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The discrete-time robust adaptive control for some classes of the uncertain multivariable
memoryless (static) systems in the presence of unmeasurable bounded disturbances, whose
bounds are assumed to be known is addressed. The systems where the number of the con-
trol inputs do not exceed the number of their outputs are considered. The main feature of
plants to be controlled is that their gain matrices are noninvertible. The assumption that the
elements of these matrices are unknown a priori but there is information about possible
bounds on these elements. The problem stated and solvesd here is to design a feedback con-
troller to be capable to cope with the noninvertibility of the gain matrices and also with the
parametric uncertainty in order to reject the external disturbances and to ensure the boun-
dedness of all the control and output system signals. To solve the problem above mentioned,
the robust adaptive approach together with the so-called pseudoinverse or inverse model-
based concept is used. Three different cases are studied. In the first case, the robust adaptive
controller applicable to the uncertain plant with the square singular gain matrix is designed.
The robust method employing the pseudoinverse model-based controllers whose parameters
are estimated via a standard recursive adaptation procedure is proposed in the second case to
deal with the unknown nonsquare gain matrices having the full rank. The approach pro-
posed in first case is extended to the third case dealing with the control of the unknown
plants the gain matrices of which represent the nonsquare matrices of not full rank. Asymp-
totic properties of the robustly-adaptive controllers proposed in this paper are established.
Results of numerical examples given to support the theoretic study.

Keywords: discrete time, multivariable memoryless plant, noninvertibility, pseudoinverse
model-based concept, uncertainty, estimation algorithm, robust adaptive control.

Introduction

A long-standing in [1] problem of the optimal controller design for multivariable
system in the presence of unmeasurable disturbances remains an important problem
from both theoretical and practical points of view. Within the framework of this actual
problem, new approaches have been proposed by many researches. The latest results in
this scientific area have been reported in numerous papers including [2] and generalized
in several recent books [3—-6] dealing with advanced multivariable control systems.
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Among other methods advanced in the modern control theory, the inverse model-
based method that is an extension of the well-known internal model principle seems to
be perspective in order to cope with arbitrary unmeasurable disturbances and to opti-
mize some classes of multivariable control systems. It turned out that this method first
intuitively devised in [7] makes it possible to optimize the closed-loop control system
containing the multivariable static (memoryless) plants whose gain matrices are square
and nonsingular. Since the beginning of the 21st century, a significant progress has been
achieved utilizing the inverse model-based approach [8, 9]. However, this approach is
quite unacceptable if the gain matrices are either square but singular or nonsquare be-
cause they are noninvertible.

To optimize the closed-loop control system containing an arbitrary multivariable
static plant, the so-called pseudoinverse (generalized inverse) model-based concept has
been proposed and substantiated in [10] dealing with the possible noninvertibility of
gain matrices whose elements are assumed to be known. This fruitful concept was ex-
tended in [11, 12] to robust control of a noninvertible and uncertain plant with unmeas-
urable bounded disturbances. Unfortunately, the robust control theory may not be em-
ployed if the initial parametric uncertainty is «wide» enough. Meanwhile, the adaptive
approach gives some universal tool to deal with such a type of uncertainty. Foundations
of this approach have been extended and generalized in the books [13-19].

In the recent works [20, 21], the different adaptive control ideas are advanced to
cope with the noninvertible multivariable memoryless system in the presence of para-
metric uncertainties. In particular, the adaptive pseudoinverse model-based control idea
using the standard identification method is exploited in [20, 22] to reject unmeasurable
bounded disturbances acting on the uncertain plants with the nonsquare gain matrices of
full rank. Novel approaches to deal with the multivariable memoryless plants having
unknown square and nonsquare gain matrices of not full rank are reported in [21-23].

The purpose of this paper is to generalize the results achieved in [20-23] and relat-
ed to the case where there are no nonparametric uncertainties.

1. Problem formulation
Let
Yn =Bu,_1 +V, Q)
be the vector-valued difference equation of a static (memoryless) plant represent-
ing some linear multivariable discrete-time system to be stabilized. In this equa-
tion, ¥, € R™,u, €R" and v, e R™ are the m dimensional measured output, con-
trol input and unmeasured external disturbance vectors, respectively, at the n th
time instant (n=1,2,..) defined by y, =[y®,....y{™1", u, =[ul, ..., u{”1" and
Vn = [Vr(11)v e Vr(1m)]T’
b . pln
B = (2)
b p(mn)

is an arbitrary time-invariant mxr gain matrix.

Consider the case when the number of the control inputs ur(11), - u,(f) is not less

than two but does not exceed the number of the outputs y,(11), y,ﬂm) meaning that

2<r<m. 3)
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Next, suppose that the rank of B satisfies the inequality
rank B<r 4)

implying that B may be not a full rank matrix. Note that the rank of B satisfying (4)
together with (3) give that B becomes a noninvertible matrix if either r=m but
rank B <r or r <m irrespective of rank B.

The following basic assumptions with respect to the gain matrix B and the se-
quences {vr(]i)}:v(()i), vl(i), ... (i=1,...,m) are made.

Al) all the elements of B are all unknown. However, there are some interval esti-
mates defined as

b <p <p@ j=1.. . m j=1..r, (5)

where the upper and lower bounds b and b respectively, on b® are assumed to
be known.
A2) v,(f)s (i=1,..,m) are all the arbitrary scalar sequences bounded in modulus
according to
‘v,(]i)‘ <eM<covn=012..,

where s are constant.
A3) The upper bounds, ¢Ws are known a priori.

0(1) N

Let yO:[y .,yo(m)]T be a desired output vector (yo(i) =const Vi=

=1,...,m. Suppose that ‘yo(l)‘+...+‘y0(m)‘ #0 implying that, at least, one y°0) of

yo@ .y s nonzero.
Define the output error vector

en=Y" Y. (6)

with the components el = y© —y0 e o —[el, ..., e(™]".
The problem is to design the feedback controller guaranteeing the ultimate bound-

edness of the sequence {e }=ey, ey, ..., inthe form
lim sup ey || < o @)
n—o0
provided
lim sup [Juy | < ce. (8)
n—oo

Remark. The requirement (8) is here introduced additionally since it may not be
satisfied even if (7) takes place.
2. Preliminaries

Assume, for the time being, that B is a known noninvertible matrix. In this case,
the so-called pseudoinverse control

u, =u,4 +B7e, 9)

proposed in several works (see, e.g., [24]) ensures the minimum of the upper bound on
the Euclidean norm || e, ||, of the output error vector of the closed-loop control sys-

tem (1), (6), (9) with any bounded sequence {v,}=v;, vy, ... Here the notation P* of
any pseudoinverse matrix introduced in [24, Theorem 3.4] and defined as
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P*=lim (PTP+3l,)7tPT,
5—0
where 1, denotes the identity rxr matrix is used. Recall that if rank P =r, for some
P e R(™T)  then the expression of P* is simplified [25, item 7.46]; we have
P =(PTP)IPT. (10)

The closed-loop control system (1), (6), (9) is designed as shown in Fig. 1. In this
control system, the variable Vu, :=u, —u,_4 produced by the pseudoinverse model

represents the increment of the control action during one step determined as
Vu, :=B"e,
whereas the signal u,, is formed as the sum

n
U = ZVuk .
k=1

Pseudoinverse Controller

------------------- S5 = BEEIREy V,
' Pseudoinverse Discrete | ,Plant ' &
N Model Integrator | '
. '
o €' vu, \ Un s + Y,
g -t‘ g u: B,, n Yn B i Jn
Fig. 1

3. Robustly-adaptive control of plants with square singular gain matrices
Let B be an unknown square singular rxr matrix, i.e.,
det B =0. (11)

Basic idea to deal with a matrix B satisfying the requirement (11) is to replace
adaptive identification of the true plant having the singular gain matrix B to the adaptive

identification of a so-called fictitious plant with the nonsingular gain matrix B of the form
B=B+8l,, (12)
where |, denotes the identity rxr matrix and & is a fixed quantity [26].
Although B as well as B remain unknown, the requirement
detB=0 (13)
can always be satisfied by the suitable choice of &, in the expression (12). In fact, each
ith eigenvalue A;(B) of B lies in one of the r closed regions of the complex z-plane consist-
ing of all the GerSgorin discs [27, p. 146]:
i . T
P—bmﬂszhﬂkwﬂ,u=L“qn (14)
j#i
Since, at least, one of the eigenvalues A;(B) is equal to zero (due to the singularity
of B), by virtue of (12) there are an integer i (1 < i < r) and the numbers
(i) ._ p(iD) rolp| gl — D r|p@)
pO b -5, bW}, B =b® 55 || (15)
J# J#
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such that if
E(i) " E(i) (16)

then either E(i) <0 but BV >0 or E(i) <0 but BM >0. These numbers are defined
as the intersection of the i th Ger§gorin disc with the real axis of the complex z-plane
as shown in Fig. 2, a and 3, a, respectively. In both cases, [_S(i)B(i) <0 if the inequa-

lity (16) is satisfied because E(i) and B(i) cannot have the same sign.

Denoting
p=min{®, ... pM}, B=max{B®,... p}, (17)
consider the following two cases: (i) |§|<|B|; (i) |§|>|B|(The case when |[§|=|B|

can be combined with any of two cases.) In order to go to the gain matrix B of the ficti-
tious plant having the form (12) in the case (i), it is sufficient to shift the Ger§gorin
discs (14) right taking

o > B (18)

as shown in Fig. 2b. In the case (ii), the discs (14) need to be shifted left according to
8o <—IBI; (19)

see Fig. 3, b. In both cases, the nonsingularity of B is guaranteed. Nevertheless, the
conditions (18) and (19) cannot be satisfied, as yet. In fact, the numbers B and B given

by the expressions (17) depend on [_3(i)s and B(i)s defined by (15). But they are un-

known because b™s are all unknown.

. «Im
Im ﬁ
Z-plane Z-plane
Re 4 - Re
- - - y - — - - - _=-
B(ﬂ 0 B(l)' [3(’—) B(') B o B+8q B+8,
a 6
Fig. 2
. +«Im
Im =
Z-plane Z-plane
;B(Z) . Re Re
* ——t * . —a - . +e '_:_._ .
E(]) B(l) v 0 . B! ) B8, . By s, 0B
a 4]
Fig. 3
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The following operations are proposed to choose a number Jq satisfying the
regiurement (13). Introduce

.
(OS] (UVARTNU)]
pd =p@— Y max{p® |,5D p,
j=1, j=i (20)
i . r L
Bk =D+ 3 maxg|p® |, bWy
j=L, ji
minimizing and maximizing in b e[Q(ij), 5(”)] the right-hand sides of (15) for [;’)(i)

and B respectively.
Further, the number &, is found to satisfy the conditions

8o>—B . if B 1<IBrax |+ 80> Brax if B 1> Brex | (21)

where Emin, Bmax represent some quantities defined as follows:

B . = minB® .., B 3, B = maxB .., B 3. (22)

Emi “min’ """ Emin

It can be clarified that if the conditions (21) together with (20) and (22) are satis-
fied then the condition (13) will without fail be ensured.
After determining the quantity 3, we can proceed to the consideration of the ficti-

tious plant. Since the input variables ur(ll), u,(f) and the disturbances v,ﬂl), ...,vr(]r) of

both true plant and fictitious plant are the same, this feature makes it possible to des-
cribe our fictitious plant by the equation

yn = éun—l +Vn, (23)

similar to the equation (1), where ¥, =[5, ..., ¥{™1", denotes the output vector of

the fictitious plant.
It is interesting that the components of §,, can be measured while the components

of v,, in the equation (23) remain unmeasurable. In fact, substituting the expression (12)
into (23), due to (1) we produce
Yn = Yn +30Un_1- (24)

It is seen from the equation (24) that ¥, can always be found indirectly having u,
and y, to be measured.

Now, our problem reduces to the known problem of adaptive control applicable to
the fictitious plant (23) with the unknown gain matrix B in the presence of arbitrary
bounded disturbances vr(]l), v,(f). Its solving follows the steps of the section above.
Namely, the adaptive control law is designed in the form

Uy =Upyg + B ley, (25)
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in which, instead of the current estimate B, of B, another B, is exploited, and the error
vector e, defined in (6) is replaced by

& =y —Vy (26)
with ¥, given by the expression (24).

The adaptive identification algorithm used to determine the estimates B,, may be

taken as
b if (0] <e?,
Br(ll) = (1) = <*(i) (27)
b®, 4D i ) Vu,,  otherwise, i=1..,r
2
' Vun 4 ll2
which is similar to that in [22]. In this algorithm, s? and g; are given by
&) >g =2, i=1...r (28)
R G L AR (T (29)
represent the i th component of the identification error é; given as
é: =Vin— énflvunfll (30)

where v =y _ yﬂl, and the notation Br(,i)T = [Er(,il), Br(,")] of the i th row of

B, is introduced. The coefficients yﬁi)s are chosen from the intervals

0<y'£y9)Sy”<2 (31)
to satisfy
detB, #0. (32)

The feedback adaptive robust control system described in the (1), (25), (27) is
designed as depicted in Fig. 4. In this figure, the notation vy; =B, ,VU, 4 is in-
troduced.

The asymptotic properties of the adaptive control system are established in the

theorem below.
Theorem 1. Determine 3, using the formula (21) together with the expres-

sions (20) and (22), and choose an arbitrary initial By = By +8,1, with By = (bgj))
whose elements satisfy the conditions Q(ij) sbéij) <p, Subject to assumptions

Al1-A3, the adaptive controller described in the equations (25) and (27) together
with (24) and (26) when applied to the plant (1) leads to (7) and (8).
Proof. See [26]. O
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4. Robustly-adaptive control of plants
with nonsquare gain matrices having full rank

Let (1) be the equation of a nonsquare multivariable memoryless system
(2 <r <m) whose gain matrix, B, as full rank:

rank B=r (33)

Suppose that ¢®s are known. For controling this system under condition of the
parametric uncertainty given by (5), the adaptive controller will be designed here as the
adaptive pseudoinverse model-based controller described by

U, =U,_1 +Bre, (34)
with BrT defined by (10). Noting that the requirement

rank B, =r (35)

will be satisfied to calculate B by (10), we will update the elements of B, = (b,gij)),
exploiting the following standard adaptive estimation algorithm proposed in [28, sect. 4.2]:
b, if eV <g%0,

= ) el _=0) gign o) (36)
" P:(i){br(]'zl—yg') fn —¢ S|gr; n Vu,4}  otherwise (i=1...,m)
- | Vun_1 [I2
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In this algorithm, b,gi) = [br(,il), br(,ir)]T is the i th row of B,, P_;{w} repre-
sents the projection of w onto the i th set

=0 =™ 5 ®7x...x[pl", 5]

and g0 =260 %0 > 50 The coefficients yg)s in (36) are chosen from (31) to
satisfy (35).

The recursive procedure (36) is the on-line identification algorithm need to imple-
ment the adaptive pseudoinverse model-based controller (34). The adaptive closed-loop
control system containing this controller is shown in Fig. 5.

g gm
S Pseudoinverse |
| Model-Based
i Adaptive Controller !
: Adaptive
| Identifier
|
|
1 B,
i
! —
! Pseudo- ' v
v inversion a
N | N T R | e R | il
| ! MIMO System
' '
: Discrete ;
' Integrator ' '
% ! e ' 4 + '
) 0 + ! € 4 Vu, WU + ' _Vn
; B” - B - —
e 1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 5

The convergence and robustness properties of the adaptive pseudoinverse model-
based controller (34), (36) are given below.
Proposition. Provided that Assumptions Al) to A3) are valid, and the conditi-

on (33) is satisfied, the adaptive control algorithm defined in (34), (36) and applied to
the plant (1) gives:
(i) the estimate sequence {B,} converges in the sense of

B,——B,;
n N—o0 !

(ii) the ultimate boundedness given in the expressions (7), (8) is achieved.
Proof. Due to space limitation, the proof of Proposition is omitted. o

5. Robustly-adaptive control of plants with nonsquare
gain matrices having not full rank

Let B be a nonsquare mxr matrix of the form (2) with unknown rank satis-

fying (4). Define the so-called submatrices B[ij[K], ..., i, [K]|L, ..., r]e R™" [43, part I,
subsect. 2.2] whose rows represent the rows of B with the numbers i[k], ..., i [k]

m
(1<i[K]<...<i[K]<m). The quantity of these matrices is equal to N = [r j Deno-

ting by B[k] the submatrix which corresponds to a k th subset {i;[k], ..., i [k]}, write
the equations of some k plants as:
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y[K]=BIKJuy 1 +Vo[K], k=1,...,N, (37)

where yn[k]=[y,(1i1[k]), y,(ff[k])]e R" and vn[k]=[v,(1i1[k]), vﬁir[k])]e R".
In accordance with the approach proposed in the previous section, pass from the
equation (37) to the equations of the fictitious plants described by

¥,[k]1= Blk]up_3 +Vu[k], k=1,..., N, (38)

with the same u,_; and v,[k]. In these equations, ¥,[k] denotes the r-dimensional

output vector related to the k th fictitious plant whose gain matrix B[k] is defined as
follows:
B[k] = B[k]+8o[K]I,, (39)

where §y[k] is a fixed quantity depending on k. This quantity is calculated for each
k=1 ..., N using the technique described in the previous section. Namely, with the
constraints (5) in mind, §5[k] can always be found to satisfy the conditions

detB[k]#0 Wk=1, ..., N (40)
similar to (32).
It follows from the equations (37) to (39) that

5K = Yo [K1-+ S0[KIun 3. (1)

This expression shows that although B[k] as B[k] remain unknown, however, the
components of all N the vectors §,[k] can indirectly be «measured» after measuring
the components of y, and u,_4, and it is essential.

If the conditions (40) are satisfied, then the problem of the adaptive stabilization of
the true plant (1) can be reduced to the problem of simultaneous adaptive stabilization

of all N fictitious plants (38) with unknown but nonsingular rxr gain matrices B[k]
(k=1 ..., N) via forming at each n th time instant a set of N different «potentially»
possible controls u,[4], ..., u,[N] and selecting one of them in accordance with cer-

tain choice rule [23] given below.
Following [23], the adaptive control law to be applicable to any fictitious plant is
designed in the form

U [K] =g + B Y K1E, [K], k=1..., N, 42)

where &,[k]= yo[k]—yn[k] with yO[k]:[yO(il[k]), yo(if[k])]T defines the output
error vector related to the k th fictitious plant at the n th time instant, and B,[k] € R™"

is the current estimate of unknown rxr matrix B[K] at the same time instant satisfying
detB,[k]#0 Vk=1...,N. (43)

As the adaptation algorithms, the standard recursive procedures for the adaptive
identification of each k th fictitious plant (37) described by
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by k] if &, O[K]l<sf,
k-7 sign &V [k]
VU [15

B 1K1 = { B [+ 4§ = Vupy  otherwise

(44)
are proposed. In these algorithms, Erﬂi)[k] denotes the r-dimensional estimate vector ob-
tained by transposing the i th row of B, [k], and

&1k = 911 - 95 01 B TkIV Uy (45)

represents the scalar variable making sense of the i th component of é;(i)[k] eR" thatis

the identification error vector related to the k th fictitious plant. The coefficients yg)s
are chosen from the ranges (31) to satisfy the requirement (43).

Next, add the adaptation algorithms described in the formulas (44) together with (45)
by an algorithm for estimating unknown B defined as follows:

b, if jen|<e?,
b =1 & g sign e ®
! b,(]'_)l+y§1') M 5|gn2en Vu,4  otherwise, i=1 ..., m,
” vun—l ”2 (46)
where br(]i)T represents the i th row of the estimate matrix B, and
(i [ i )T
S e @

is the i th component of the identification error vector e; =Yn = Yn-1—Bn1VUun1 (5

and s? are given by the conditions (28)).

The estimation procedure defined in the algorithm (46) together with the equation (47)
makes it possible to estimate the m predicted output errors érgiﬁl[k] (i=1 ...,m) for
each i th output of true plant (1) at any n using the formula

~(i i DT i -
&1 YO b0 Tu K]+, i=1..m. (48)

The synthesis of the adaptive controller is finished by the choice of the control u,,
from the set {u,[1], ..., u,[N]} with u,[k] given by (42). This choice is implemented

K], ..., eMk])"

by the rule giving the minimum of the 1-norm of én+1[k]=[é(1) N

n+1
according to
m .
up =arg min 3. |&{V[K]|, (49)
Ukl iz

where éé?l[k] s are specified by (48).

The asymptotic properties of the adaptive controller described in this section are
given in theorem below.

Theorem 2. Consider the feedback control system containing the plant (1) in
which r < 'm, and the adaptive controller defined in the equations (44), (49) to-
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gether with (41), (48) and (43). Using the constraints (5), determine §y[1], ...
..., 00[N] to satisfy the requirement (40). Let assumptions Al1)-A3) be valid.

Then, this controller applied to the plant (1) guarantees that the control objecti-
ves (7) and (8) will be achieved.
Proof. See [39]. O

Note that Theorem 2 does not guarantee that the ultimate error lim,_, .. sup||e, ||

will become as in the nonadaptive case when there is no parametric uncertainty and the
pseudoinverse model-based controller proposed in [24] can by applied.

6. Simulation

To demonstrate the behavior of the robust adaptive closed-loop control system de-
signed in Section 3-5, several simulation experiments were conducted.
Simulation experiment 1. In this experiment, the adaptive closed-loop control

system (1), (6), (25) to (32) was simulated. The elements of B were given as: bdD = 4,
b2 =2 p@) =2 b =1 (detB=0). The interval estimates of these elements
were chosen as follows: 1<b® <5 0<b® <2, 0<b@® <2 1<p® <2, By

the formulas (20) and (22), it was found: B =-1, @ =-1 Bl =7, B =4
p

Brin = —1 Buax =7- It turned out that 1Brin | <|Bmax |- Therefore it is required that

8y >1 to satisfy the inequalities (21). Namely, 8, =1,1 was put. From the conditions
b ef1,5], b e[0,2], b €[0,2], b{*? e[1, 2] the following initial estimates
of B, were taken: b{ =1 b{? =1 b{®™ =0, b{* =19. Then B{™ =21,
60D 1, 6@ —0, §E -3,

In this simulation experiment, the sequences {vr(f)}(i =1,2) were generated as
i.i.d. random variables [29, p.40] belonging to [-1,1]. It was put: yO =[1, 3]T.

The performance of the adaptive estimation algorithm is shown in Fig. 6.

bf(z'z) E,Em b}(}zz) 1,;}()22;

NEDRE

Fig. 6

Fig. 7 shows simulation results illustrating a successful behavior of the robustly-
adaptive control system when this experiment was conducted.
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Fig. 7

Simulation experiment 2. To verify how the adaptive controller proposed in Sec-
tion 4 performs, we give an illustrative example. In this example, the true B and the ini-
tial B, were chosen as:

02 14 50 20
B=|08 24| By=|30 40
11 05 10 10

to ensure rank By=rank B=2. The desired output vector was taken as
y0 =[2,7, S]T. {vr(]i)} were generated as pseudorandom independently identically dis-
tributed (i.i.d.) sequences satisfying to vﬁl) e[-0,1; 0,1], vﬁz) €[-0,2;0,2] and
v® e[-0,08; 0,08].

Computer simulations have been carried out to evaluate the behavior of the adap-
tive control system (1), (34), (36). This behavior is presented in Fig. 8. It demonstrates

that the closed-loop control systems containing the adaptive pseudoinverse model-based
controller (34), (36) is successful enough.
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Simulation experiment 3. This simulation experiment was conducted to illustrate
the performance of the adaptive control proposed in Section 5 for the case when r =2,

m = 3. As the gain matrix,
4
B=|2
3 15

of not full rank (rank B =1) was taken. Since N =3, it produces the following three
submatrices:

B[l]:(; i] B[2]:(: 125j and B[3]=@ 115j

Further, the three vectors Yy,[1] =[y,(11), y,(f)]T, yn[2]=[y,(11), y,({q’)]T and
yn[3]=[yr(,2), y,(13)]T were introduced to describe the plants (37) having the gain
matrices B[1], B[2] and B[3] respectively. The quantities §y[1]=11, dy[2]=12 and
8o[3]=1,3 were taken to satisfy the conditions (40) guaranteeing B[k] to be nonsingu-
lar were derived from the equation (5). The initial By[1], By[2] and By[3] were chosen
as By[k] = Bg[k]+3p[k]l, with the initial elements of By[k] which were selected from
B inside the corresponding ranges [lg(ij), E(ij)] specified as follows: peD €[1,5],
b2 <10, 2], b@® [0, 2], b®? 1, 2], bCY €1, 4], BB €[0,5]. Namely, we set
b(()“) =1, b(()lz) =1, béﬂ) =0, b(()22) =19, b((,31) =2, bé32) =2,1. The desired output
vector was given as y0 =[L3, 7]T.

The performance of the simulated adaptive closed-loop control system with the
disturbance sequences {v,(f)}= v(()i), vl(i), ... generated as some pseudorandom i.i.d. vari-
ables taken from —0,1< v,gl) <05 -0,2< v,(f) <0,2,-0,08 §vr(,3) <0,08 is presented
in Fig. 9.
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Continuation Fig. 9
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Fig. 9, a—d demonstrate that the performance of the proposed adaptive controller
applied to the static multivariable plant having some nonsquare gain matrix with not full
rank is successful enough.

Conclusion

The adaptive control concept together with the pseudoinverse (generalized in-
verse) model-based approach is the suitable tool to deal with discrete-time uncer-
tain multivariable systems whose gain matrices are noninvertible. It has been
shown that a successful behavior of the robustly-adaptive closed-loop control sys-
tem containing the square singular or nonsquare plant can be achieved regardless
of the rank of its gain matrix.
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MeHTiB. [locTaBieHa Ta BupillyBaHa TyT npoOjema Hojsirae B ToMy, o0 po3po-
OUTH KOHTPOJIEP 3BOPOTHOTO 3B’S3KY, 3JAaTHHIl BIOpAaTHCS 3 HEOOOPOTHICTHO
MaTpUIb MiJCUICHHS, a TAKOXK 3 HapaMETPHUYHOI0 HEBH3HAYCHICTIO, 100 BiJKH-
HYTH 30BHIIIHI 30ypeHHS Ta 3a0€3MeYUTH OOMEXKCHICTh yCIX CUTHAJIB CHCTEMH
KepyBaHHS Ta BUBeAeHHS. JIJisg BUPiLICHHS BHUILIE3raJaHoi MpoOJeMH BUKOPHCTO-
BYETHCS HAaIMHUN alanTUBHUM MiIXiJ Pa3oM i3 TaK 3BaHOI KOHIICIILII€I0 Ha OC-
HOBI INCEBOIHBEPCHOI ab0 3BOPOTHOI Mozeii. BuBuawThes TpU Pi3HI BUMAAKH.
VY nepuioMy BUMajaky po3poOieHO HaAIWHUN aJaniTUBHUN KOHTPOJEP, 3aCTOCOB-
HUIl 10 HEBU3HAYCHOI YCTAHOBKU 3 KBaJPAaTHOIO MATPHUIICI0O CHHTYISPHOTO Iij-
CUJICHHS. Y IpyroMy BUNAAKY /Uit pOOOTH 3 HEBiJOMUMH HEKBaIpaTHYHUMH Ma-
TPHUUSMH MiJCHJICHHS, [0 MAaIOTh IOBHUI PaHT, HPOMOHYEThCS HATIHHUNA METO
13 3aCTOCYBaHHSIM KOHTpPOJIEPIB Ha OCHOBI ICEBJOIHBEPCHOI MOJEII, mapaMeTpu
SIKUX OIL[IHIOIOTBCS 32 JONMOMOTOI0 CTaHIAPTHOI PEKYPCHUBHOI MPOLEAYPU ajaam-
tauii. [Tigxia, 3anponoHOBaHUN y MEPIIOMY BHIAJKY, MOIMIUPIOETHCS HA TPETiil
BHIIQI0K, 1[0 CTOCYETHCS KEPYyBaHHS HEBIIOMHMH 00 €KTaMH, MATPHIl ITiJCH-
JICHHSI SIKMX TPEJICTaBISAIOTh HEKBAJAPATHI MaTPHIl HEMOBHOTO paHry. BeraHoB-
JICHO aCHMIITOTHYHI BJIACTHBOCTI 3alpONOHOBAaHUX y wLiii pobori pobacTHO-
aJanTUBHUX peryisaTopiB. HaBeaeHo pe3ynbTaTH YnMCeNbHUX NPUKIAAIB HA MiAT-
BEPJKEHHS TEOPETUUHOTO JOCIiDKEHHS.

Karwuosi ciaoBa: nuckperHuil yac, 6araro3mMiHHa ycTaHoOBKa Oe3 mam’sTi, He-
3BOPOTHICTH, KOHIICIIliS HA OCHOBI MCEBJ03BOPOTHOI MOJEIi, HEBU3HAUYCHICTb,
aJrOPUTM OLIHKHU, HaJiliHEe aaliTUBHE KEPyBaHHS.
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