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The article outlines the conceptual foundations of new trends in control theory
that have been intensively developing in recent years. Unlike classical control
theory, which was formed in the last century and is based on well-known mathe-
matical models of controlled processes in the form of local equations, new ap-
proaches to linear stationary systems use input-output relations that follow di-
rectly from the Cauchy formula for both continuous and discrete systems. On the
basis of the same description, it is possible to substantiate and obtain the so-
called data-based models, which are directly linked to data that form, at the ob-
servation intervals, the trajectories of already implemented past processes and
future ones, for which control is to be synthesized. This approach is focused
primarily on finding control from the prediction model. At the same time, the
current measurements carried out at the plant make it possible to implement
feedback and, in case of discrepancies between the forecast and the real process,
to correct the predictive control, i.e. such a way to stabilize it. Control by trajec-
tory prediction model allows to exclude model identification by trajectory data,
and control directly on their base. Since the data contain errors, the most im-
portant issue in the considered approach is the robustness of the chosen control.
A large number of published works are dedicated to this problem, where the
guaranteed approach, focused on the worst-case in the data, is the most in de-
mand. In most cases, control synthesis is reduced to solving various optimization
problems, mainly on the finite prediction horizon. Considerable attention in the
article is paid to methods for solving synthesis problems based on SVD decom-
position. To reduce the complexity of the tasks to be solved, it is proposed to re-
duce it to terminal control on the horizon of a short duration. Then an iterative
control strategy is implemented, which, due to feedback, ensures the feasibility
of the global control goal.

Keywords: control theory, trajectory model, data-driven control, LTI
system, MPC.

Introduction

Approximately in the middle of the last century, the mathematical theory of control
was formed and developed, which was based on the well-known mathematical model of
the process that was to be controlled. Systems with lumped parameters which were de-
scribed by systems of ordinary differential or difference equations, and systems with
distributed parameters, described using partial derivatives equations and boundary con-
ditions were considered. The control theory was composed of both analysis problems of
controlled processes and synthesis problems. The key to the creation of highly efficient
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control systems was the problem of stability. The needs of practice have initiated a vari-
ety of areas of research, some of which have emerged as independent areas of theory.
Thus, the theory of optimal control, game approach to control problems, including dif-
ferential games, and a number of others, were fruitfully developed. Synthesis of control
based on a given mathematical model was reduced to finding a control law that provides
the specified dynamic properties of the controlled plant. This a priori synthesized con-
trol law was then implemented in various control systems. With the help of adaptive
procedures and parameter tuning, the synthesized laws were corrected, thus reacting to
possible changes in the environment.

All the created theoretical base worked well in practice if the mathematical model
of the plant was known. Most often, it was built on the basis of the known laws of me-
chanics, physics, and others. The need to control design for objects whose mathematical
model was unknown led to the creation of a theory and methods for systems identifica-
tion. Models in such cases were built on the given experimental data. However, the
presence of errors in the available data very often, especially for complex systems, led
to problems that are difficult to solve, including ill-conditioning. The main emphasis
was focused on stochastic identification, which aimed at consistency of estimation. De-
spite the abundance of created methods for solving identification problems, one cannot
speak of a complete solution to this problem. Especially when, for various reasons, it is
difficult to choose the appropriate structure of the mathematical model for the system
under study.

Another aspect is related to the recent rapid development of computer technology.
Digital information technologies have begun to actively penetrate into all spheres of
human activity, including has become widely used in control systems. The use of such
tools only for the implementation of previously synthesized control laws depreciated the
capabilities of computing tools in control systems. In many cases, it has become quite
possible to solve control problems directly in the process of system operation. All this
stimulated the research of other approaches and methods of control systems design. As
a result, relatively recently, new areas of research have been formed that make it possi-
ble to set and solve control problems in a different way. Among them, two such direc-
tions aroused the greatest interest. These are model predictive control (MPC) and data-
driven control, when instead of solving the identification problem using them, control
that provides the given system dynamic may be evaluated directly from the data.

The great interest in the above new trends in control theory is evidenced by publi-
cations that have appeared over the past five years only in the journals «Automatica»
(about 200 articles) and «International Journal of Control» (more then 40 articles).

Therefore, in this article an attempt is made to present some of the theoretical re-
sults of these two conceptions in control theory as applied to linear discrete time-
invariant (LTI) systems. The main goal is to interest the reader in new approaches and
methods of control and encourage further development of researches and especially
their application in practice.

Trajectory description of LTI systems

Let us consider a discrete LTI controllable and observable system, the processes
occurring in which can be described by the following system of difference equations

where t is the current time, X; is the state vector of the system at the moment t of di-
mension n, Y, is the measured output vector of dimension m, and u; is the vector of
input or controlled action of dimension r. Matrices A, B, C, D have dimensions corre-
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sponding to the specified variables. The controllability and observability properties of
system (1) are determined by the matrices

C
-1 CA
Q, =[B, AB,...,ATB], I';, =|. . 2
cA™t
The system is fully controllable if the rank criterion is met
rank Q, =n
and fully observable when
rankT", = n.

It is generally accepted that description (1) is minimal if it corresponds to a fully
controlled and fully observable system. We will also assume that the system is well con-
trolled if the condition number of the matrix Q, has a low order. Good observability
corresponds to good conditionality of the matrix I",,. With poor controllability, large
control resources may be required to transfer the system from a given initial state to
some terminal ones. With poor observability, the problem of estimating the full state
vector from incomplete output observations can become ill-posed.

In systems with continuous time, using the Cauchy formula [1], one can go from a
state-space description similar to (1) to input-output relations, which, unlike (1), gives a
unigue description to each specific system.

It is well known that for any system a set of descriptions (1) is admitted, intercon-
nected by a non-singular transformation. They all give the same output response to any
admissible input. The input-output ratio represents the mathematical model of the sys-
tem through impulse transition matrices, which are actually matrices or Green's func-
tions for controlled and observed systems with lumped parameters [2]. Such a descrip-
tion is often used in practice when solving various dynamic problems.

For discrete systems described by (1), it is easy to write an analogue of the Cauchy
formula. 1t looks like

Yook = CAIX +CBUy o +...+ CA?Bu, + Dup,y, k=0,1,2, ..., 3)

here the first term determines the final state of the free movement from the initial
state x; up to the moment t+k, and the subsequent terms determine the result of the

forced movement at the same time instan. From vectors y;,, for different values k
from 0 to some value L™, we form a cascade vector of the following form:

Y& U =1y ¥ - Yeal 4)

whose dimension is m-L. In (4) « T» is the transposition operation. By analogy
with (4), we construct an expanded column vector composed of vectors u;, i.e.

u(t, L) =[u ulyy o oulq]” (5)

Cascade vectors (4), (5) actually represent a piece of the system (1) trajectory from

time t to t+L-1, i.e. a sequence of vectors {y; ut}'(;_l from 0 to L—1, where the
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lower index is the beginning of the trajectory, and the upper index is its end. For this
piece of the trajectory, based on (3), we can write a vector-matrix equation relating (4),
(5), namely

y(t,L) =T - % + @ -u(t,L), (6)

where I'| is the observability matrix of dimension L, and @, is a block triangular
Toeplitz matrix of the form

D .. 0 0
CB ... 0 0

O = . L
cAk2B ... cB D

Let the system (1) be observed on the interval t=1,1+1,...,1+T -1 affected by

the input {ui} corresponding to some its realization. Then the resulting process is mod-
eled by the following matrix equation

YZFLX"FCDLU, (7)

here Y =[y(l,L), yd+1,L),..., y0+T-L,L)], U=[ud,L),u(l+LL),...,u(l+T-L,L)]
are block Hankel matrices of outputs and inputs, and the trajectory initial states of the
system are assembled into a matrix X =[x, Xj,1,.--, Xjo7-L 1

Matrix equation (7) represents the shift set of pieces of system trajectories on the
observation interval. System (7) connects a set of trajectories with the parameters of
systems represented as observability and impulse response matrices, and each of these
trajectories is determined by its initial state. This system is the original 4SID (Subspace
state-space system identification), a method for identifying multiply connected systems
using trajectory data [3].

Now let's use (7) to construct a description that directly relates the trajectories of
the LTI system generated by some informative action. In this case, their dependences on
the parameters of the models described above and on the initial conditions are excluded.

To do this, we multiply (7) on the right by a vector g(i) of dimension T —L+1.

We take the vector g(i) so that it satisfies the following system of equations

|:U:| (i [Ui ] .
gW=|"],i=01...,(T-L+1), (8)
Y y!

here {ui, yi}:{u(l +i, L) y(I+i, L)} is one of the trajectories of set (7) represented by

equation (6). Thus, with the help of (8), we pass from the set of trajectories specified
by (7) to one corresponding to the i-th column of the matrices U, Y. This trajectory

corresponds to the initial state x,;. Each i-th trajectory selected with the help of (8)

will have its own value of the vector g(i). The system of equations (8) establishes a
connection between the set of shear trajectories obtained from the trajectory over the en-
tire observation interval [I, 1+T —1], with one shortened trajectory selected on this set.
In fact, (8) specifies the inverse transformation of the transition from the matrix descrip-
tion of the LTI system (7) to equation (6) written for the time moment t=1+i. There-

fore, (8) can be considered as a trajectory description of the LTI system at a given
observation interval.
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Let us now introduce into consideration the concept of a persistently exciting input

given on the observation interval [I,1+T —1]. The sequence {uk}ﬁj”’l on the obser-

vation interval [lI,1+T —1] will be persistently exciting of order L if the Hankel matrix
U in (7), (8) has full row rank, i.e. rankU = Lr [4, 5].

In [6], a fundamental result was formulated on the solvability of system (8), which,
according to the data on the observation interval, gives a data-based trajectory descrip-
tion of the LTI system. It is written in the form of a lemma on the connection between
the trajectory on the observation interval and its individual fragments, which substanti-
ates the trajectory description (8). Its essence is as follows. System (8) is resolvable if
the input action on the observation interval is persistently exciting of order L+n.

Thus, the system of equations (8) can be considered as an alternative description of
the LTI plant, which we will call the data-based model, since it links the data corre-
sponding, taking into account the shift invariance, to various fragments of the complete
trajectory on the interval [I, 1 +T -1].

Model predictive control

This control method is based on the construction of a predictive control input based
on a known model that determines the desired behavior of the system on a finite or
semi-infinite interval (horizon), starting from a certain point in time. In the process of
implementation, according to the current data measurements, it is estimated how much
the real process coincides with the predicted one, and, if necessary, the control input is
corrected on a new horizon. In this way, feedback is implemented, which ensures a sta-
bilized movement along a given trajectory. Control synthesis, as a rule, is reduced to
solving various optimization problems on a sliding horizon. A large number of MPC
problems with different descriptions of the controlled process and optimality criteria are
considered and solved. A large number of papers have been published on the formula-
tion of problems and methods for their solution. A generalization of the obtained results
can be found, for example, in relatively recently published monographs [6, 7]. Linear
and nonlinear systems with discrete and continuous time, with control by state and by
current measurements were considered. For LTI discrete systems, description (1) was
taken as the initial one. In other cases, other similar equations describing that describe
the local dynamics of the controlled and observed system were used.

Let us first consider one of the possible optimal control problems on a finite time
interval [t,t+ N —1], where t is the current time, and N determines the finite control

horizon. In the sliding interval mode with control synthesis at each step, taking into ac-
count the current data measurements, it is possible to implement MPC with feedback. If
model (1) is known, then various formulations of optimal control problems are possible
on its basis. We present here one of them considered in [8]. In addition to (1), it is also
assumed that restrictions are imposed on the input and output

UtEU, yt+k EY,k:O,l,...,N—l, (9)

where U ={u; € R" 1Upin SU<Upax} (@S @ rule Upin =—Upax ) @nd Y ={y; eR™:

G(t)-y<h(t), G(t) e R*™, h(t) e RY}. In a real process, due to the presence of dis-

turbances at the input and measurement errors at the output, as well as due to the inac-
curacy of the description, not the process that is predicted by model (1) is realized, but

another, which we denote as y{ and uf . With small perturbations and measurement
noise, as well as a not very large control horizon N, the real and predicted process
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should not differ significantly. In [8], it was assumed that there are no disturbances at
the input, and the output is measured with an additive bounded noise &, i.e.

ytp:)/t"":t’ ek,

for each moment of system operation. Wherein = ={& e R™ :||&;| <&, &>0}. Inad-

dition, about the initial state of the system at the moment t, i.e. at the beginning of the
interval, it is only known that it satisfies the condition x € Xy, where

Xo ={X € R™: Xmin < % < Xmax} it determines all admissible initial states of the sys-
tem. The optimal control problem is to minimize the quadratic criterion
t+N-1

> Jue (10)

under constraints (1), (9). It is also important that the desired control be robust with re-
spect to all possible initial states and measurement errors.

When solving the problem posed in this way, the ideas put forward earlier in [9, 10]
were used, as well as the separation principle for linear systems, which is described
in [11]. As a result, in [8], an original method for implementing feedback was proposed
and developed, which ensures the robustness of the control system.

Based on (1), other formulations of the optimal control problem for the MPC are
admissible.

Now we consider the problem of MPC design based on description (3). Let us for-
mulate it as a terminal control problem on the same sliding interval [t,t+ N —1] with
horizon N. Let the total state vector x (C = E) and D =0 be measured. Then the state

of the system at the moment t+ N according to (3) is determined by the relation
XtyN-1 = AN’lxt +Bui, ny_2 + BAU N3 +...+ BAN’Zut . (11)

In the terminal control problem, X;,n_; is given, but x; is measured and, there-

N-1

fore, X, n_1— A" "X =X(t, N) is calculated. Then (11) can be written as

Q1 -ut, N) =X(t, N, (12)

where u(t, N)=[utT+N_2 utT+N_3 utT]T. The stabilization problem corresponds to

X+N—1 =0 and X(t, N) = —AN‘lxt, i.e., with exact model, data and calculations, solu-
tion (11) with u; y_ =0 brings the system to the zero equilibrium state. In the general
case, terminal control it is needed using non-zero u; n_g, Uiy €EC. in order to keep
the system in a state of X, n_1-

The solvability of the system of linear algebraic equations (SLAE) (12) depends on
the properties of the matrix Q_; and, first of all, on its conditionality. When r <n,

then we assume N —1>n-r, i.e. system (12) must be square or underdetermined. In
addition, in these cases rank Qy_; should be equal to n. No less important is the value
of the condition number Qy_;. Under poor conditionality, problem (12) becomes ill-

posed when the right-hand side is specified with an error or the elements of the matrix
Qp_y are not yet accurately specified. This occurs if the measurements contain noise

and the system model is approximate, for example, found from the solution of the iden-
tification problem. Therefore, the choice N should be tied to the condition number of
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the matrix Qy_;. To do this, it is enough to plot the condition number «(Qy_4) as a
function of N. The most preferable will be the one N for which «(Qy_4) is closer to
unity. Note that for values N for which rankQy_; <1, the condition number is taken
equal oo (the system is degenerate). After choosing an appropriate N optimal control,
it can be found from the formulation of the problem close to the one considered above
on the basis of equations (1). The optimal solution will be the element u(t, N) that de-
livers the minimum (10) under constraints (12) and u(t, N) eU , where the last con-
straint is similar to the one specified in (9).

For small N and large |X(t, N)|, such a problem may turn out to be incorrect due

to the indicated restrictions on control. The control resource for its solution may not be
enough. Therefore, it is proposed to use an original method for solving such a compli-
cated problem, which allows finding a solution that satisfies the restrictions. Moreover,
on its basis, one can iteratively form a control that brings the system closer to a given
goal. The method presented below is sufficiently universal for solving arbitrary SLAES.

SLAE solution based on SVD decomposition

Let a SLAE be given to be solved
®z=9¢, (13)

where @ is a matrix of dimension nxm, ¢ and z are vectors of dimensions n and

m, respectively. For n=m, we have a square system, and for n>m and n<m (13)
are an overdetermined and underdetermined SLAE. We use the SVD decomposition of
the matrix @, which will allow us to find solutions in all these cases. The matrix @ is
represented using the SVD decomposition as

®=QxV , (14)

where Q and V are orthogonal matrices of dimensions nxn and mxm, respectively.

The matrix X is rectangular in dimension nxm, on the diagonal of which singular val-
ues are located in a non-increasing order [12].

by
In the case of an overdetermined system n>m, we have X = {Om } where X, is

a square matrix of dimension m and for o, #0 (o, is the m-th singular number, i.e.,
X is nondegenerate). Then the solution z is written as

z=V-321.QT, (15)

where Q, is the matrix formed from the first m columns of the matrix Q. Solu-

tion (15) coincides with the one obtained using the standard LSM for overdeter-
mined SLAEs.
When n<m, we have an underdetermined system and the matrix ¥ in the SVD

decomposition takes the block form X = [Zn O] . Solution (15) in this case is written as
z=v".2.1.QTy, (16)

where V" is the matrix formed by the first n columns of the matrix V. The written so-
lution coincides with the normal solution (15), i.e., among the set of solutions of the un-
derdetermined system, the one that delivers the minimum to the quadratic form

2T .z= ||z||2 is taken.
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For a square system n=m, the solution for a nonsingular matrix @ has the form

z=Vv.z71.QT¢, (17)
which coincides with the standard solution (13). When the matrix ® is degenerate,
then, as in the case of an underdetermined system, a normal solution is found. In this

2]

. . 0 .
case, the matrix X is represented as [ 0 O} , Where 0 are the corresponding vectors or

blocks. By analogy, blocks of matrices V and Q are written in (16).

Problem (13) becomes ill-posed for an ill-conditioned matrix ® [13]. Then, to
find an approximate regularized solution, one should use a stabilizer. When solving the
SLAE based on the SVD decomposition, the stabilizer can be formed from the values of
the singular values of the matrix X . As such, it is proposed to take a stabilizer

azd, (18)

where o (o> 0) is the regularization parameter, g (q > 0) is the tuning parameter, and
the diagonal matrix X has the form

Gy 0 0 .. 0 0
61

o ©n

e,

0 0 0 .. "y

On-1

0 0 0 ... 0 1

o
o
o

By adding this stabilizer to the matrix X, i.e. in (17), we obtain a regularizing op-
erator that allows us to find an approximate regularized solution to problem (13). It
looks like

2% =V(E+0z)1QT¢. (19)

The regularization parameter can be found in various ways, for example, from the
residual principle [13] or by taking its quasi-optimal value, as suggested in [13, 14].
Problems (15), (16) can also become ill-posed. They can be regularized in the same

way, i.e. replacing X with an expression X+ axJ.

System output control by a predictive model

In practice, most often it is necessary to control not the state of the system, deter-
mined by the vector x;, but the variables that are measured. Especially when the mod-

el (1) is found from the solution of the identification problem, since the vector x in this
case plays a connecting role between the input and output variables. In other words,
they are internal generalized variables, the physical meaning of which cannot always be
interpreted, taking into account the non-uniqueness of their representation. For MPC-
based control, it is important to control the behavior of those variables that have an ex-
plicable physical meaning, namely, these are the output measured variables. Therefore,
in this section, we will consider the problem of local-terminal control on a sliding inter-
val by the measured characteristics of the system, i.e. vector vy, . Description (3) is best
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suited for the synthesis of such an MPC. Let N be the control horizon of the sliding in-
terval [t,t+ N —1]. The value of the output variable at the end of the interval is deter-

mined by equation (3). Its predictive value is determined from the following equation:

y(t, N)=Ayn_1-u(t,N), (20)

where ANa =[CAN‘ZB ... CBD] — output controllability matrix,
V(I,N):yHN_l—CAN'lxt, u(t, N)=[utT uIlt ULN_l]T, calculated value with
known ;.

For the solvability of (20), it is necessary that rN > m. The quality of control es-
sentially depends on the properties of the matrix Ap_y. It is important to

rank Ay_; = m . Other properties will be specified after the SVD decomposition of the
matrix Ap_q, which will also be used to solve (20). We perform the SVD decomposi-
tion of the matrix Ay_; and obtain

Anyg=QaVT. (21)

If the matrix Apy_; in (20) is square, then, taking into account the previously indi-

cated properties of the matrices included in expansion (21), the solution of SLAE (20) is
written as

ut,N)=vz1QTy(, N). (22)

When rN >m, then matrices V and X are represented in block form

V="vN-" sz 0],

where V™ contains the first m columns and V™™™ are the rN —m remaining col-

umns of the matrix V . The matrix X, is square, and O is a zero mx(rN —m) dimen-
sion matrix, and solution (20) is written as

ut, Ny =v™.2.1.Q"-y(t,N). (23)

The main properties of solutions (22) and (23) of SLAE (20) are determined by the
properties of the matrix £ and X, i.e., values of singular numbers. The condition

number k(An_q) =L ofthe controllability matrix characterizes the sensitivity of the
(¢

m
solutions obtained with respect to the errors of the initial state x,, system parameters,
i.e. matrix elements A, B, C, D, as well as calculation errors. With good conditionality,
K(AN_q) itis close to unity.

In addition, the larger the value of o;, the more control resource the system has in
the presence of restrictions. All this should be taken into account when choosing
a control horizon. Obviously, the horizon should not be large if forecasting is carried
out according to an approximate model and the errors at the input and output are
quite significant, since this will lead to a large forecast error at large horizons. As a

result, it will be necessary to solve more complex problems with frequent correction
of predictive control.
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Control strategies

In this section, LTI control strategies based on MPC will be discussed. In classical
control theory, it is very common to design a control system that implements a strategy
which includes program control providing the movement of the system along a given
trajectory and a stabilization system that ensures stable motion along this trajectory. In
simpler cases, the problem of stabilizing a given equilibrium state is solved. In the pres-
ence of restrictions on control, not every trajectory of motion can be realized. In such
cases, the trajectory of motion is searched for, which is the closest to the given one or
calculated taking into account the constraints.

The problem of terminal control is often considered, when it is not so important
along which specific trajectory we approach a given terminal set within the available re-
sources for the control. Many other control strategies are also considered in control theory.

Within the framework of the MPC approach, since the synthesis of control is car-
ried out directly in the process of the system functioning, there is no need to use the
strategies described above. The problems of program control and stabilization can be
combined into one more complex problem that implements the principle of feedback on
current measurements made or estimates obtained on their basis. Many of them are de-
scribed in the extensive literature on the implementation of the MPC. Based on the re-
sults already obtained, it is enough for the designer of the control system to decide
which of them is more suitable for his particular case.

In this section, we describe one of the strategies for the movement of the system
along a stabilized trajectory to a given final state. By its very nature, it is close to the
task of pursuit, or rather, approaching some object. This strategy is applicable to both
state and measured variables control problems. Let us describe the implementation of
such a strategy. With regard to (12) or (20), first, the value of the control vector without
restrictions is found, which has the form

ut,N) =V"-2;" QT Xy (24)

or (23). We have an exact normal solution with minimal [Ju(t, N)|, . I this solution sat-

isfies the control constraints, then the original problem is solved. When it goes beyond
the boundary, we look for a solution (12) or (20) with the right side pX_y_; (0<B<1),

in which B is the maximum admissible, under which the constraints are satisfied. This
B always exists, since X,y for B [0,1] is a segment connecting the point with the
zero value of the right side of (12), (20) and the point %, y_;. Moreover, this maximum
admissible B can be evaluated. As a result we have

u. -
jmin | .
JF Ui (8, N) <Uimins
uj(t,N) i jmin
BZ 1,|f ujmin Suj(t-N)SUjmax-
ujmalx .
e N),If Uj(t,N)>Ujmin,

where Ujmin SUj SUjmax, JELIN.
A similar result is recorded for other constraints on & and output variable. When
B <1, which means that the resource is not enough to fulfill the control goal in the first
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chosen interval, the following control strategy can be implemented. For the selected
control that satisfies the constraints, calculate the predicted value of the controlled vari-
able X n_; and compare it with the measured one, thereby evaluating the effectiveness
of the selected controlling action. Close values indicate good quality of predictive mod-
eling and/or favorable realizations of errors.

When B <1 it is proposed to achieve the control goal iteratively. To do this, at the

next step, using the measured or estimated value X, n_q, calculate the right side of

equations (12) or (20) as the control goal for the next interval. We perform the same ac-
tions that were performed at the previous interval. If in the result B is equal to one, then
the control goal is achieved. At B <1 the iteration continues until the goal is reached. In
the future, only stabilization of the achieved state should be provided. In so doing con-
trol is refined not at the end of the horizon, but at each step, which will make it possible
to provide better feedback. It is assumed that at this stage of control its resources are
sufficient to suppress effectively disturbances affecting the system.

On the basis of the described approach to the implementation of MPC with feed-
back, it is possible to form other control strategies that are more suitable for the specific
application task under consideration. In particular, if the terminal point changes accord-
ing to a known law or this change can be estimated from the results of observations,
then advance pursuit can be implemented.

Thus, the control scheme described above makes it possible to implement control
strategies with variable feedback, starting with a one-step correction moving to longer
intervals, for example, with a step equal to the length of the horizon.

The proposed control method based on MPC with feedback is suitable for both sta-
ble and unstable processes. It is only important that the control resources allow it. Par-
ticular in relation to the one considered is the problem of stabilization, in which the zero
state is terminal. The goal is achievable if the sequence f; after a certain number of

steps becomes equal to one, and the control resource is not enough to achieve it when it
converges to a value B that is less than one. This applies equally to the problem of sta-

bilization with unstable eigenvalues.
State estimation on a sliding interval backwards

The methods considered in the previous MPC sections are implemented if the state x;
is known at the beginning of each control interval. As a rule, only variables y; meas-

ured at each moment of time are known, whose dimension is less than n, i.e. m<n.
According to these data, in order to implement MPC, it is necessary to estimate X; .

To do this, we take a sliding interval backwards [t—M +1,t] from the point t and, us-
ing the values y; ; (j=0,1,.., M —1) measured on it, we will restore the state vector

we need. Let us use equation (6), which, under the data on the specified interval, we
write in the form

y(t—M +1)=rM Xt—M+1+q)Mu(t_M +1), (25)

T T TqT
where y(t—M +1) = [V mi1 Yemaz - Y 1o ut-M+D)=[ul g Ulpan 0 17
Since we know the input and output values on the interval back from the point t,

we introduce into consideration a vector f(t,M) of dimension mM

fEM)=y(t-M +)-Dpu(t—M +1),
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which can be calculated from known data. Then to find x_p,,q We have an overdeter-
mined SLAE
Ty Xe-ma1 = F(EM). (26)

Dimension (26) depends on the properties of the observability matrix T'y, and,

first of all, on its condition number. Therefore, we will perform its SVD decomposition
for a sufficiently large M. The dependence on M of the condition number is deter-

mined from the relation «(I";) :Z—l, where j — varies. From this relation with varia-
]

ble j, we choose the appropriate value of M, at which the condition number gives solu-
tion (26) the least sensitive to data errors. After choosing M, solution (26) can be written
in the form (15).

If the condition number is bad for any M, then regularization should be used, which
leads to the solution (19).

In addition to the described approach to estimating the current state vector of the
system, it is possible to find a solution to the estimation problem in other similar ways.
Some of them are described in [15, 16].

Data-driven predictive control

Great interest is currently shown to MPC problems, which use the trajectory de-
scription of systems (8). Most of them are reduced to the synthesis of optimal control on
a finite horizon. Let's consider some of them. Presume a control horizon is given with
data in the following form [t—n, t—n+1, ..., t-1 t, t+1, ..., t+ N —1]. Here, the to-
tal interval with data is composed of two. The first of them [t —n, t—1] is the prehistory
interval, on which we have a constantly exciting input action, i.e. from the sequence of
outputs, one can form a Hankel matrix with row rank rn. In this case, any initial state
(1) specifies a single trajectory, which is provided by data on an interval of length at
least n. In this case, we know a priori the dimension of model (1), although we do not
know it itself. In the general case, when description (1) is absent, the length of the pre-
history interval is taken to be equal [t—n—L, t—1] and L is chosen so as to guarantee
that L+n was certainly no less than n, and hence the uniqueness of the trajectory is
guaranteed. The second interval [t, t+ N —1] of the length N is the horizon on which
the predictive, in most cases, optimal control is synthesized. Then the Hankel matrices
in (8) can be written in the block form

Loy
Us Y

where U, and Y, correspond to the implemented informative process that guarantees
the uniqueness of the trajectory, U and Y correspond to the future predictive process

on which the given control goal is realized. The control horizon is chosen in such a way
that the control goal, taking into account the existing restrictions on input and out-
put, is feasible.

Blocks U, and Y,, are formed from the first n+L blocks of matrices U and Y,

while the blocks U and Y; are composed of the remaining blocks of these matrices that

define the control horizon. The very idea of control according to the prediction model (8),
taking into account (2), is formulated in the form of the following lemma [17].
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Lemma. Let the matrix U, consist of permanently exciting input actions of

the order L+n of a completely observable system. Then for the trajectory of the cor-
responding prehistory and the given input action on the forecast interval the state-
ments are valid

a) there is at least one vector g(o) satisfying

u(P)

p
Yp ,g(O): y(p) , (28)
U ulf)

b) the prediction y(f) is unique and is determined by the relation
y(f):Yf .g(O) (29)

for any g(o) satisfying (28).

It is easy to see that the union of (28) and (29) gives (8) for the value i corre-
sponding to the beginning of the prehistory interval.

In fact, this lemma is the basis for solving the analysis problem, namely, it estab-
lishes what the system output will be for any given input on the prediction interval con-
tained in the matrix U . In this case, all the requirements that make the trajectory de-

scription realizable must be met. Here we note that all of them are not rigid enough and
admit a set of suitable descriptions (8), (28), (29). In [18], some conditions are given
that should be satisfied when choosing the parameters of the trajectory model for MPC,
namely N >r(L+2n)+n-1,and when r =1 itisrequiredthat L<N+1-3n.

With the correct choice of suitable parameters for the trajectory description, the
lemma formulated above makes it possible to solve the direct problem quite simply,
namely, to calculate from (29) the output variable on the prediction interval

[t, t+ N -1] for any given u(™) . To do this, first from (28) g(o) is found, and the val-

ue of the output variable on the prediction interval is found from (29). More difficult is
the problem of predictive control synthesis. As a rule, they are reduced to solving opti-
mization problems. In a rather general and at the same time simple case [17], the MPC
problem is formulated as follows. The control providing on the interval [t, t+ N —1]

the movement along the trajectory {yk}(')\l L the closest to the given one {y;}é\‘ L can be
found from the solution of the minimization problem

N-1 . .
min >’ (<Yk = ¥k Gy (Yk _yk)>+<uk!Guuk>) (30)
u.y.g? k=0

under restrictions (28), (29).

Since the system model is based on trajectory data, which may contain an er-
ror, the problem (30) is complicated and reduced to finding a robust control. If we
assume that the error contains only the measured input variable, moreover, corre-
sponding to the interval of prehistory, then instead of the exact y(p) we have an

approximate one, determined by the expression

y P oy e (31)
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The noise & in (32) can satisfy various types of constraints, which we will not
dwell on here. Then problem (30) is transformed into the following one:

N-1

S0 M o MEX EO (<yk = Yi» Gy (Y = Yk )>+<Uk , Gy )) (32)
under restrictions
U, uP)
f u
Yy y(f)

where & and = are the trajectory realization of noise consistent with the constraints.

Such a min-max problem is quite complex and difficult to solve. In certain cases, it
can be reformulated in such a way that the search for its solution is simplified. So in-
stead of (32) we can solve a problem close to it

min 33
u,y,g(m,yy (33)
under restrictions (32") on & and
N-1 . .
)3 (<yk =Yk, Gy (¥ — yk)>+(uk, Guuk))gy.
k=0

Some approaches to solving such problem were proposed in [17].

The original formulation of the problem of finding the optimal robust MPC was
considered in [8]. It is assumed that the output in the already realized process of prehis-
tory is known approximately according to (31), in which & satisfies the condition

ll, <. @)

Then it is proposed the optimal control by trajectory model of prediction to find
from the minimization problem. To find:

min

2
) u(f)” (35)
g(U)'u(f)’ y(f)' y

(p)

under constrains (28), (29), H?m —y(p) <Eg, uM eu, y(f) €Y, where U is the

[ee]

domain of admissible controls, and Y is of admissible values of the output on the pre-
diction intervals. A method for solving such a problem can be found, for example, in [9,

19]. However, if there are errors in the past data with a single trajectory solution ( g(o) is

unigue) does not guarantee the robustness of the solution found in this way. Therefore,
in [8], a modified formulation of the problem is proposed, in which two problems are
separated: the problem of estimation and optimal control, as proposed in [11]. The
work [8] describes in detail the procedure for constructing a robust optimal control by
solving first the problem of estimating the membership set of all values of the parameter

Bg(o) consistent  with  permissible errors, determined by the relation

9@ =g©@ 4+ 59©, where g(© is its nominal value, which is found from the available
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data, and Sg(o) is all its permissible variations. After that, the problem of finding the

optimal control on the prediction interval is solved, taking into account the found guar-
anteed estimates. All this is described in more detail in [8].

When implementing feedback based on MPC, it is advisable to have not very large
prediction interval. The presence of constrains on control can significantly affect its
choice. Moreover, within the framework of the problem statements considered above,
there are no guarantees of the feasibility of the control goal when using small prediction
horizons.

Therefore, in the section «Control strategies», an iterative scheme for implement-
ing MPC was considered when achieving the final goal through solving terminal control
problems on a sequence of small horizons. This increases the efficiency of the feedback,
and as a consequence of this, the robustness as well.

Let us consider one of the possible approaches for implementing such strategies us-
ing the data-based description of LTI systems. To do this, we choose an appropriate
control horizon that satisfies the condition rN >n. Let us write for it the following ter-
minal control problem

N
To find min > Jug|? (36)
u, 9@ k=0

under constrains (28) and (29), Yi,N_1 = y .

In order to solve the problem (36) we begin first with case, when no constrains on
control are imposed. As a result, we get a normal solution u(t,N). If the controls are

subject to restrictions similar to those specified in the «Control strategies» section, then
we check whether the found solution satisfies them or not. When the constraints are ful-
filled, the problem is solved completely. When they go beyond the allowable area, we
use the procedure described after formula (24) for finding the parameter B, with the

help of which we ensure the feasibility of the restrictions. After the control chosen in
this way, on the basis of (28) g(o) is found and then from (29) the predicted output is

calculated.
The considered statement of the terminal control problem and the approach to its
solution are equivalent to (20) and solution (24) using the parameter B to satisfy the

given constraints. It is quite difficult to establish the feasibility of the control goal in the
class of normal solutions on a sequence of terminal problems with a given horizon.
Solvability is guaranteed only in the zero-terminal stabilization problem for a stable LTI
system. In a number of cases, for given initial and final states of the system, it is possi-
ble, on the basis of a computational experiment, to check the solvability of the problem.
With known matrices A, B, C, using numerical-analytical procedures, it is possible to

estimate reachability domains.

In recent years, a large number of papers have been published with different for-
mulations of control problems and approaches to their solution using informative trajec-
tory data, i.e. based on (8). It is almost impossible to list and analyze them. Moreover,
this is a fairly intensively developed direction of research and applied development, and
new results should be expected in the near future.

Conclusion

The main states of the control theory based on the data of the trajectory description
were considered for discrete linear stationary LTI systems. These include a fairly large
number of real systems encountered in practice. Nevertheless, there remains a fairly
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large class of systems that do not fall into this class. This is especially concerning non-
linear systems, which in practice are more common than linear ones. A natural question
arises about the possibility of extending the considered approaches and methods to the
class of nonlinear systems. When considering controlled and predictable processes in
systems with nonlinear models, various methods of linearization of the original nonline-
ar equations are widely used with the further prospect of using the mathematical appa-
ratus developed for linear systems. As a rule, its own linearized model is constructed on
different sections of the trajectory. This is quite consistent with MPC when the predic-
tion horizon is finite and not very large. When using the trajectory description (8), there
is no need to find an approximate description through the linearization of the original
nonlinear equations. The trajectory data over not very large interval will just match the
linearized model if it admits an acceptable approximation, i.e. the scatter of trajectory
data over the considered prediction interval is small. At the next prediction horizon, the
new data may correspond to a different linearized model. As a result, an appropriate
choice of horizon can match data measurement errors with linearization errors.

If we are dealing with a system continuous in time, then the use of discrete data is
equivalent to approximating a continuous system to a discrete one, and here it is also
advisable to match the errors.

Based on the foregoing, we can conclude that the control method according to the
MPC scheme using trajectory data is universal.

B.®@. I'vbapes
HOBI HAITPSIMU TEOPII KEPYBAHHS

I'yoapeB B’siueciiaB ®@egopoBu4
InctuTyT KoeMmivnux nociimkerb HAH Ykpaiau ta IKA Ykpainu, M. Kuis

v.f.gubarev@gmail.com

V cTaTTi BUKIAJCHO KOHLENTYalbHI 3aCa/li HOBHX TPEH/IB Y TEOpii KepyBaHHs,
sIKI IHTEHCHBHO PO3BUBAIOTHCSI OCTaHHIM yacoM. Ha BigMiHy Bix Kiacu4HOT Teo-
pii kepyBaHHs, sika chopMyBasiacs y MHHYJIOMY CTOJITTI i Ga3yeThcst Ha Bigo-
MHX MaTeMaTHYHHUX MOJCJIAX KEPOBAaHMX IIPOLECIB y BUIIIII JIOKAIBHUX PiB-
HSIHb, Y HOBUX MiJX0/IaX CTOCOBHO JIHIHUX CTal[iOHAPHUX CHCTEM BUKOPHCTO-
BYIOTBCS CIIBBIZHOIICHHS BXiI-BHXiZ, L0 BHUIUIMBAIOTH OE3MOCEPEIHBO 3
¢dopmymu Komi six uist HemepepBHUX, TaK i JUCcKpeTHHX cucteM. Ha ocHOBI 1bo-
TO X OIIICY MOXKHA OOIPYHTYBATH i OTPUMATH TaK 3BaHI TPAEKTOPHI MOJENI, SIKi
6e3nocepeJHBO TPHB’sI3aHi 10 JaHUX, 0 GOPMYIOTh Ha iHTEpBalax CrIoCTepe-
KEHHSI TPAeKTOPil y)Ke peayli3oBaHMX IHOIEpenHiX Ta MaiOyTHIX mpouecis, It
SIKUX CJIiJI CHHTE3yBaTH KepyBaHHs. Takuil MiXiZ OpieHTOBaHMII HacamIiepes Ha
3HAXOJDKCHHS KePyBaHHA 32 MOJEIUI0 nependaueHHs. [Ipu oMy HOTOYHI BU-
MIpIOBaHHsI, 3AIHCHIOBaHI Ha 00’€KTi, HAaIOTh 3MOIy peayi3yBaTH 3BOPOTHHI
3B’SI30K 1y pasi po30iKHOCTEH MPOTHO3Y BiJl PEabHOTO IPOLECY MPOBECTH KO-
PEKLi0 MPOTHO3HOTO KepyBaHHs, TOOTO cTabiii3yBaru Horo. KepyBanHs 3a Tpa-
€KTOPHOIO MOJICILTIO TepeA0adeHHs /1a€ MOXJIUBICTh BHKIIIOUUTH ifeHTH(iKa-
L[iF0 MOZIEJTi 32 TPAEKTOPHUMH JaHUMH, a KepyBaHHs 3[iHCHIOBaTH Oe3nocepen-
HbO 3a HMMH. OCKUIBKM JaHi MICTATh TNOXHOKH, HaHBaXIIMBIIINM Yy
aHANI30BAHOMY TIIXOMi € MUTaHHS POGACTHOCTI OGPAHOrO KepyBaHHA. Momy
MIPHUCBSIYYETHCS BEJNUKA KUTBKICTh OIMyONiKOBAaHUX POOIT, JIe TapaHTOBAHUHA Mij-
XiJ, OpiEHTOBaHHH Ha HECIPHATINBY peaiallifo MOXHOOK JaHWUX, € HAHOLIbIT
3arpeOyBaHuM. Haiuactime CHHTE3 KepyBaHHS 3BOAMTBHCS 1O PO3B’S3aHHSA
PI3HHX ONTHMI3aliHHUX 3ajad IMEePeBaKHO Ha CKIHYCHHOMY TOPU30HTI Tepe-
GayeHHs. 3HAYHa yBara y CTaTTi HpHUAIJICHA METOJaM PO3B’s3yBaHHS 3aj1ad
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cuHTe3y Ha ocHOBi SVD-posxnaganns. 11[o6 3MeHIINTH CKIAAHICTH BHpi-
[IyBaHUX 3a/1a4 HPOMOHYETHCS 3BOJUTH ii JO TEPMiHAJIBHOIO KEpyBaHHS Ha
TOPHU30HTI HEBEJIMKOi TpuBasocTi. TOMl peani3yeTbesl iTepaTHBHA CTPATETis
KepyBaHHsI, sIKa 32 PaXyHOK 3BOPOTHOTrO 3B’s3Ky 3a0e3nedye 31ifiCHEHHICTh
rJ100aTbHOT il KepyBaHHS.

KonrouoBi cioBa: Teopist kepyBaHHS, TPa€KTOpPHA MOJENb, KEPyBaHHS 3a TaHH-
MU, JIiHIHHA CTalliOHapHA CHCTeMa, KePyBaHHS 32 MOJIEILIIO Iiepea0adeHHs
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