
© V. GUBAREV, 2022 
Міжнародний науково-технічний журнал 
Проблеми керування та інформатики, 2022, № 3 5 

ПРОБЛЕМИ ДИНАМІКИ КЕРОВАНИХ СИСТЕМ  

UDC 62.50, 517 

V. Gubarev 

NEW TRENDS IN CONTROL THEORY 

Vyacheslav Gubarev  

Institute of Space Research of NAS of Ukraine and SSA of Ukraine, Kyiv,  

v.f.gubarev@gmail.com 

The article outlines the conceptual foundations of new trends in control theory 
that have been intensively developing in recent years. Unlike classical control 
theory, which was formed in the last century and is based on well-known mathe- 
matical models of controlled processes in the form of local equations, new ap-
proaches to linear stationary systems use input-output relations that follow di-
rectly from the Cauchy formula for both continuous and discrete systems. On the 
basis of the same description, it is possible to substantiate and obtain the so-
called data-based models, which are directly linked to data that form, at the ob-
servation intervals, the trajectories of already implemented past processes and 
future ones, for which control is to be synthesized. This approach is focused 
primarily on finding control from the prediction model. At the same time, the 
current measurements carried out at the plant make it possible to implement 
feedback and, in case of discrepancies between the forecast and the real process, 
to correct the predictive control, i.e. such a way to stabilize it. Control by trajec-
tory prediction model allows to exclude model identification by trajectory data, 
and control directly on their base. Since the data contain errors, the most im-
portant issue in the considered approach is the robustness of the chosen control. 
A large number of published works are dedicated to this problem, where the 
guaranteed approach, focused on the worst-case in the data, is the most in de-
mand. In most cases, control synthesis is reduced to solving various optimization 
problems, mainly on the finite prediction horizon. Considerable attention in the 
article is paid to methods for solving synthesis problems based on SVD decom-
position. To reduce the complexity of the tasks to be solved, it is proposed to re-
duce it to terminal control on the horizon of a short duration. Then an iterative 
control strategy is implemented, which, due to feedback, ensures the feasibility 
of the global control goal. 

Keywords: control theory, trajectory model, data-driven control, LTI 
system, MPC. 

Introduction 

Approximately in the middle of the last century, the mathematical theory of control 
was formed and developed, which was based on the well-known mathematical model of 
the process that was to be controlled. Systems with lumped parameters which were de-
scribed by systems of ordinary differential or difference equations, and systems with 
distributed parameters, described using partial derivatives equations and boundary con-
ditions were considered. The control theory was composed of both analysis problems of 
controlled processes and synthesis problems. The key to the creation of highly efficient 
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control systems was the problem of stability. The needs of practice have initiated a vari-
ety of areas of research, some of which have emerged as independent areas of theory. 
Thus, the theory of optimal control, game approach to control problems, including dif-
ferential games, and a number of others, were fruitfully developed. Synthesis of control 
based on a given mathematical model was reduced to finding a control law that provides 
the specified dynamic properties of the controlled plant. This a priori synthesized con-
trol law was then implemented in various control systems. With the help of adaptive 
procedures and parameter tuning, the synthesized laws were corrected, thus reacting to 
possible changes in the environment. 

All the created theoretical base worked well in practice if the mathematical model 
of the plant was known. Most often, it was built on the basis of the known laws of me-
chanics, physics, and others. The need to control design for objects whose mathematical 
model was unknown led to the creation of a theory and methods for systems identifica-
tion. Models in such cases were built on the given experimental data. However, the 
presence of errors in the available data very often, especially for complex systems, led 
to problems that are difficult to solve, including ill-conditioning. The main emphasis 
was focused on stochastic identification, which aimed at consistency of estimation. De-
spite the abundance of created methods for solving identification problems, one cannot 
speak of a complete solution to this problem. Especially when, for various reasons, it is 
difficult to choose the appropriate structure of the mathematical model for the system 
under study. 

Another aspect is related to the recent rapid development of computer technology. 
Digital information technologies have begun to actively penetrate into all spheres of 
human activity, including has become widely used in control systems. The use of such 
tools only for the implementation of previously synthesized control laws depreciated the 
capabilities of computing tools in control systems. In many cases, it has become quite 
possible to solve control problems directly in the process of system operation. All this 
stimulated the research of other approaches and methods of control systems design. As 
a result, relatively recently, new areas of research have been formed that make it possi-
ble to set and solve control problems in a different way. Among them, two such direc-
tions aroused the greatest interest. These are model predictive control (MPC) and data-
driven control, when instead of solving the identification problem using them, control 
that provides the given system dynamic may be evaluated directly from the data. 

The great interest in the above new trends in control theory is evidenced by publi-
cations that have appeared over the past five years only in the journals «Automatica» 
(about 200 articles) and «International Journal of Control» (more then 40 articles). 

Therefore, in this article an attempt is made to present some of the theoretical re-
sults of these two conceptions in control theory as applied to linear discrete time-
invariant (LTI) systems. The main goal is to interest the reader in new approaches and 
methods of control and encourage further development of researches and especially 
their application in practice. 

Trajectory description of LTI systems 

Let us consider a discrete LTI controllable and observable system, the processes 
occurring in which can be described by the following system of difference equations 

 1 ,t t tx Ax Bu+ = +  t t ty Cx Du= + , (1) 

where t  is the current time, tx  is the state vector of the system at the moment t  of di-
mension n , ty  is the measured output vector of dimension m , and tu  is the vector of 
input or controlled action of dimension .r  Matrices A, B, C, D have dimensions corre-
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sponding to the specified variables. The controllability and observability properties of 
system (1) are determined by the matrices 

 1[ , , , ]n
n B AB A B−Ω =  , 

1

n

n

C
CA

CA −

 
 
 Γ =  
 
  



. (2) 

The system is fully controllable if the rank criterion is met 

 rank n nΩ =  

and fully observable when 

 rank .n nΓ =  

It is generally accepted that description (1) is minimal if it corresponds to a fully 
controlled and fully observable system. We will also assume that the system is well con-
trolled if the condition number of the matrix nΩ  has a low order. Good observability 

corresponds to good conditionality of the matrix .nΓ  With poor controllability, large 
control resources may be required to transfer the system from a given initial state to 
some terminal ones. With poor observability, the problem of estimating the full state 
vector from incomplete output observations can become ill-posed. 

In systems with continuous time, using the Cauchy formula [1], one can go from a 
state-space description similar to (1) to input-output relations, which, unlike (1), gives a 
unique description to each specific system. 

It is well known that for any system a set of descriptions (1) is admitted, intercon-
nected by a non-singular transformation. They all give the same output response to any 
admissible input. The input-output ratio represents the mathematical model of the sys-
tem through impulse transition matrices, which are actually matrices or Green's func-
tions for controlled and observed systems with lumped parameters [2]. Such a descrip-
tion is often used in practice when solving various dynamic problems. 

For discrete systems described by (1), it is easy to write an analogue of the Cauchy 
formula. It looks like 

 1 2
2 ,k k

t k t t k t t ky CA x CBu CA Bu Du− −
+ + − += + + + +  0, 1, 2, ,k =   (3) 

here the first term determines the final state of the free movement from the initial 
state tx  up to the moment t k+ , and the subsequent terms determine the result of the 

forced movement at the same time  instan. From vectors t ky +  for different values k  

from 0 to some value 1,L−  we form a cascade vector of the following form: 

 T T T T
1 1( , ) [ ]t t t Ly t L y y y+ + −=  , (4) 

whose dimension is m L⋅ . In (4) « T» is the transposition operation. By analogy 
with (4), we construct an expanded column vector composed of vectors tu , i.e. 

 T T T T
1 -1( , ) [ ]t t t Lu t L u u u+ +=  . (5) 

Cascade vectors (4), (5) actually represent a piece of the system (1) trajectory from 

time t  to 1t L+ − , i.e. a sequence of vectors 1
0{ }L

t ty u −  from 0 to 1L − , where the 
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lower index is the beginning of the trajectory, and the upper index is its end. For this 
piece of the trajectory, based on (3), we can write a vector-matrix equation relating (4), 
(5), namely 
 ( , ) ( , )L t Ly t L x u t L= Γ ⋅ + Φ ⋅ , (6) 

where LΓ  is the observability matrix of dimension ,L  and LΦ  is a block triangular 
Toeplitz matrix of the form 

 

2

0 0
0 0

L

L

D
CB

CA B CB D−

 
 
 Φ =  
 
  





 B  



. 

Let the system (1) be observed on the interval , 1, , 1t l l l T= + + −  affected by 

the input {ut} corresponding to some its realization.  Then the resulting process is mod-
eled by the following matrix equation 

 L LY X U= Γ +Φ , (7) 

here [ ( , ), ( 1, ), , ( , )],Y y l L y l L y l T L L= + + −  [ ( , ), ( 1, ), , ( , )]U u l L u l L u l T L L= + + −  
are block Hankel matrices of outputs and inputs, and the trajectory initial states of the 
system are assembled into a matrix 1[ , , , ]l l l T LX x x x+ + −=  . 

Matrix equation (7) represents the shift set of pieces of system trajectories on the 
observation interval. System (7) connects a set of trajectories with the parameters of 
systems represented as observability and impulse response matrices, and each of these 
trajectories is determined by its initial state. This system is the original 4SID (Subspace 
state-space system identification), a method for identifying multiply connected systems 
using trajectory data [3]. 

Now let's use (7) to construct a description that directly relates the trajectories of 
the LTI system generated by some informative action. In this case, their dependences on 
the parameters of the models described above and on the initial conditions are excluded. 
To do this, we multiply (7) on the right by a vector ( )ig  of dimension 1T L− + . 

We take the vector ( )ig  so that it satisfies the following system of equations 

 ( )
i

i
i

U u
g

Y y

  
 ⋅ = 
    

, 0, 1, , ( 1)i T L= − + , (8) 

here { , } { ( , ) ( , )}i iu y u l i L y l i L= + +  is one of the trajectories of set (7) represented by 
equation (6). Thus, with the help of (8), we pass from the set of trajectories specified 
by (7) to one corresponding to the i-th column of the matrices ,U  .Y  This trajectory 
corresponds to the initial state t ix + . Each i-th trajectory selected with the help of (8) 

will have its own value of the vector ( ) .ig  The system of equations (8) establishes a 
connection between the set of shear trajectories obtained from the trajectory over the en-
tire observation interval [ , 1]l l T+ − , with one shortened trajectory selected on this set. 
In fact, (8) specifies the inverse transformation of the transition from the matrix descrip-
tion of the LTI system (7) to equation (6) written for the time moment t l i= + . There-
fore, (8) can be considered as a trajectory description of the LTI system at a given 
observation interval. 
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Let us now introduce into consideration the concept of a persistently exciting input 
given on the observation interval [ , 1]l l T+ − . The sequence 1{ }k l T

k k lu = + −
=  on the obser-

vation interval [ , 1]l l T+ −  will be persistently exciting of order L  if the Hankel matrix 
U  in (7), (8) has full row rank, i.e. rankU Lr=  [4, 5]. 

In [6], a fundamental result was formulated on the solvability of system (8), which, 
according to the data on the observation interval, gives a data-based trajectory descrip-
tion of the LTI system. It is written in the form of a lemma on the connection between 
the trajectory on the observation interval and its individual fragments, which substanti-
ates the trajectory description (8). Its essence is as follows. System (8) is resolvable if 
the input action on the observation interval is persistently exciting of order L n+ . 

Thus, the system of equations (8) can be considered as an alternative description of 
the LTI plant, which we will call the data-based model, since it links the data corre-
sponding, taking into account the shift invariance, to various fragments of the complete 
trajectory on the interval [ , 1]l l T+ − . 

Model predictive control 

This control method is based on the construction of a predictive control input based 
on a known model that determines the desired behavior of the system on a finite or 
semi-infinite interval (horizon), starting from a certain point in time. In the process of 
implementation, according to the current data measurements, it is estimated how much 
the real process coincides with the predicted one, and, if necessary, the control input is 
corrected on a new horizon. In this way, feedback is implemented, which ensures a sta-
bilized movement along a given trajectory. Control synthesis, as a rule, is reduced to 
solving various optimization problems on a sliding horizon. A large number of MPC 
problems with different descriptions of the controlled process and optimality criteria are 
considered and solved. A large number of papers have been published on the formula-
tion of problems and methods for their solution. A generalization of the obtained results 
can be found, for example, in relatively recently published monographs [6, 7]. Linear 
and nonlinear systems with discrete and continuous time, with control by state and by 
current measurements were considered. For LTI discrete systems, description (1) was 
taken as the initial one. In other cases, other similar equations describing that describe 
the local dynamics of the controlled and observed system were used. 

Let us first consider one of the possible optimal control problems on a finite time 
interval [ , 1]t t N+ − , where t  is the current time, and N  determines the finite control 
horizon. In the sliding interval mode with control synthesis at each step, taking into ac-
count the current data measurements, it is possible to implement MPC with feedback. If 
model (1) is known, then various formulations of optimal control problems are possible 
on its basis. We present here one of them considered in [8]. In addition to (1), it is also 
assumed that restrictions are imposed on the input and output 

 tu U∈ , t ky Y+ ∈ , 0, 1, , 1k N= − , (9) 

where min max{ : }r
tU u u u u= ∈ ≤ ≤R  (as a rule min maxu u= − ) and { :m

tY y= ∈R  

( ) ( ), ( ) , ( ) }q m qG t y h t G t h t×⋅ ≤ ∈ ∈R R . In a real process, due to the presence of dis-
turbances at the input and measurement errors at the output, as well as due to the inac-
curacy of the description, not the process that is predicted by model (1) is realized, but 

another, which we denote as p
ty  and p

tu . With small perturbations and measurement 
noise, as well as a not very large control horizon ,N  the real and predicted process 
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should not differ significantly. In [8], it was assumed that there are no disturbances at 
the input, and the output is measured with an additive bounded noise tξ , i.e. 

 p
t t ty y= + ξ , tξ ∈Ξ , 

for each moment of system operation. Wherein { : , 0}m
t t ∞Ξ = ξ ∈ ξ ≤ ε ε >R . In ad-

dition, about the initial state of the system at the moment t , i.e. at the beginning of the 
interval, it is only known that it satisfies the condition 0tx X∈ , where 

0 min max{ : }n
t tX x x x x= ∈ ≤ ≤R  it determines all admissible initial states of the sys-

tem. The optimal control problem is to minimize the quadratic criterion 

 
1 2t N

t
t

u
+ −
∑  (10) 

under constraints (1), (9). It is also important that the desired control be robust with re-
spect to all possible initial states and measurement errors. 

When solving the problem posed in this way, the ideas put forward earlier in [9, 10] 
were used, as well as the separation principle for linear systems, which is described 
in [11]. As a result, in [8], an original method for implementing feedback was proposed 
and developed, which ensures the robustness of the control system. 

Based on (1), other formulations of the optimal control problem for the MPC are 
admissible. 

Now we consider the problem of MPC design based on description (3). Let us for-
mulate it as a terminal control problem on the same sliding interval [ , 1]t t N+ −  with 
horizon .N  Let the total state vector ( )x C Е=  and 0D =  be measured. Then the state 
of the system at the moment t N+  according to (3) is determined by the relation 

 1 2
1 2 3

N N
t N t t N t N tx A x Bu BAu BA u− −
+ − + − + −= + + + + . (11) 

In the terminal control problem, 1t Nx + −  is given, but tx  is measured and, there-

fore, 1
1 ( , )N

t N tx A x x t N−
+ − − =  is calculated. Then (11) can be written as 

 1 ( , ) ( , )N u t N x t N−Ω ⋅ = , (12) 

where T T T T
2 3( , ) [ ] .t N t N tu t N u u u+ − + −=   The stabilization problem corresponds to 

1 0t Nx + − =  and 1( , ) N
tx t N A x−= − , i.e., with exact model, data and calculations, solu-

tion (11) with 1 0t Nu + − =  brings the system to the zero equilibrium state. In the general 
case, terminal control it is needed using non-zero 1t Nu + − , t Nu + , etc. in order to keep 
the system in a state of 1t Nx + − . 

The solvability of the system of linear algebraic equations (SLAE) (12) depends on 
the properties of the matrix 1N−Ω  and, first of all, on its conditionality. When r n< , 
then we assume 1N n r− ≥ − , i.e. system (12) must be square or underdetermined. In 
addition, in these cases 1rank N−Ω  should be equal to n . No less important is the value 
of the condition number 1N−Ω . Under poor conditionality, problem (12) becomes ill-
posed when the right-hand side is specified with an error or the elements of the matrix 

1N−Ω  are not yet accurately specified. This occurs if the measurements contain noise 
and the system model is approximate, for example, found from the solution of the iden-
tification problem. Therefore, the choice N  should be tied to the condition number of 
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the matrix 1N−Ω . To do this, it is enough to plot the condition number 1( )N−κ Ω  as a 
function of .N  The most preferable will be the one N  for which 1( )N−κ Ω  is closer to 
unity. Note that for values N  for which 1rank N n−Ω < , the condition number is taken 
equal ∞  (the system is degenerate). After choosing an appropriate N  optimal control, 
it can be found from the formulation of the problem close to the one considered above 
on the basis of equations (1). The optimal solution will be the element ( , )u t N  that de-
livers the minimum (10) under constraints (12) and ( , )u t N U∈ , where the last con-
straint is similar to the one specified in (9). 

For small N  and large ( , )x t N , such a problem may turn out to be incorrect due 
to the indicated restrictions on control. The control resource for its solution may not be 
enough. Therefore, it is proposed to use an original method for solving such a compli-
cated problem, which allows finding a solution that satisfies the restrictions. Moreover, 
on its basis, one can iteratively form a control that brings the system closer to a given 
goal. The method presented below is sufficiently universal for solving arbitrary SLAEs. 

SLAE solution based on SVD decomposition 

Let a SLAE be given to be solved 
 zΦ = φ , (13) 

where Φ  is a matrix of dimension n m× , φ  and z  are vectors of dimensions n  and 
m , respectively. For n m= , we have a square system, and for n m>  and n m<  (13) 
are an overdetermined and underdetermined SLAE. We use the SVD decomposition of 
the matrix Φ , which will allow us to find solutions in all these cases. The matrix Φ  is 
represented using the SVD decomposition as 

 Q VΦ = Σ , (14) 

where Q  and V  are orthogonal matrices of dimensions n n×  and m m× , respectively. 
The matrix Σ  is rectangular in dimension n m× , on the diagonal of which singular val-
ues are located in a non-increasing order [12]. 

In the case of an overdetermined system n m> , we have 
0

mΣ 
Σ =  

 
, where mΣ  is 

a square matrix of dimension m  and for 0mσ ≠  ( mσ  is the m -th singular number, i.e., 

mΣ  is nondegenerate). Then the solution z  is written as 

 1 T ,m mz V Q−= ⋅Σ ⋅ φ  (15) 

where mQ  is the matrix formed from the first m  columns of the matrix Q . Solu-
tion (15) coincides with the one obtained using the standard LSM for overdeter-
mined SLAEs. 

When n m< , we have an underdetermined system and the matrix Σ  in the SVD 
decomposition takes the block form [ ]0nΣ = Σ . Solution (15) in this case is written as 

 1 Tn
nz V Q−= ⋅Σ ⋅ φ , (16) 

where nV  is the matrix formed by the first n  columns of the matrix .V  The written so-
lution coincides with the normal solution (15), i.e., among the set of solutions of the un-
derdetermined system, the one that delivers the minimum to the quadratic form 

2Tz z z⋅ =  is taken. 
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For a square system ,n m=  the solution for a nonsingular matrix Φ  has the form  

 1 Tz V Q−= ⋅Σ ⋅ φ , (17) 

which coincides with the standard solution (13). When the matrix Φ  is degenerate, 
then, as in the case of an underdetermined system, a normal solution is found. In this 

case, the matrix Σ  is represented as 1 0
0 0
Σ 
 
 

, where 0 are the corresponding vectors or 

blocks. By analogy, blocks of matrices V  and Q  are written in (16). 
Problem (13) becomes ill-posed for an ill-conditioned matrix Φ  [13]. Then, to 

find an approximate regularized solution, one should use a stabilizer. When solving the 
SLAE based on the SVD decomposition, the stabilizer can be formed from the values of 
the singular values of the matrix Σ . As such, it is proposed to take a stabilizer 

 q
sαΣ , (18) 

where ( 0)α α ≥  is the regularization parameter, ( 0)q q >  is the tuning parameter, and 
the diagonal matrix sΣ  has the form 

 

1

2

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 1

n

n

n
n−

σ 
 σ
 σ 

σ 
 
 

σ 
 σ 
 
 





   B  





. 

By adding this stabilizer to the matrix Σ , i.e. in (17), we obtain a regularizing op-
erator that allows us to find an approximate regularized solution to problem (13). It 
looks like 

 1 T( )q
sz V Qα −= Σ +αΣ φ . (19) 

The regularization parameter can be found in various ways, for example, from the 
residual principle [13] or by taking its quasi-optimal value, as suggested in [13, 14]. 
Problems (15), (16) can also become ill-posed. They can be regularized in the same 

way, i.e. replacing Σ  with an expression q
sΣ +αΣ . 

System output control by a predictive model 

In practice, most often it is necessary to control not the state of the system, deter-
mined by the vector tx , but the variables that are measured. Especially when the mod-
el (1) is found from the solution of the identification problem, since the vector x  in this 
case plays a connecting role between the input and output variables. In other words, 
they are internal generalized variables, the physical meaning of which cannot always be 
interpreted, taking into account the non-uniqueness of their representation. For MPC-
based control, it is important to control the behavior of those variables that have an ex-
plicable physical meaning, namely, these are the output measured variables. Therefore, 
in this section, we will consider the problem of local-terminal control on a sliding inter-
val by the measured characteristics of the system, i.e. vector ty . Description (3) is best 
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suited for the synthesis of such an MPC. Let N  be the control horizon of the sliding in-
terval [ , 1]t t N+ − . The value of the output variable at the end of the interval is deter-
mined by equation (3). Its predictive value is determined from the following equation: 

 1( , ) ( ),Ny t N u t, N−= Λ ⋅  (20) 

where 2
1 [ ]N

N CA B CBD−
−Λ =   — output controllability matrix, 

1
1( , ) N -

t N - ty t N y CA x+= − , T T T T
1 1( , ) [ ]t t t Nu t N u u u+ + −=  , calculated value with 

known tx . 
For the solvability of (20), it is necessary that rN m≥ . The quality of control es-

sentially depends on the properties of the matrix 1N−Λ . It is important to 

1rank N m−Λ = . Other properties will be specified after the SVD decomposition of the 
matrix 1N−Λ , which will also be used to solve (20). We perform the SVD decomposi-
tion of the matrix 1N−Λ  and obtain 

 T
1N - Q VΛ = Σ . (21) 

If the matrix 1N−Λ  in (20) is square, then, taking into account the previously indi-
cated properties of the matrices included in expansion (21), the solution of SLAE (20) is 
written as 

 -1 T( ) V ( , )u t, N Q y t N= Σ . (22) 

When rN m> , then matrices V  and Σ  are represented in block form 

 [ ]m rN mV V V −= , [ 0]mΣ = Σ , 

where mV  contains the first m  columns and rN mV −  are the rN m−  remaining col-
umns of the matrix V . The matrix mΣ  is square, and 0 is a zero ( )m rN m× −  dimen-
sion matrix, and solution (20) is written as 

 1 T( ) ( )m
mu t, N V Q y t, N−= ⋅Σ ⋅ ⋅ . (23) 

The main properties of solutions (22) and (23) of SLAE (20) are determined by the 
properties of the matrix Σ  and mΣ , i.e., values of singular numbers. The condition 

number 1
1( )N

m
−

σ
κ Λ =

σ
 of the controllability matrix characterizes the sensitivity of the 

solutions obtained with respect to the errors of the initial state tx , system parameters, 

i.e. matrix elements , , ,A B C D , as well as calculation errors. With good conditionality, 

1( )N−κ Λ  it is close to unity. 
In addition, the larger the value of iσ , the more control resource the system has in 

the presence of restrictions. All this should be taken into account when choosing  
a control horizon. Obviously, the horizon should not be large if forecasting is carried 
out according to an approximate model and the errors at the input and output are 
quite significant, since this will lead to a large forecast error at large horizons. As a 
result, it will be necessary to solve more complex problems with frequent correction 
of predictive control. 
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Control strategies 

In this section, LTI control strategies based on MPC will be discussed. In classical 
control theory, it is very common to design a control system that implements a strategy 
which includes program control providing the movement of the system along a given 
trajectory and a stabilization system that ensures stable motion along this trajectory. In 
simpler cases, the problem of stabilizing a given equilibrium state is solved. In the pres-
ence of restrictions on control, not every trajectory of motion can be realized. In such 
cases, the trajectory of motion is searched for, which is the closest to the given one or 
calculated taking into account the constraints. 

The problem of terminal control is often considered, when it is not so important 
along which specific trajectory we approach a given terminal set within the available re-
sources for the control. Many other control strategies are also considered in control theory. 

Within the framework of the MPC approach, since the synthesis of control is car-
ried out directly in the process of the system functioning, there is no need to use the 
strategies described above. The problems of program control and stabilization can be 
combined into one more complex problem that implements the principle of feedback on 
current measurements made or estimates obtained on their basis. Many of them are de-
scribed in the extensive literature on the implementation of the MPC. Based on the re-
sults already obtained, it is enough for the designer of the control system to decide 
which of them is more suitable for his particular case. 

In this section, we describe one of the strategies for the movement of the system 
along a stabilized trajectory to a given final state. By its very nature, it is close to the 
task of pursuit, or rather, approaching some object. This strategy is applicable to both 
state and measured variables control problems. Let us describe the implementation of 
such a strategy. With regard to (12) or (20), first, the value of the control vector without 
restrictions is found, which has the form 

 1 T
1( ) n

n t Nu t, N V Q x−
+ −= ⋅Σ ⋅ ⋅  (24) 

or (23). We have an exact normal solution with minimal 2( )u t, N . If this solution sat-

isfies the control constraints, then the original problem is solved. When it goes beyond 
the boundary, we look for a solution (12) or (20) with the right side 1t Nx + −β  ( 0 1< β < ), 
in which β  is the maximum admissible, under which the constraints are satisfied. This 
β  always exists, since 1t Nx + −β  for [0, 1]β∈  is a segment connecting the point with the 
zero value of the right side of (12), (20) and the point 1t Nx + − . Moreover, this maximum 
admissible β  can be evaluated. As a result we have 

 

min
min

min max

max
min

, if  ( , ) ,
( , )

1, if  ( , ) ,

, if  ( , ) ,
( , )

j
j j

j

j j j

j
j j

j

u
u t N u

u t N

u u t N u

u
u t N u

u t N


 <

β = ≤ ≤



>


 

where min maxj j ju u u≤ ≤ , 1,j rN∈ . 

A similar result is recorded for other constraints on u  and output variable. When 
1β < , which means that the resource is not enough to fulfill the control goal in the first 
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chosen interval, the following control strategy can be implemented. For the selected 
control that satisfies the constraints, calculate the predicted value of the controlled vari-
able 1t Nx + −  and compare it with the measured one, thereby evaluating the effectiveness 
of the selected controlling action. Close values indicate good quality of predictive mod-
eling and/or favorable realizations of errors. 

When 1β <  it is proposed to achieve the control goal iteratively. To do this, at the 
next step, using the measured or estimated value 1t Nx + − , calculate the right side of 
equations (12) or (20) as the control goal for the next interval. We perform the same ac-
tions that were performed at the previous interval. If in the result β  is equal to one, then 
the control goal is achieved. At 1β <  the iteration continues until the goal is reached. In 
the future, only stabilization of the achieved state should be provided. In so doing con-
trol is refined not at the end of the horizon, but at each step, which will make it possible 
to provide better feedback. It is assumed that at this stage of control its resources are 
sufficient to suppress effectively disturbances affecting the system. 

On the basis of the described approach to the implementation of MPC with feed-
back, it is possible to form other control strategies that are more suitable for the specific 
application task under consideration. In particular, if the terminal point changes accord-
ing to a known law or this change can be estimated from the results of observations, 
then advance pursuit can be implemented. 

Thus, the control scheme described above makes it possible to implement control 
strategies with variable feedback, starting with a one-step correction moving to longer 
intervals, for example, with a step equal to the length of the horizon. 

The proposed control method based on MPC with feedback is suitable for both sta-
ble and unstable processes. It is only important that the control resources allow it. Par-
ticular in relation to the one considered is the problem of stabilization, in which the zero 
state is terminal. The goal is achievable if the sequence iβ  after a certain number of 
steps becomes equal to one, and the control resource is not enough to achieve it when it 
converges to a value β  that is less than one. This applies equally to the problem of sta-
bilization with unstable eigenvalues. 

State estimation on a sliding interval backwards 

The methods considered in the previous MPC sections are implemented if the state tx  
is known at the beginning of each control interval. As a rule, only variables ty  meas-
ured at each moment of time are known, whose dimension is less than n , i.e. m n< . 
According to these data, in order to implement MPC, it is necessary to estimate tx . 
To do this, we take a sliding interval backwards [ 1, ]t M t− +  from the point t  and, us-
ing the values t jy −  ( 0, 1, ..., 1j M= − ) measured on it, we will restore the state vector 

we need. Let us use equation (6), which, under the data on the specified interval, we 
write in the form 

 1( 1) ( 1)M t M My t M x u t M− +− + = Γ +Φ − + ,  (25) 

where T T T T
1 2( 1) [ ] ,t M t M ty t M y y y− + − +− + =   T T T T

1 2( 1) [ ] .t M t M tu t M u u u− + − +− + = 
 

Since we know the input and output values on the interval back from the point t, 
we introduce into consideration a vector ( , )f t M  of dimension mM  

 ( , ) ( 1) ( 1)Mf t M y t M u t M= − + −Φ − + , 
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which can be calculated from known data. Then to find 1t Mx − +  we have an overdeter-
mined SLAE 
 1 ( , )M t Mx f t M− +Γ = .  (26) 

Dimension (26) depends on the properties of the observability matrix MΓ  and, 
first of all, on its condition number. Therefore, we will perform its SVD decomposition 
for a sufficiently large .M  The dependence on M  of the condition number is deter-

mined from the relation 1( )j
j

σ
κ Γ =

σ
, where j — varies. From this relation with varia-

ble j, we choose the appropriate value of M, at which the condition number gives solu-
tion (26) the least sensitive to data errors. After choosing M, solution (26) can be written 
in the form (15). 

If the condition number is bad for any M, then regularization should be used, which 
leads to the solution (19). 

In addition to the described approach to estimating the current state vector of the 
system, it is possible to find a solution to the estimation problem in other similar ways. 
Some of them are described in [15, 16]. 

Data-driven predictive control 

Great interest is currently shown to MPC problems, which use the trajectory de-
scription of systems (8). Most of them are reduced to the synthesis of optimal control on 
a finite horizon. Let's consider some of them. Presume a control horizon is given with 
data in the following form [ , 1, , 1, , 1, , 1]t n t n t t t t N− − + − + + −  . Here, the to-
tal interval with data is composed of two. The first of them [ , 1]t n t− −  is the prehistory 
interval, on which we have a constantly exciting input action, i.e. from the sequence of 
outputs, one can form a Hankel matrix with row rank rn . In this case, any initial state 
(1) specifies a single trajectory, which is provided by data on an interval of length at 
least n . In this case, we know a priori the dimension of model (1), although we do not 
know it itself. In the general case, when description (1) is absent, the length of the pre-
history interval is taken to be equal [ , 1]t n L t− − −  and L  is chosen so as to guarantee 
that L n+  was certainly no less than n , and hence the uniqueness of the trajectory is 
guaranteed. The second interval [ , 1]t t N+ −  of the length N  is the horizon on which 
the predictive, in most cases, optimal control is synthesized. Then the Hankel matrices 
in (8) can be written in the block form 

 
p

f

U
U

U
 

=  
  

, 
p

f

Y
Y

Y
 

=  
  

,  (27) 

where pU  and pY  correspond to the implemented informative process that guarantees 

the uniqueness of the trajectory, fU  and fY  correspond to the future predictive process 

on which the given control goal is realized. The control horizon is chosen in such a way 
that the control goal, taking into account the existing restrictions on input and out-
put, is feasible. 

Blocks pU  and pY  are formed from the first n L+  blocks of matrices U  and Y , 

while the blocks fU  and fY  are composed of the remaining blocks of these matrices that 

define the control horizon. The very idea of control according to the prediction model (8), 
taking into account (2), is formulated in the form of the following lemma [17]. 
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Lemma. Let the matrix pU  consist of permanently exciting input actions of 

the order L n+  of a completely observable system. Then for the trajectory of the cor-
responding prehistory and the given input action on the forecast interval the state-
ments are valid 

a) there is at least one vector (0)g  satisfying 

 

( )

(0) ( )

( )

p
p

p
p

f
f

uU

Y g y

U u

  
  
 ⋅ = 
  
     

,  (28) 

b) the prediction ( )fy  is unique and is determined by the relation 

 ( ) (0)f
fy Y g= ⋅   (29) 

for any (0)g satisfying (28). 
It is easy to see that the union of (28) and (29) gives (8) for the value i  corre-

sponding to the beginning of the prehistory interval. 
In fact, this lemma is the basis for solving the analysis problem, namely, it estab-

lishes what the system output will be for any given input on the prediction interval con-
tained in the matrix fU . In this case, all the requirements that make the trajectory de-

scription realizable must be met. Here we note that all of them are not rigid enough and 
admit a set of suitable descriptions (8), (28), (29). In [18], some conditions are given 
that should be satisfied when choosing the parameters of the trajectory model for MPC, 
namely ( 2 ) 1N r L n n≥ + + − , and when 1r =  it is required that 1 3L N n≤ + − . 

With the correct choice of suitable parameters for the trajectory description, the 
lemma formulated above makes it possible to solve the direct problem quite simply, 
namely, to calculate from (29) the output variable on the prediction interval 

[ , 1]t t N+ −  for any given ( )fu . To do this, first from (28) (0)g  is found, and the val-
ue of the output variable on the prediction interval is found from (29). More difficult is 
the problem of predictive control synthesis. As a rule, they are reduced to solving opti-
mization problems. In a rather general and at the same time simple case [17], the MPC 
problem is formulated as follows. The control providing on the interval [ , 1]t t N+ −  

the movement along the trajectory 1
0{ }N

ky −  the closest to the given one * 1
0{ }N

ky −  can be 
found from the solution of the minimization problem 

 ( )(0)

1 * *

, , 0
min , ( ) ,

N
k k y k k k u k

u y g k
y y G y y u G u

−

=
− − +∑  (30) 

under restrictions (28), (29). 
Since the system model is based on trajectory data, which may contain an er-

ror, the problem (30) is complicated and reduced to finding a robust control. If we 
assume that the error contains only the measured input variable, moreover, corre-

sponding to the interval of prehistory, then instead of the exact ( )py  we have an 
approximate one, determined by the expression 

 ( ) ( )p py y= + ξ . (31) 



18 ISSN 2786-6491 

The noise ξ  in (32) can satisfy various types of constraints, which we will not 
dwell on here. Then problem (30) is transformed into the following one: 

 ( )( ) ( ) (0)

1 * *

, , 0
min max , ( ) ,

f f

N
k k y k k k u k

u y g k
y y G y y u G u

−

ξ =
− − +∑  (32) 

under restrictions 

 

( )

( )
(0)

( )

( )

p
p

pp
ff

ff

U u
Y y

g
U u
Y y

  
  

+ Ξ  + ξ 
⋅ =   

  
  

    

,  (32′) 

where ξ  and Ξ  are the trajectory realization of noise consistent with the constraints. 
Such a min-max problem is quite complex and difficult to solve. In certain cases, it 

can be reformulated in such a way that the search for its solution is simplified. So in-
stead of (32) we can solve a problem close to it 

 
(0), , ,

min
u g yg

g  (33) 

under restrictions (32′) on ξ  and 

 ( )1 * *

0
, ( ) ,

N
k k y k k k u k

k
y y G y y u G u

−

=
− − + ≤ g∑ . 

Some approaches to solving such problem were proposed in [17]. 
The original formulation of the problem of finding the optimal robust MPC was 

considered in [8]. It is assumed that the output in the already realized process of prehis-
tory is known approximately according to (31), in which ξ  satisfies the condition 

 ∞ξ ≤ ε . (34) 

Then it is proposed the optimal control by trajectory model of prediction to find 
from the minimization problem. To find:  

 
( )(0) ( ) ( )

2( )

, , ,
min

pf f

f

g u y y
u    (35) 

under constrains (28), (29), ( ) ( )p py y
∞

− ≤ ξ , ( ) ( ),f fu U y Y∈ ∈ , where U  is the 

domain of admissible controls, and Y  is of admissible values of the output on the pre-
diction intervals. A method for solving such a problem can be found, for example, in [9, 
19]. However, if there are errors in the past data with a single trajectory solution ( (0)g is 
unique) does not guarantee the robustness of the solution found in this way. Therefore, 
in [8], a modified formulation of the problem is proposed, in which two problems are 
separated: the problem of estimation and optimal control, as proposed in [11]. The 
work [8] describes in detail the procedure for constructing a robust optimal control by  
solving first the problem of estimating the membership set of all values of the parameter 

(0)gδ  consistent with permissible errors, determined by the relation 
(0) (0) (0) ,g g g= + δ  where (0)g  is its nominal value, which is found from the available 
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data, and (0)gδ  is all its permissible variations. After that, the problem of finding the 
optimal control on the prediction interval is solved, taking into account the found guar-
anteed estimates. All this is described in more detail in [8]. 

When implementing feedback based on MPC, it is advisable to have not very large 
prediction interval. The presence of constrains on control can significantly affect its 
choice. Moreover, within the framework of the problem statements considered above, 
there are no guarantees of the feasibility of the control goal when using small prediction 
horizons. 

Therefore, in the section «Control strategies», an iterative scheme for implement-
ing MPC was considered when achieving the final goal through solving terminal control 
problems on a sequence of small horizons. This increases the efficiency of the feedback, 
and as a consequence of this, the robustness as well. 

Let us consider one of the possible approaches for implementing such strategies us-
ing the data-based description of LTI systems. To do this, we choose an appropriate 
control horizon that satisfies the condition rN n≥ . Let us write for it the following ter-
minal control problem  

To find  
(0)

2

, 0
min

N
k

u g k
u

=
∑    (36) 

under constrains (28) and (29), *
1t Ny y+ − = . 

In order to solve the problem (36) we begin first with case, when no constrains on 
control are imposed. As a result, we get a normal solution ( , )u t N . If the controls are 
subject to restrictions similar to those specified in the «Control strategies» section, then 
we check whether the found solution satisfies them or not. When the constraints are ful-
filled, the problem is solved completely. When they go beyond the allowable area, we 
use the procedure described after formula (24) for finding the parameter β , with the 
help of which we ensure the feasibility of the restrictions. After the control chosen in 
this way, on the basis of (28) (0)g  is found and then from (29) the predicted output is 
calculated. 

The considered statement of the terminal control problem and the approach to its 
solution are equivalent to (20) and solution (24) using the parameter β  to satisfy the 
given constraints. It is quite difficult to establish the feasibility of the control goal in the 
class of normal solutions on a sequence of terminal problems with a given horizon. 
Solvability is guaranteed only in the zero-terminal stabilization problem for a stable LTI 
system. In a number of cases, for given initial and final states of the system, it is possi-
ble, on the basis of a computational experiment, to check the solvability of the problem. 
With known matrices , ,A B C , using numerical-analytical procedures, it is possible to 
estimate reachability domains. 

In recent years, a large number of papers have been published with different for-
mulations of control problems and approaches to their solution using informative trajec-
tory data, i.e. based on (8). It is almost impossible to list and analyze them. Moreover, 
this is a fairly intensively developed direction of research and applied development, and 
new results should be expected in the near future. 

Conclusion 

The main states of the control theory based on the data of the trajectory description 
were considered for discrete linear stationary LTI systems. These include a fairly large 
number of real systems encountered in practice. Nevertheless, there remains a fairly 
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large class of systems that do not fall into this class. This is especially concerning non-
linear systems, which in practice are more common than linear ones. A natural question 
arises about the possibility of extending the considered approaches and methods to the 
class of nonlinear systems. When considering controlled and predictable processes in 
systems with nonlinear models, various methods of linearization of the original nonline-
ar equations are widely used with the further prospect of using the mathematical appa-
ratus developed for linear systems. As a rule, its own linearized model is constructed on 
different sections of the trajectory. This is quite consistent with MPC when the predic-
tion horizon is finite and not very large. When using the trajectory description (8), there 
is no need to find an approximate description through the linearization of the original 
nonlinear equations. The trajectory data over not very large interval will just match the 
linearized model if it admits an acceptable approximation, i.e. the scatter of trajectory 
data over the considered prediction interval is small. At the next prediction horizon, the 
new data may correspond to a different linearized model. As a result, an appropriate 
choice of horizon can match data measurement errors with linearization errors. 

If we are dealing with a system continuous in time, then the use of discrete data is 
equivalent to approximating a continuous system to a discrete one, and here it is also 
advisable to match the errors. 

Based on the foregoing, we can conclude that the control method according to the 
MPC scheme using trajectory data is universal. 
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У статті викладено концептуальні засади нових трендів у теорії керування, 
які інтенсивно розвиваються останнім часом. На відміну від класичної тео-
рії керування, яка сформувалася у минулому столітті і базується на відо-
мих математичних моделях керованих процесів у вигляді локальних рів-
нянь, у нових підходах стосовно лінійних стаціонарних систем використо-
вуються співвідношення вхід–вихід, що випливають безпосередньо з 
формули Коші як для неперервних, так і дискретних систем. На основі цьо-
го ж опису можна обґрунтувати і отримати так звані траєкторні моделі, які 
безпосередньо прив’язані до даних, що формують на інтервалах спостере-
ження траєкторії уже реалізованих попередніх та майбутніх процесів, для 
яких слід синтезувати керування. Такий підхід орієнтований насамперед на 
знаходження керування за моделлю передбачення. При цьому поточні ви-
мірювання, здійснювані на об’єкті, дають змогу реалізувати зворотний 
зв’язок і у разі розбіжностей прогнозу від реального процесу провести ко-
рекцію прогнозного керування, тобто стабілізувати його. Керування за тра-
єкторною моделлю передбачення дає можливість виключити ідентифіка-
цію моделі за траєкторними даними, а керування здійснювати безпосеред-
ньо за ними. Оскільки дані містять похибки, найважливішим у 
аналізованому підході є питання робастності обраного керування. Йому 
присвячується велика кількість опублікованих робіт, де гарантований під-
хід, орієнтований на несприятливу реалізацію похибок даних, є найбільш 
затребуваним. Найчастіше синтез керування зводиться до розв’язання 
різних оптимізаційних задач переважно на скінченному горизонті перед-
бачення. Значна увага у статті приділена методам розв’язування задач 
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синтезу на основі SVD-розкладання. Щоб зменшити складність вирі-
шуваних задач пропонується зводити її до термінального керування на 
горизонті невеликої тривалості. Тоді реалізується ітеративна стратегія 
керування, яка за рахунок зворотного зв’язку забезпечує здійсненність 
глобальної цілі керування. 

Ключові слова: теорія керування, траєкторна модель, керування за дани-
ми, лінійна стаціонарна система, керування за моделлю передбачення 
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