УДК 62.501.52

Л.Т. Мовчан

ОПРЕДЕЛЕНИЕ ТОЧНОЙ ГРАНИЦЫ ОБЛАСТИ УСТОЙЧИВОСТИ ОДНОГО КЛАССА ДИНАМИЧЕСКИХ СИСТЕМ

Введение

В [1–7] рассматриваются системы, характеристические полиномы которых могут быть приведены к виду

$$D(s) = L(s) + KH(s), \tag{1}$$

где $L(s) = b_0 s^n + b_1 s^{n-1} + ... + b_{n-1} s + b_n$, $H(s) = c_0 s^k + c_1 s^{k-1} + ... + c_{k-1} s + c_k$ — полиномы с постоянными положительными коэффициентами, а K — изменяемый параметр, влияние которого на устойчивость нас интересует.

В настоящей работе ставится задача — получить оценку интервала области устойчивости (ОУ) параметра K, для всех значений которого характеристический полином (1) является полиномом Гурвица, или другими словами, все корни характеристического уравнения левые. Как указано в [7], основной недостаток подходов определения границы устойчивости, предложенных в [1–5], — грубая оценка области допустимых значений K. Кроме того, необходимость получения обратных матриц для матриц, соответствующих диагональным минорам определителя Гурвица [2], и необходимость решения квадратичных неравенств [3, 4] приводят к ограничению практического применения этих методов.

В работах [6, 7] удалось сравнительно просто получить достаточные условия устойчивости системы (1), которые позволяют оценить граничные значения варьируемого параметра K непосредственно в аналитической форме. Но и в этих работах полученная ОУ может существенно отличаться от действительной. Кроме того, рассматривается два отдельных случая: в первом полином L(s) в выражении (1) является полиномом Гурвица, во втором — H(s), что приводит к необходимости перед решением задачи оценки ОУ исследовать устойчивость полиномов L(s) и H(s).

В наиболее общем случае весьма удобным методом построения точной границы области устойчивости (ГОУ) в пространстве параметров линейных систем является классический метод *D*-разбиения [8], который предполагает получение областей, отвечающих заданному числу корней характеристического уравнения в левой полуплоскости. Уравнение границы области *D*-разбиения по одному параметру для системы (1) имеет вид

$$D(j\omega) = L(j\omega) + KH(j\omega), \qquad (2)$$

в котором *К* входит в коэффициенты *H* (*j* ω). Изменяя значения ω от $-\infty$ до ∞ , можно вычислить $L(j\omega)$, $H(j\omega)$ и построить на комплексной плоскости параметра © л.т. МОВЧАН, 2017

«Проблемы управления и информатики», 2017, № 5

Международный научно-технический журнал

К границу всех областей метода *D*-разбиения. ГОУ является частью полученной границы *D*-разбиения. Область устойчивости выделяют путем реализации «штриховки Неймарка» для отсеивания областей с немаксимальным количеством корней характеристического уравнения, расположенных в левой полуплоскости. В некоторых случаях для замены штриховки при выделении ГОУ используют алгебраические критерии или прямые корневые методы.

Очевидно, что в случае применения в ручном счете классического метода *D*-разбиения результат выделения области устойчивости представляется графически, что усложняет определение точной ГОУ в аналитической форме.

Постановка задачи

В связи с изложенным возникает необходимость разработки подхода определения точной границы области устойчивости в плоскости одного параметра методом *D*-разбиения в аналитической форме, который исключал бы построение кривой *D*-разбиения, использование «штриховки по Неймарку», тем самым обеспечивал бы машинную реализацию задачи определения ГОУ систем вида (1).

Решение поставленной задачи

Для решения поставленной задачи используем подход, частично изложенный в [9]. Для этого представим выражение границы *D*-разбиения в плоскости одного параметра (2):

$$D(j\omega) = (L_1(\omega) + jL_2(\omega)) + K(H_1(\omega) + jH_2(\omega)) = 0,$$
(3)

где в общем виде при четных n = 2 m и k = 2 r (n - порядок полинома L(s), k - порядок полинома H(s)) имеем:

$$\begin{split} L_1(\omega) &= (-1)^m b_0 \omega^n + (-1)^{m-1} b_2 \omega^{n-2} + \ldots + (-1) b_{n-2} \omega^2 + b_n, \\ L_2(\omega) &= (-1)^{m-1} b_1 \omega^{n-1} + (-1)^{m-2} b_3 \omega^{n-3} + \ldots + (-1) b_{n-3} \omega^3 + b_{n-1} \omega, \\ H_1(\omega) &= (-1)^r c_0 \omega^k + (-1)^{r-1} c_2 \omega^{k-2} + \ldots + (-1) c_{k-2} \omega^2 + c_k, \\ H_2(\omega) &= (-1)^{r-1} c_1 \omega^{k-1} + (-1)^{r-2} c_3 \omega^{k-3} + \ldots + (-1) c_{k-3} \omega^3 + c_{k-1} \omega, \end{split}$$

а при нечетных n = 2m + 1 и k = 2r + 1 получаем:

$$\begin{split} L_1(\omega) &= (-1)^m b_1 \omega^{n-1} + (-1)^{m-1} b_3 \omega^{n-3} + \ldots + (-1) b_{n-2} \omega^2 + b_n, \\ L_2(\omega) &= (-1)^{m-1} b_0 \omega^n + (-1)^{m-1} b_2 \omega^{n-2} + \ldots + (-1) b_{n-3} \omega^3 + b_{n-1} \omega, \\ H_1(\omega) &= (-1)^m c_1 \omega^{k-1} + (-1)^{m-1} c_3 \omega^{k-3} + \ldots + (-1) c_{k-2} \omega^2 + c_k, \\ H_2(\omega) &= (-1)^m c_0 \omega^k + (-1)^{m-1} c_2 \omega^{k-2} + \ldots + (-1) c_{k-3} \omega^3 + c_{k-1} \omega. \end{split}$$

Из уравнения (3) следует выражение для определения параметра К:

$$K(\omega) = \frac{-L_1(\omega) \cdot H_1(\omega) - L_2(\omega) \cdot H_2(\omega)}{H_1^2(\omega) + H_2^2(\omega)} + j \frac{L_1(\omega) \cdot H_2(\omega) - L_2(\omega) \cdot H_1(\omega)}{H_1^2(\omega) + H_2^2(\omega)} =$$
$$= U(\omega) + jV(\omega).$$
(4)

Поскольку параметр *К* — действительная, физически значимая величина, то задачу определения границы области устойчивости методом *D*-разбиения в плоскости одного параметра можно свести к задаче определения интервала устойчивости,

которым может быть интервал вещественной оси (K', K'') или (K'', ∞), лежащий в плоскости [K] (рис.1).

Граничные значения K' и K''соответствуют точкам пересечения кривой *D*-разбиения с действительной осью $U(\omega)$, поэтому значения частот ω_0 и ω_1 , которым соответствуют эти граничные значения параметра K, определяются из уравнения

$$L_1(\omega)H_2(\omega) - L_2(\omega)H_1(\omega) = 0 \quad (5) \quad \overline{P}$$

или

$$V(\omega) = \frac{R_V(\omega)}{Q_V(\omega)} = \frac{L_1(\omega)H_2(\omega) - L_2(\omega)H_1(\omega)}{H_1^2(\omega) + H_2^2(\omega)} = 0.$$

Тогда граничные значения параметра К вычисляются из выражений

$$K' = K(\omega_0) = \frac{-L_1(\omega_0)H_1(\omega_0) - L_2(\omega_0)H_2(\omega_0)}{H_1^2(\omega_0) + H_2^2(\omega_0)},$$

$$K'' = K(\omega_1) = \frac{-L(\omega_1)H_1(\omega_1) - L_2(\omega_1)H_2(\omega_1)}{H_1^2(\omega_1) + H_2^2(\omega_1)}.$$
(6)

В общем случае кривая *D*-разбиения может пересекать действительную ось $U(\omega)$ в плоскости одного параметра больше двух раз. Претендентом на интервал устойчивости является интервал, расположенный в области, внутрь которой направлена штриховка по Неймарку.

По определению границу *D*-разбиения штрихуют слева при изменении ω от $-\infty$ до $+\infty$. Поэтому при K' < K'' интервал (K' и K'') является интервалом устойчивости, если кривая *D*-разбиения при изменении ω от $\omega_0 = 0$ до ω_1 расположена ниже оси $U(\omega)$, т.е. $V(\omega) < 0$ (рис. 2).

Если кривая *D*-разбиения для K' < K'' и при изменении ω от ω_0 до ω_1 расположена выше оси $U(\omega)$, т.е. $V(\omega) > 0$, то интервал K'' до ∞ является областью устойчивости (рис. 3).

При K' > K'' интервал (K', K'') будет интервалом устойчивости, если кривая *D*-разбиения при изменении ω от $\omega_0 = 0$ до ω_1 расположена выше оси $U(\omega)$, т.е. $V(\omega) > 0$ (рис. 4).

Если кривая *D*-разбиения при K' > K'' и при изменении ω от $\omega_0 = 0$ до ω_1 расположена ниже оси $U(\omega)$, т.е. $V(\omega) < 0$, областью устойчивости является интервал (K', ∞) и интервал $(-\infty, K'')$ (рис. 5).

Международный научно-технический журнал

«Проблемы управления и информатики», 2017, № 5

Из изложенного выше следует, что для определения интервала устойчивости в плоскости параметра K, используя уравнение (5) и выражения (6), необходимо определить точки пересечения кривой D-разбиения с осью $U(\omega)$ ($\omega 0$, $\omega 1$, K', K'') и соотношение значений параметра K в этих точках. Установить факт устойчивости или неустойчивости интервалов, полученных при пересечении оси $U(\omega)$ кривой D-разбиения, можно путем определения знака $V(\omega)$ в пределах граничных значений первого интервала (K', K''). Для этого числитель выражения $V(\omega)$ представим в виде

$$R_V(\omega) = L_1(\omega)H_2(\omega) - L_2(\omega)H_1(\omega) = a_q \omega^l + a_{q-1}\omega^{l-2} + a_{q-2}\omega^{l-4} + \dots + a_2\omega^3 + a_1\omega,$$
(7)

где l = n + k, $q = \frac{l+1}{2}$ при непарных значениях (n+k) и l = n + k - 1, $q = \frac{l+1}{2}$ при парных значениях (n+k).

Знак $V(\omega)$ для частот от $\omega = \omega_0 = 0$ до $\omega = \omega_1$ определяется знаком коэффициента $a_1 = b_n c_{k-1} - c_k b_{n-1}$ при ω с наименьшим показателем степени. Поэтому при K' < K'' интервалом устойчивости будет интервал (K', K'') при $a_1 < 0$ и (K'', ∞) при $a_1 > 0$, а при K' > K'' — интервал (K', K'') при $a_1 > 0$ и (K', ∞) при $a_1 < 0$.

Для иллюстрации возможности практического использования предложенного подхода и получения сравнительной оценки размеров областей устойчивости обратимся к следующим примерам.

Пример 1. Рассмотрим, как и в [6,7], систему с характеристическим полиномом

$$D(s) = L(s) + KH(s) = (2s^5 + 3s^4 + 5s^3 + 9s^2 + 6s + 10) + K(s^4 + 65s^3 + 14s^2 + 115s + 3).$$
 (8)

Уравнение границы Д-разбиения по одному параметру имеет вид

$$D(j\omega) = (L_1(\omega) + jL_2(\omega)) + K(H_1(\omega) + jH_2(\omega)) = ((3\omega^4 + 9\omega^2 + 10) + j(2\omega^5 - 5\omega^3 + 6\omega)) + K((\omega^4 - 14\omega^2 + 3) + j(11,5\omega - 6,5\omega^3)).$$

После некоторых преобразований получаем выражение для определения параметра *K*:

$$K(\omega) = U(\omega) + jV(\omega) = \frac{R_V(\omega)}{Q_U(\omega)} + j\frac{R_V(\omega)}{Q_V(u)} = \frac{10\omega^8 - 4,5\omega^6 - 48,5\omega^4 + 98\omega^2 - 30}{(\omega^4 - 14\omega^2 + 3)^2 + (11,5\omega - 6,5\omega^3)^2} + j\frac{-2\omega^9 + 13,5\omega^7 + 11\omega^5 - 69,5\omega^3 + 97\omega}{(\omega^4 - 14\omega^2 + 3)^2 + (11,5\omega - 6,5\omega^3)^2}.$$

Из уравнения $R_V(\omega) = -2\omega^9 + 13,5\omega^7 + 11\omega^5 - 69,5\omega^3 + 97\omega = 0$ определяем значения частот $\omega_0 = 0$, $\omega_1 = 2,6395$ рад/с, которые соответствуют точкам пересечения кривой *D*-разбиения с осью $U(\omega)$, для которых $V(\omega) = 0$. Граничные значе-

ISSN 0572-2691

ния $K(\omega_0)$ и $K(\omega_1)$ точек пересечения определяем из выражении (6). В результате получаем $K' = K(\omega_0) = -3,3333, K'' = K(\omega_1) = 2,01987689.$

Параметр К — действительная физически значимая величина, претендентом на область устойчивости является интервал (0, K'') или (K'', ∞) .

Поскольку K' < K'' и коэффициент в $V(\omega)$ при ω больше нуля (97 > 0), то интервалом устойчивости будет (К", ∞), т.е. система будет устойчива при всех

$$K > 2,01987689.$$
 (9)

Корни характеристического уравнения исследуемой системы при K' = K'' == 2,01987689 равны: $s_1 = -1,666121, s_{2,3} = 0,00000 \pm j2,63949, s_{4,5} = -0,42191 \pm$ $\pm i71579$; при $K = 2,00 < K'' - s_1 = -1,666208, s_{2,3} = 0,00376 \pm i2,631199, s_{4,5} =$ $= -0.42079 \pm i0.718715$, при $K = 2.03 > K' - s_1 = -1.666208$, $s_{2,3} = -0.019207 \pm 10.019207 \pm 10.019207 \pm 10.019207$ $\pm j2,643694, s_{45} = -0,422474 \pm j0,715786.$

Таким образом, система находится на границе устойчивости при K = K'', устойчива при K = 2,03 и неустойчива при K = 2,00, что дополнительно подтверждает условие устойчивости (9).

Условия устойчивости описаны в работе [7]:

$$K > 4.$$
 (10)

Сравнивая области устойчивости (9) и (10), можно сделать вывод, что область, полученная с помощью предложенного подхода, более широкая и является точной границей допустимых значений параметра К.

Применяемый в ручных расчетах классический метод D-разбиения позволяет графически изобразить границу *D*-разбиения системы (8) в плоскости параметра К (рис. 6). Учитывая, что параметр К — действительная, физически значимая величина, используя правило штриховки, выделяем границу области устойчивости в интервале вещественной оси ($K(\omega_1) < K < +\infty$),

что еще раз дополнительно подтверждает условия устойчивости (9), полученные в аналитической форме с помощью вышепредложенного подхода.

> **Пример 2**. Пусть, как и в [6,7], 2

$$D(s) = (s^{5} + 2s^{4} + 20s^{3} + 15s^{2} + 30s + 5) + K(s^{4} + 2s^{3} + 5s^{2} + 15s + 4.$$
(11)

.

Выражение для определения параметра К имеет вид

$$K(\omega) = \frac{R_U(\omega)}{Q_U(\omega)} + j \frac{R_V(\omega)}{Q_V(\omega)} =$$

= $\frac{-30\omega^6 + 272\omega^4 - 365\omega^2 - 20}{(\omega^4 - 5\omega^2 + 4)^2 + (15\omega - 2\omega^3)^2} + j \frac{-\omega^9 + 21\omega^7 - 74\omega^5 - 5\omega^3 - 45\omega}{(\omega^4 - 5\omega^2 + 4)^2 + (15\omega - 2\omega^3)^2}$

Из уравнения $R_V(\omega) = -\omega^9 + 21\omega^7 - 74\omega^5 - 5\omega^3 - 45\omega = 0$ определяем значения частот, а из выражения (6) — граничные значения параметра K, которые соответствуют точкам пересечения кривой *D*-разбиения с осью U(ω). В результате получаем $\omega_0 = 0$, $\omega_1 = 2,17689$ рад/с, $\omega_2 = 4,0597$ рад/с и $K'(\omega_0) = K' = -1,25$, $K'' = K(\omega_1) = 7,663515, K(\omega_2) = K'' = -1,55.$ Претендентом на область устойчивости является интервал (0, K'') или (K'', ∞). Так как K' < K'', а коэффициент Международный научно-технический журнал

[«]Проблемы управления и информатики», 2017, № 5

при ω в $R_V(\omega)$ меньше нуля (- 45 < 0), то интервалом устойчивости будет (0, K''), т.е. система будет устойчива для всех

$$0 \le K < 7,663515.$$
 (12)

Корни характеристического уравнения исследуемой системы при K = K'' = 7,66315 равны: $s_1 = -0,268$, $s_{2,3} = 0,00000 \pm j2,177$, $s_{4,5} = -4,698 \pm j2,45$; при $K = 7,6 < K'' - s_1 = -0,268$; $s_{2,3} = -0,00195 \pm j2,175$, $s_{4,5} = -4,664 \pm j2,48$; при $K = 7,7 > K'' - s_1 = -2,68$; $s_{2,3} = 0,00111 \pm j2,178$, $s_{4,5} = -4,717 \pm j2,429$.

Таким образом, система находится на границе устойчивости при K = K'' = 7,66315, устойчива при K = 7,6 и неустойчива при K = 7,7, что дополнительно подтверждает условие устойчивости (12).

Условия устойчивости системы (11) получены в работах [6,7]:

$$0 < K < 0,3,$$
 (13)

$$0 < K < 0,7.$$
 (14)

Из сравнения областей (12)–(14) следует, что предложенный подход позволяет получить максимальную область устойчивости, которая более чем на порядок больше областей, полученных в [6, 7].

Аналогично, как и для примера 1, применяя в ручных расчетах классический метод *D*-разбиения, получаем в графической форме границу *D*-разбиения системы (11) в плоскости параметра *K* (рис. 7, *a*). Для более наглядного представления области устойчивости граница *D*-разбиения в начале координат плоскости параметра *K* изображена на рис. 7, *б* в меньшем масштабе. Согласно правилу штриховки выделяем ГОУ в виде полуинтервала $0 \le K < K(\omega_1)$, что еще раз дополнительно подтверждает условия устойчивости (12).

Пример 3. Рассмотрим квазистационарную систему с характеристическим уравнением

$$s^{3} + [4 - 0.02K(t)]s^{2} + [-1.5 + 4.5K(t)]s + K(t) = 0.$$
 (15)

В работе [3] путем решения системы алгебраических неравенств получены условия устойчивости системы (15):

$$1 \le K(t) \le 100.$$
 (16)

Для определения точной границы устойчивости системы запишем выражения для определения граничных значений параметра *K*(*t*):

$$K(\omega) = U(\omega) + jV(\omega) = \frac{4,58\omega^4 + 10,75\omega^2}{(1+0,02\omega^2)^2 + 20,25\omega^2} + j\frac{0,02\omega^5 - 16,97\omega^3 + 1,5\omega}{(1+0,02\omega^2)^2 + 20,25\omega^2}.$$

ISSN 0572-2691

Из уравнения $0,02\omega^5 - 16,97\omega^3 + 1,5\omega = 0$ определяем значения частот, которые соответствуют точкам пересечения кривой *D*-разбиения с осью $U(\omega)$. Граничные значения параметра K(t) для этих частот определяем из выражения

$$K(\omega) = \frac{4,58\omega^4 + 10,75\omega^2}{(1+0,02\omega^2)^2 + 20,25\omega^2}$$

В результате получаем $\omega_0 = 0$, $\omega_1 = 0,297322$, $\omega_2 = 29,127506$ и $K(\omega_0) = 0$, $K(\omega_1) = 0,352978$, $K(\omega_2) = 188,869245$.

На область устойчивости претендуют интервалы $(K(0), K(\omega_1)), (K(\omega_1), K(\omega_2))$ и $(K(\omega_2), \infty)$. Так как $K(\omega_0) < K(\omega_1)$, а коэффициент при ω в числителе $V(\omega)$ больше нуля (1, 5 > 0), то интервалом устойчивости является

$$0,352978 < K(t) < 188,86925. \tag{17}$$

Корни характеристического уравнения исследуемой системы при $K = K(\omega_2) =$ = 188,86925 равны: $s_1 = -0,22262, s_{2,3} = 0,00000 \pm j29,12751$; при $K = 188,8 < K(\omega_2) - s_1 = -0,22260, s_{2,3} = -0,000699 \pm j29,12301$; при $K = 188,96 > K(\omega_2) - s_1 =$ = $-0,22261, s_{2,3} = 0,000907 \pm j29,134608$.

Корни характеристического уравнения системы при $K = K(\omega_1) = 0,352978$ равны: $s_1 = -3,99294$, $s_{2,3} = 0,00000 \pm j0,297323$; при $K = 0,35 < K(\omega_1) - s_1 = -3,99627$, $s_{2,3} = 0,001637 \pm j0,295185$; при $K = 0,355 > K(\omega_1) - s_1 = -3,99036$, $s_{2,3} = -0,001297 \pm j0,299603$;

Таким образом, система находится на границе устойчивости при $K = K(\omega_2) =$ = 188,86925 и $K = K(\omega_1) = 0,352978$, устойчива при $K = 188,8 < K(\omega_2)$ и K == 0,352978 > $K(\omega_1)$ и неустойчива при $K = 188,96 > K(\omega_2)$ и $K = 0,35 < K(\omega_1)$, что дополнительно подтверждает условия устойчивости (17).

Сравнивая (16) и (17), можно сделать вывод, что предложенный подход позволяет получить точную границу области устойчивости, которая существенно шире области, полученной в работе [3].

На рис. 8, *а* в графической форме представлена в плоскости параметра K(t) граница *D*-разбиения системы (15), полученная с помощью классического метода *D*-разбиения. Для определения нижней границы области устойчивости исследуемой системы кривая *D*-разбиения на рис. 8, *б* представлена в начале координат в существенно меньшем масштабе. Учитывая, что параметр K(t) — действительная, физически значимая величина и используя правило штриховки, выделяем ГОУ в виде интервала $K(\omega_1) < K(\omega_2)$, что еще раз дополнительно подтверждает условие устойчивости (17).

Рис. 8

Международный научно-технический журнал

«Проблемы управления и информатики», 2017, № 5

Заключение

Предложенный подход позволяет в аналитической форме определить с помощью метода *D*-разбиения точную границу области устойчивости в плоскости одного параметра класса динамических систем вида (1). При этом исключается построение кривой *D*-разбиения, не требуется использование «штриховки по Неймарку» и обеспечивается машинная реализация построения области устойчивости.

Рассмотрены примеры, в которых иллюстрируется эффективность указанного подхода и подтверждается корневыми методами, что получены именно точные границы области устойчивости для однопараметрического семейства рассматриваемого класса систем.

Л.Т. Мовчан

ВИЗНАЧЕННЯ ТОЧНОЇ ГРАНИЦІ ОБЛАСТІ СТІЙКОСТІ ОДНОГО КЛАСУ ДИНАМІЧНИХ СИСТЕМ

Розглянуто питання побудови за допомогою методу *D*-розбиття точної границі області стійкості одного класу динамічних систем. При цьому вилучається побудова кривої *D*-розбиття, необхідність використання «штриховки» за Неймарком і забезпечується машинна реалізація побудови області стійкості. Наведено приклади, які ілюструють ефективність запропонованого підходу.

L.T. Movchan

DETERMINING THE EXACT BOUNDARY OF THE STABILITY DOMAIN OF A CLASS OF DYNAMICAL SYSTEMS

The question of the method of construction by means of *D*-partition the exact boundary of the stability domain for a class of dynamical systems is considered. This excludes constructing the curve of *D*-partition, the need for «hatching» in Neimark machine and provides realization of building stability domain. Numerical examples illustrate the effectiveness of the proposed approach.

- 1. *Пароди М.* Локализация характеристических чисел матриц и ее применение / Под ред. М.Г. Крейна. М.: Изд-во иностр. лит., 1960. 170 с.
- Лебедев А.Н. Простой грубый критерий устойчивости линейных непрерывных систем // Изв.вузов. Приборостроение. — 1968. — № 3 — С. 51–54.
- 3. *Маковеев В.И., Новиков А.Н., Соколов Н.И.* К вопросу устойчивости линейных квазистационарных систем //Автоматика и телемеханика. — 1976. — № 5. — С. 22–26.
- 4. *Липатов А.В., Соколов Н.И.* О некоторых достаточных условиях устойчивости и неустойчивости линейных непрерывных стационарных систем // Там же. 1978. № 9. С. 30–37.
- 5. Воронов В.С. О достаточных условиях неустойчивости и устойчивости динамических систем // Изв. Вузов. Приборостроение. 1980. № 9. С. 40–43.
- Цыбулькин Г.А. Об одном алгебраическом условии устойчивости линейных динамических систем // Кибернетика и вычислительная техника. — 1986. — Вып. 69. — С. 28–33.
- 7. *Цыбулькин* Г.А. К оценке устойчивости одного класса динамических систем // Международный научно-технический журнал «Проблемы управления и информатики». 2014. № 3. С. 5–10.
- 8. Неймарк Ю.Н. Устойчивость линеаризованных систем. Л. : ЛКВВИЛ, 1949. 140 с.
- 9. Мовчан Л.Т., Мовчан С.Л. Машино–ориентированный подход к построению области устойчивости в плоскости двух параметров линейных непрерывных систем управления методом D-разбиения // Международный научно-технический журнал «Проблемы управления и информатики». — 2011. — № 1. — С. 30–35.

Получено 13.03.2017 После доработки 15.05.2017

ISSN 0572-2691