, что $\forall n \ge 1$:

$$\int_{-\infty}^{+\infty} \left| \tau \right|^{2\gamma} \left\| \overline{u}^n(\tau) \right\|^2 d\tau < c, \tag{14}$$

где u^n — преобразование Фурье функции u^n (положим $u^n(t) = 0$ вне отрезка [0,T]). Используем теорему о компактности с дробными производными [5]. Получим, что для произвольной подобласти $\Omega_r = \Omega \cap \{|x| < r\}$, по крайней мере, по подпоследовательности справедлива сходимость

$$u^n \to u \text{ B } L^2(0, T; (L^2(\Omega_r))^3), \quad n \to \infty.$$
 (15)

В силу призвольности значений $\,r \! > \! 0\,$ и (15) получим

$$u^{n}(t,x) \rightarrow u(t,x)$$
 почти везде на $(0,T) \times \Omega$ при $n \rightarrow \infty$. (16)

Покажем, что функция $u \in W(0,T)$ является решением (2). Для этого достаточно обосновать (для каждого фиксированного j) граничный переход в равенстве:

$$-\int_{0}^{T} (u^{n}(t), \psi'(t)w_{j}) dt - (u_{0}^{n}, w_{j}) \psi(0) + v \int_{0}^{T} (u^{n}(t), \psi(t)w_{j})_{1} dt + \int_{0}^{T} b_{N}(u^{n}(t), u^{n}(t), \psi(t)w_{j}) dt - \int_{0}^{T} (f, \psi(t)w_{j}) dt = 0,$$

$$(17)$$

где $\psi \in C^1([0,T])$, $\psi(T) = 0$. Из (13) получаем нужные сходимости для первых трех слагаемых равенства (17).

Положим $z^n(t,x) = F_N(\|u^n(t)\|_1)u^n(t,x)$. Поскольку $0 \le F_N(r) \le 1$,

$$z^n \to z$$
 слабо в $L^2(0, T; V)$ при $n \to \infty$. (18)

Вследствие (15) и справедливости вложения $\mbox{ supp } w_j \subset \Omega_r$ для некоторого r>0 получаем

$$\int_{0}^{T} b_{N}(u^{n}(t), u^{n}(t), \psi(t) w_{j}) dt = \int_{0}^{T} b(z^{n}(t), u^{n}(t), \psi(t) w_{j}) dt =
= -\int_{0}^{T} b(z^{n}(t), \psi(t) w_{j}, u^{n}(t)) dt \rightarrow \int_{0}^{T} b(z(t), u(t), \psi(t) w_{j}) dt.$$
(19)

Осталось доказать, что $z(t,x) = F_N(\left\|u(t)\right\|_1)u(t,x)$. Сначала покажем, что

$$u^{n}(t) \rightarrow u(t)$$
 в V для почти всех t при $n \rightarrow \infty$. (20)

Из (19) следует, что $u \in W(0,T)$ удовлетворяет уравнению

$$\frac{d}{dt}(u,v) + v(u,v)_1 + b(z,u,v) = (f,v), \quad \forall v \in V.$$
 (21)

Это означает выполнение энергетического равенства:

$$||u(t)||^2 + 2\nu \int_0^t ||u(p)||_1^2 dp = ||u(0)||^2 + 2\int_0^t (f, u(p)) dp.$$
 (22)

Из (10), (22), (7) и (13) получаем

$$\|u(t)\|^2 + 2\nu \limsup_{t \to 0}^{t} \|u^n(p)\|_1^2 dp \le \|u(0)\|^2 + \int_{0}^{t} (f, u(p)) dp.$$

Таким образом,

$$\limsup_{n \to \infty} \int_{0}^{T} ||u^{n}(p)||_{1}^{2} dp \le \int_{0}^{T} ||u(p)||_{1}^{2} dp.$$
 (23)

С другой стороны, в силу слабой сходимости

$$\liminf \int_{0}^{T} ||u^{n}(p)||_{1}^{2} dp \ge \int_{0}^{T} ||u(p)||_{1}^{2} dp.$$

Таким образом,

$$u^n \to u \text{ B } L^2(0, T; \mathsf{V}) \text{ при } n \to \infty.$$
 (24)

Международный научно-технический журнал «Проблемы управления и информатики», 2015, № 6

Из (24) получаем сходимость (20) по подпоследовательности. Из (15) следует, что

$$z^n \to F_N(\|u\|_1)u$$
 в $L^2(0,T;(L^2(\Omega_r))^3)$ при $n \to \infty$.

Вследствие (18) справедливо равенство

$$z(t, x) = F_N(||u(t)||_1)u(t, x)$$
 почти везде.

Таким образом, u — решение (2) и $u(0) = u_0$.

Докажем единственность. Пусть w = u - v, где u и v — решения (2). Воспользуемся рассуждениями, аналогичными [11]. Тогда из (8) и неравенства

$$|b(u, v, w)| \le c_0 ||u||_1 ||v||_1 ||w||^{1/2} ||w||_1^{1/2},$$

получаем

$$|b_N(u, u, w) - b_N(v, v, w)| \le v ||w||_1^2 + c \cdot N^4 \cdot ||w||^2$$
.

Из равенства

$$\frac{d}{dt} \|w(t)\|^2 + 2v \|w(t)\|_1^2 = -2(b_N(u, u, w) - b_N(v, v, w))$$

следует

$$\frac{d}{dt} \| w(t) \|^2 + v \| w(t) \|_1^2 \le 2c \cdot N^4 \cdot \| w(t) \|^2.$$
 (25)

Из неравенства Гронуолла получаем, что $w(t) \equiv 0$, как только u(0) = v(0).

Теорема доказана.

Произвольность значения T>0 позволяет утверждать, что каждое решение (2) определено на $[0,+\infty)$. Тогда формула (3) корректно определяет полугруппу $\{S(t): H \to H\}_{t \ge 0}$.

Теорема 2. Для полугруппы $\{S(t)\}_{t\geq 0}$, определенной формулой (3), существует глобальный аттрактор в фазовом пространстве H, ограниченный в H равномерно по N.

Доказательство. Из оценки (25) следует непрерывность $S(t): H \to H$ для всех $t \ge 0$. Каждое решение (2) почти везде удовлетворяет равенству

$$\frac{1}{2} \frac{d}{dt} \| u(t) \|^2 + v \| u(t) \|_1^2 = (f, u(t)).$$
 (26)

Из неравенства Пуанкаре и леммы Гронуолла получаем оценку

$$\|u(t)\|^2 \le \|u(0)\|^2 e^{-v\lambda_1 t} + \frac{2}{v^2 \lambda_1^2} \|f\|^2, \quad \forall t \ge 0.$$
 (27)

Из (27) следует, что $\{S(t)\}_{t\geq 0}$ диссипативна с поглощающим множеством

$$B_0 = \left\{ u \in H : \left\| u \right\|^2 \le 1 + \frac{2}{v^2 \lambda_1^2} \left\| f \right\|^2 \right\},\,$$

т.е. для любого непустого ограниченного множества $B \subset H$ существует такое значение T(B), что

$$\forall t \ge T(B) \ S(t)B \subset B_0. \tag{28}$$

Докажем асимптотическую компактность полугруппы $\{S(t)\}_{t\geq 0}$. Это значит, что для произвольных последовательностей $\{u_n^0\}_{n\geq 1}\subset H, \{t_n\}_{n\geq 1}\subset [0,+\infty),$ таких, что для некоторого R>0 $\|u_n^0\|\leq R;$ $t_n\uparrow\infty$:

последовательность
$$\{S(t_n)u_n^0\}_{n\geq 1}$$
 предкомпактна в H . (29)

Отметим, что согласно [1] асимптотическая компактность полугруппы и выполнение (28) гарантируют существование глобального аттрактора $A=A(N)\subset B_0$ для полугруппы $\{S(t)\}_{t\geq 0}$ в фазовом пространстве H.

Докажем утверждение (29). Воспользуемся методом энергетических равенств [1, 6]. Вследствие (27) последовательность $\{\xi_n = S(t_n)u_n^0\}_{n\geq 1}$ ограничена в H. Таким образом, по подпоследовательности

$$\xi_n \to \xi$$
 слабо в H при $n \to \infty$. (30)

Аналогично для любого T > 0 по подпоследовательности (зависящей от T)

$$S(t_n - T)u_n^0 \to \xi^T$$
 слабо в H при $n \to \infty$. (31)

Для каждого $n \ge 1$ положим $u_n(t) = S(t+t_n-T)u_n^0 = S(t)S(t_n-T)u_n^0$, $t \ge 0$. Определенная таким образом функция u_n удовлетворяет (26), (27), поэтому является ограниченной в W(0,T). Следовательно, существует такая функция $u \in W(0,T)$, что справедливо (13). Из равенства

$$(u_n(t+h)-u_n(t), v) = \int_{t}^{t+h} < u'_n(s), v > ds$$

получаем справедливось следующих оценок $\forall v \in V, \ \forall 0 \le t < t + h \le T$:

$$|(u_n(t+h)-u_n(t),v)| \le c_T ||v||_1 h^{1/2};$$
 (32)

$$\int_{0}^{T-h} \left| \left(u_n(t+h) - u_n(t) \right|^2 dt \le c_T h^{1/2}.$$
 (33)

Рассуждая аналогично [6], получим сходимость u_n к u в смысле (15), (16). Тогда для $z_n(t,x) = F_N(\|u_n(t)\|_1)u_n(t,x)$ существует такая функция $z \in L^2(0,T;V)$, что справедливо (18). Аналогично (19) для $v \in V$:

$$\int_{0}^{T} b_{N}(u_{n}(t), u_{n}(t), v) dt \rightarrow \int_{0}^{T} b(z(t), u(t), v) dt, \ n \rightarrow \infty.$$

Из плотности вложения V в V получаем выполнение (21) для u. Более того, для почти всех $t \in (0,T)$ справедливо равенство:

$$\frac{1}{2}\frac{d}{dt}\|u(t)\|^2 + v\|u(t)\|_1^2 = (f, u(t)). \tag{34}$$

Из (15) получаем, что $\forall r > 0$, $u_n(t) \to u(t)$ в $(L^2(\Omega_r))^3$ для почти всех $t \in (0,T)$ при $n \to \infty$. Таким образом, для всех $v \in V$, для почти всех $t \in (0,T)$: $(u_n(t),v) \to$

 $\to (u(t),v)$ при $n\to\infty$. Из (32) следует равномерная ограниченность и равностепенная непрерывность на [0,T] последовательности функций $\{(u_n(t),v)\}_{n\ge 1}$. Поскольку $u\in C([0,T];H)$,

$$(u_n(t), v) \rightarrow (u(t), v)$$
 при $n \rightarrow \infty$, $\forall t \in [0, T]$, $\forall v \in V$.

Из критерия слабой сходимости, в силу плотности вложения V в H, имеем

$$u_n(t) \to u(t)$$
 слабо в H при $n \to \infty$, $\forall t \in [0, T]$. (35)

Из (35) получаем, что

$$u_n(T) = \xi_n \to \xi = u(T)$$
 слабо в H при $n \to \infty$,

$$u_n(0) = S(t_n - T)u_n^0 \to \xi^T = u(0)$$
 слабо в H при $n \to \infty$.

Обозначим
$$[u] = \left(v \|u\|_1^2 - v \frac{\lambda_1}{2} \|u\|^2\right)^{1/2}$$
 норму в V, эквивалентную норме $\|u\|_1$ [6].

Тогда функции $\{u_n\}_{n\geq 1}$, u почти всюду на (0,T) удовлетворяют равенству:

$$\frac{d}{dt} \|u(t)\|^2 + v\lambda_1 \|u(t)\|^2 + 2[u(t)]^2 = 2(f, u(t)).$$
(36)

Применив (36) к u_n для каждого $n \ge 1$, получим

$$\|u_n(T)\|^2 = \|\xi_n\|^2 = \|u_n(0)\|^2 e^{-\nu\lambda_1 T} + 2\int_0^T e^{\nu\lambda_1(t-T)} ((f, u_n(t)) - [u_n(t)]^2) dt.$$
 (37)

Тогда из (13) следует, что

$$\liminf_{n \to \infty} \|\xi_n\|^2 + 2 \int_0^T e^{\nu\lambda_1(t-T)} [u(t)]^2 dt \le \limsup_{n \to \infty} \|u_n(0)\|^2 e^{-\nu\lambda_1 T} + 2 \int_0^T e^{\nu\lambda_1(t-T)} (f, u(t)).$$
(38)

Применив теперь (36) к u, имеем

$$||u(T)||^2 = ||\xi||^2 = ||u(0)||^2 e^{-v\lambda_1 T} + 2\int_0^T e^{v\lambda_1 (t-T)} ((f, u(t)) - [u(t)]^2) dt.$$
 (39)

Из (38) и (39) получим

$$\liminf_{n \to \infty} \|\xi_n\|^2 \le \limsup_{n \to \infty} \|u_n(0)\|^2 e^{-v\lambda_1 T} - \|u(0)\|^2 e^{-v\lambda_1 T} + \|\xi\|^2.$$
(40)

Из (27) следует, что для любого T > 0

$$||u(0)||^2 \le \liminf_{n \to \infty} ||u_n(0)||^2 \le \limsup_{n \to \infty} ||u_n(0)||^2 \le$$

$$\leq \limsup_{n \to \infty} \left(\left\| u_n^0 \right\|^2 e^{-v\lambda_1(t_n - T)} + \frac{2}{v^2 \lambda_1^2} \left\| f \right\|^2 \right) \leq \frac{2}{v^2 \lambda_1^2} \left\| f \right\|^2 + 1.$$

Следовательно, из (40) при $T \to \infty$ получаем, что

$$\liminf_{n\to\infty} \|\xi_n\|^2 \le \|\xi\|^2.$$

Последнее неравенство совместно со слабой сходимостью ξ_n к ξ в H гарантирует предкомпактность последовательности $\{\xi_n\}_{n\geq 1}$ в H.

Теорема доказана.

Замечание 1. Из результатов общей теории глобальных аттракторов [1] следует, что аттрактор A = A(N), полученный в теореме 2, является связным устойчивым подмножеством в фазовом пространстве H и состоит из ограниченных полных траекторий, т.е. $\forall z \in A, \exists u(\cdot) : R \to H : u(0) = z$,

$$\forall t \ge 0, \ \forall \tau \in \mathsf{R}, \ S(t)u(\tau) = u(t+\tau).$$

Далее, поскольку $\forall N \geq 1$, $A(N) \subset B_0 = \left\{ u \in H : \left\| u \right\|^2 \leq 1 + \frac{2}{\sqrt{2}\lambda_1^2} \left\| f \right\|^2 \right\}$, имеем непустой w — верхний предел Куратовского для $\{A(N)\}_{N \geq 1}$:

$$\Theta = w - \limsup A(N) = \{u \in H : \exists u_{N_k} \in A(N_k), \ u_{N_k} \to u \text{ слабо при } k \to \infty \text{ в } H\}.$$

Теорема 3. Через каждую точку $u_0 \in \Theta$ проходит полная траектория 3D-системы Навье–Стокса $u(\cdot): \mathsf{R} \to H$, причем $\forall t \in \mathsf{R}, \ u(t) \in B_0$.

Доказательство. Рассмотрим любое $u_0^N \in B_0$, такое, что $u_0^N \to u_0$ слабо в H при $N \to \infty$. Покажем, что решение (2) $u_N(\cdot)$, удовлетворяющее начальному условию $u_N(0) = u_0^N$, сходится в смысле (13) к $u(\cdot) \in W_T$, где $u(\cdot)$ удовлетворяет уравнению

$$\frac{d}{dt}(u,v) + v(u,v)_1 + b(u,u,v) = (f,v), \ \forall v \in V,$$
(41)

с начальным условием

$$u(0) = u_0. \tag{42}$$

Действительно, поскольку $\forall N \ge 1$ $u_N(\cdot)$ удовлетворяет (10), (11), $0 \le F_N(r) \le 1$, то

$$\{u_N\}_{N\geq 1}$$
 ограничена в W_T ;
$$\left\{\frac{du_N}{dt}\right\}_{N\geq 1}$$
 ограничена в $L^{4/3}(0,T;\mathsf{V}^*).$

Таким образом, существует такая $u \in W_T$, что с точностью до подпоследовательности $u_N \to u$ в смысле (13). Кроме того, из (43) следует, что $\forall v \in V$, $\forall 0 \le t < t + h \le T$

$$|(u_N(t+h)-u_N(t),v)| \le c_T ||v||_1 h^{1/4};$$

$$\int_{0}^{T-h} |u_{N}(t+h) - u_{N}(t)|^{2} dt \le c_{T} h^{1/4}.$$

Отсюда получаем сходимость u_N к u в смысле (15), (16).

Для дальнейшего доказательства воспользуемся леммой.

$$F_N(\|u_N(\cdot)\|_1) \to 1$$
 при $N \to \infty$ в $L^p(0,T)$. (44)

Покажем, что $\forall v \in V$

$$\int_{0}^{T} b_{N}(u_{N}(t), u_{N}(t), v) dt \to \int_{0}^{T} b(u(t), u(t), v) dt.$$
(45)

Поскольку $\mathrm{supp}\,V\subset\Omega_r$ для некоторого r>0, то в силу сходимостей (13), (15) получаем, что

$$\int_{0}^{T} b(u_N(t), u_N(t), v) dt \to \int_{0}^{T} b(u(t), u(t), v) dt, \quad N \to \infty.$$

$$\tag{46}$$

Кроме того,

$$\int_{0}^{T} \left| b(u_{N}(t), u_{N}(t), v) \right|^{2} dt \le \int_{0}^{T} \left\| u_{N}(t) \right\|^{2} \left\| u_{N}(t) \right\|_{1}^{2} \left\| v \right\|_{(L^{\infty}(\Omega_{r}))^{3}}^{2} \le c(T, v). \tag{47}$$

Из (44), (46), (47) и леммы получаем требуемую сходимость (45). Это позволяет перейти к пределу при $N \to \infty$ в (2) и получить в результате, что u удовлетворяет (41) для всех $v \in V$ и, таким образом, для всех $v \in V$. При этом аналогично (35)

$$u_N(t) \to u(t)$$
 слабо в H при $N \to \infty$, $\forall t \in [0, T]$, (48)

в частности, $u(0) = u_0$.

Пусть $u_0 \in \Theta$. Тогда $\exists u_0^N \in A(N) \colon u_0^N \to u_0$ слабо в H. Пусть $u^N \colon \mathsf{R} \to H$ — полная траектория, для которой $u^N(0) = u_0^N$, $u^N(t) \in A(N) \subset B_0$. Воспользовавшись стандартными рассуждениями [10], на каждом конечном интервале получаем сходимость последовательности u_N к полной траектории 3D-системы Навье—Стокса $u(\cdot) \colon \mathsf{R} \to H$, $u(0) = u_0$, причем в силу (48) $\forall t \in \mathsf{R}$, $u(t) \in B_0$.

Теорема доказана.

Заключение

Таким образом, в работе изучена модифицированная система, совпадающая с 3D-системой Навье—Стокса при ограниченных градиентах скоростей, в неограниченной области, удовлетворяющей неравенству Пуанкаре. Для исследуемой задачи получена теорема о существовании и единственности решения задачи Коши (теорема 1). Для соответствующей полугруппы, определенной формулой (3), с помощью теории глобальных аттракторов бесконечномерных динамических систем доказано существование глобального аттрактора (теорема 2). Более того, показана его близость ко множеству ограниченных полных траекторий немодифицированной 3D-системы Навье—Стокса (теорема 3).

СИЛЬНИЙ ГЛОБАЛЬНИЙ АТРАКТОР ТРИВИМІРНОЇ СИСТЕМИ РІВНЯНЬ НАВ'Є-СТОКСА В НЕОБМЕЖЕНІЙ КАНАЛОПОДІБНІЙ ОБЛАСТІ

Розглянуто модифіковану тривимірну систему Нав'є—Стокса в необмеженій області, що задовольняє нерівності Пуанкаре. Доведено однозначну глобальну розв'язність, для відповідної напівгрупи встановлено існування глобального атрактора в сильній топології фазового простору, показано збіжність одержаних атракторів до множини повних обмежених траєкторій 3D-системи Нав'є—Стокса.

N.V. Gorban, A.V. Kapustyan, E.A. Kapustyan, O.V. Khomenko

STRONG GLOBAL ATTRACTOR FOR THREE-DIMENSIONAL NAVIER-STOKES SYSTEM OF EQUATIONS IN UNBOUNDED DOMAIN OF CHANNEL TYPE

The modified three-dimensional Navier–Stokes system in unbounded domain satisfying the Poincare inequality is considered. The unique global solvability is proved, the existence of a global attractor for the corresponding semigroup in the strong topology of the phase space, is obtained the convergence of these attractors to the set of complete bounded trajectories of 3D-Navier–Stokes system is shown.

- Temam R. Infinite-dimensional dynamical systems in mechanics and physics. New York: Springer, 1988. — 645 p.
- Chepyzhov V.V., Vishik M.I. Attractors for equations of mathematical physics. Rhode Island: American Mathematical Society. — 2002. — 324 p.
- Kapustyan O.V., Mel'nik V.S., Valero J., Yasinsky V.V. Global attractors of multi valued dynamical systems and evolution equations without uniqueness. — Kyiv: Naukova dumka, 2008. — 215 p.
- Evolution inclusions and variation inequalities for Earth data processing III: Long-time behavior
 of evolution inclusions solutions in Earth data analysis / M.Z. Zgurovsky, P.O. Kasyanov,
 O.V. Kapustyan etc. Berlin: Springer, 2012. 27. 340 p.
- Темам Р. Уравнение Навье–Стокса: Теория и численный анализ. М.: Мир, 1981. 408 с.
- 6. Rosa R. The global attractor for the 2D Navier–Stokes flow on some unbounded domains // Nonlinear analysis. 1998. 32, N 1. P. 71–85.
- Kapustyan O.V., Melnik V. S., Valero J. A weak attractor and properties of solutions for the threedimensional Benard problem // Discrete and Continuous Dynamical Systems. — 2007. — 18, N 2, 3. — P. 449–481.
- 8. *Kapustyan O.V., Valero J.* Weak and strong attractors for the 3D Navier–Stokes system // Journal of Differential Equations. 2007. 240, N 2. P. 249–278.
- Cheskidov A., Foias C. On global attractors of the 3D Navier–Stokes equations // Ibid. 2006.
 231. P. 714–754.
- Caraballo T., Kloeden P.E., Real J. Unique strong solution and V-attractor of a three-dimensional system of globally modified Navier–Stokes equation // Advanced Nonlinear Studies. 2006. 6. P. 411–436.
- 11. *Romito M*. The uniquiness of weak solutions of the globally modified Navier–Stokes equations // Advanced Nonlinear Studies. 2009. 9. P. 425–427.
- Kapustyan O.V., Pankov A.V. Global φ-attractor for a modified 3D Benard system on channel-like domains // Nonautonomous dynamical systems. — 2014. — 1. — P. 1–9.

Получено 12.05.2015

Статья представлена к публикации членом редколлегии акад. НАН Украины М.З. Згуровским.