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Various technical and other real­world systems can be modelled with decent pre­
cision as linear systems. This approach is the core of the long established control
theory, whose mathematical apparatus is ubiquitous when it comes to controlling
some kind of system.While it is hard to underestimate importance of this approach,
long history of research in this field showed some of its shortcomings which may
hinder its application in various ways. For example, it does not allow to incor­
porate constraints on control signal’s magnitude into the system’s model. Thus,
engineers are forced to manually tune controller’s parameters ad­hoc in order to
satisfy these constraints. This paper is dedicated to development of an alternative
control algorithm based on the model predictive control approach. Its core idea is
to generate control sequences by solving an optimization problem which objective
function depends on predicted future state. It allows to generate fast stabilization
trajectories without additional tuning by using the classic linear system’s evolu­
tionary equation as a future state predictor and constraints on controls as optimiza­
tion problem’s constraints. Meaningfully defined objective function is crucial in
order to make this control algorithm work properly. It appeared that defining an
objective function with good enough properties in general case is not a trivial task.
This paper leverages modern nonstandard analysis in order to achieve this feat.

Keywords: MIMV system, linear system, optimization, model predictive con­
trol, stabilization, nonstandard analysis, hyperreals, hyperreal numbers, hyperreal­
valued objective function.

It is a common engineering problem to control some kind of system in order to ensure
its stability and prevent its malfunction or even self­destruction in case of reaching extreme
states it can not sustain. These are so­called stabilization problems.

A wide range of systems which require such control are representable as linear multi­
input multi­value (MIMV) systems, i. e. systems with n­dimensional real­valued state
evolving in discrete time according to equation

xk+1 = Axk + Buk (1)

and possible controls constrained with

uk ∈ C ⊂ Rr, (2)

where C is a closed bounded convex set.
Within the framework of this formalization, the stabilization problem can be loosely

described as ”how to bring the system from initial state x0 to 0 with synthesized control
sequence in minimum number of steps while preserving computational resources”.

The classic approach to the stabilization problem, which originates from the control
theory, is to create a feedback loop like

uk = Dxk. (3)
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This approach, as well as many other, share the same drawback: they do not use avail­
able control resources to their full potential. They do not stabilize the controlled system in
the fastest possible way. For stable systems it is bearable as long as the method can guar­
antee that stabilization will be significantly faster than without any control at all. At the
same time, for unstable systems (with spectral radius ρ(A) > 1) this becomes a problem,
because constraints on possible control signals effectively limit the set of initial states x0,
for which it is a priori possible stabilize the system.

For unstable systems inefficient usage of control resources means that for a particular
unstable system (1) with constraints (2) the set of initial states x0 stabilizable by a partic­
ular algorithm is just a subset of all initial states x0 stabilizable a priori. In practice, it is
relatively easy to find for a particular unstable system (1) with constraints (2) a particular
initial state x0 stabilizable by one algorithm and not stabilizable by another (or even by
the same algorithm with different metaparameters).

A classic workaround used to work with unstable systems is to say that a controlled
system (1) combined with a controller (3) is a new system

xk+1 = (A+ BD) xk, (4)

and to choose such D, that will make this combined system stable. But this approach just
hides the fact that there are still some control signals somewhere inside of this combined
system, and these control signals are still constrained.

The problem of inefficient usage of control resources becomes even more pronounced
if any kind of random perturbations (noise) or uncertainties are added into the equation.
Under such conditions if the system’s state is near the stabilizable area’s boundary, it can
be thrown outside of it by random perturbations on first few steps, even though in deter­
ministic case it would be theoretically possible to stabilize the system. Detrimental effect
of random perturbations and uncertainties is the most dangerous when the system’s state
is near its stabilizable area’s boundary. At the same time their influence is negligible when
the system’s state is near 0 (of course, if there is a controller which compensates it). This
is why it is important to choose the most fast stabilization trajectory — in order to min­
imize timeframe in which the stabilization process can be affected by randomness and
uncertainties in an irreversible way.

Thus, the general task in these regards is to define reasonably the most efficient way
to utilize available control resources in terms of stabilization speed and formulate corre­
sponding stabilization algorithm.

Considering the aforementioned drawbacks of the classic approach to this problem,
it is natural to search for ways to mend them. Thus, the model predictive control (MPC)
approach was applied [1–3] as an alternative.

The core idea of this approach is to explicitly find ”the best” possible control sequence.
In order to do this we compare different possible control sequences in terms of some kind
of utility function. This way, ”the best” control sequence is the one which has the lowest
value of the utility function. Thus, to find this control sequence it is enough to solve a
corresponding mathematical optimization problem.

The main caveat is that it is not practically feasible to optimize controls on infinite
future horizon. Instead, we have to decide on a specific number of future steps (i. e. to
decide on a horizon), for which controls are optimized.

Considering that our aim is to stabilize the system, or, in other words, to bring its state
vector to zero at some point in future, it is reasonable to define the utility function as
some kind of measure of future system state’s closeness to zero. In particular, of the future
state at the end of the prediction horizon, predicted from the sequence of controls on this
horizon.
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Computational experiments demonstrated [3], that while this approach works, in many
cases it shows undesired behaviour. It is obvious, that for different initial states x0 differ­
ent number of steps is required to stabilize the system. If it happened that the prediction
horizon length is equal to this minimum number of steps, the solution of the optimiza­
tion problem is indeed the best possible control sequence. But if the horizon is longer, the
computed solution would almost certainly stabilize the system exactly at the end of the
prediction horizon and not earlier. And if it is shorter, the stabilization trajectory in most
cases would differ from the initial part of any of the shortest stabilization trajectories, thus
decreasing stabilization speed.

This misbehaviours force us to solve multiple optimization problems for different pre­
diction horizon lengths in order to obtain the fastest stabilization trajectory. It drastically
increases required computational resources, which becomes even more pronounced if we
consider the fact that the problem’s complexity also grows with increase of the prediction
horizon’s length.

Another unfortunate consequence is that the result of such procedure is a pregenerated
control sequence for all duration of the predicted stabilization trajectory, which in most
cases would be long. If the system is affected by random perturbations (noise) or if mea­
surement of the current state is not precise, then real trajectory of the systemwould deviate
from the predicted and thus this control sequence would become obsolete after first few
steps. That is why we would essentially need to repeat this extensively complex compu­
tational procedure after each step of system’s evolution, which increases computational
burden even more. And it becomes even worse if we need to generate next control signals
in real time.

All this could be avoided if the utility function (the notion of state’s distance from zero)
provided us close­to­ideal trajectories even on short prediction horizons. Experiments in
[3] demonstrated, that combinations of systems and corresponding utility functions with
such properties indeed exist. In particular, it was demonstrated that straightforward future
state’s Euclidean norm and prediction horizon equal to one gives trajectories identical
(or nearly identical) to ideal ones for systems with diagonal matrix A in (1). This leads
to a hypothesis, that for each particular system’s structure there is a such well­behaving
utility function. Thus, this work is devoted to finding a way of such utility functions’
construction.

1. Problem statement

Let’s begin with formal definition of the stabilization problem from the MPC point of
view. The system (1), (2) has n dimensional state x evolving in time, so let there be some
(at this point arbitrary) function V : Rn → [0,+ inf) which is intended to be used as a
measurement of state’s distance from 0, with following properties. It is:

• convex (i. e. ∀a, b ∈ Rn ∀r ∈ [0, 1] V
(
a+ r(b− a)

)
≤ (1− r)V(a) + rV(b));

• has (global) minimum in 0;
• V(0) = 0;
• ∀x ̸= 0 V(x) > 0.
Thus, if we want to stabilize the system (1), (2), then we want to bring future system’s

state as close as possible to 0, where ”closeness” is expressed in terms of this function V . If
the current point of (discrete) time is k and the prediction horizon length we have choosen
is s, then this our wish can be formally expressed as

V
(
xk+s(A,B, xk, uk, . . ., uk+s−1)

)
−→ min (5)

uk, . . ., uk+s−1 ∈ C, (6)

where xk+s(. . .) is a predicted future state, dependent on future controls uk, . . ., uk+s−1,
current system’s state xk and system’s structure defined by matrices A and B.
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Future state’s prediction xk+s(. . .) can be easily obtained from (1), and it is as follows:

xk+s(A,B, xk, uk, . . ., uk+s−1) =

= Asxk +
s−1∑
i=0

As−1−iBuk+i. (7)

Thus, the stabilization problem (5), (6) is transformed into

V
(
Asxk +

s−1∑
i=0

As−1−iBuk+i
)
−→ min (8)

uk, . . ., uk+s−1 ∈ C. (9)

The only and the main question left is how to define such function V(·) with which
the problem (8), (9) would produce close­to­ideal stabilization trajectories even on short
prediction horizons. It is the topic of the following sections.

2. Optimal stabilization in systems with diagonalizable transition matrix A

Let’s begin with a situation for which it is simple to derermine reasonably efficient
objective function. If matrix A in (1) is diagonalizable, i. e. there is such matrix P, that A
can be expressed as

A = P−1


λ1 0 0
0

0
0 0 λn

P, (10)

then it would be beneficial to transform the state­space as in

yk = Pxk. (11)

In this transformed state­space the evolution equation (1) can be rewritten as

P−1yk+1 = AP−1yk+ Buk (12)

or, equivalently,

yk+1 =PAP−1yk+PBuk. (13)

From (10), (13) it is obvious that every component of y evolves independently from
each other, if we do not consider the (arbitrary) way in which control vectors u are gener­
ated. Thus, it also becomes obvious, that the best possible control sequences uk, . . ., uk+s−1
are the ones, for which the PBu component pushes components of y to be the closest to 0.
Or, more formally:

∥yk+s∥ −→ min

uk, . . ., uk+s−1 ∈ C ⊂ Rr,
(14)

∥∥∥PAsP−1yk +
s−1∑
i=0

(
PAs−1−iP−1)PBuk+i

∥∥∥ −→ min

uk, . . ., uk+s−1 ∈ C ⊂ Rr,

(15)

∥∥∥∥∥P(Asxk +
s−1∑
i=0

As−1−iBuk+i

)∥∥∥∥∥ −→ min

uk, . . ., uk+s−1 ∈ C ⊂ Rr,

(16)
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where ∥·∥ is a norm. In the following sections the Euclidean norm (∥y∥2 = 2
√∑n

i=1 y2i )
will be used, because other norms may arise complications discussed further (and those
which are fine still do not improve anything much).

By the way, we can control proirity of stabilization for different components of the
transformed state­space by choosing a particular matrix P in transformation (10). If we
have a particular transformation matrix P, we can reprioritize stabilization speed of differ­
ent components of ywith coefficients υ1, . . ., υn > 0 by choosing different transformation
matrix P′ = ΥP, where

Υ =


υ1 0 0
0

0
0 0 υn

. (17)

As we will see below, the coefficients υ1, . . ., υn can be choosen not only from the real
line R, but also from the hyperreal line HR. This can give us some benefits even in this
simple case, because it gives us more flexibility in prioritization.

3. General problem decomposition

In case when matrix A is not diagonalizable, it becomes much less obvious which
future system state xk+s(xk,A,B, uk, . . ., uk+s−1) is the best among possible ones (consid­
ering constraint (6)). Luckily, all possible pathological cases can be properly described
in a systematic way in terms of the real­valued Jordan decomposition.

As we know, every possible (real­valued) matrix A can be decomposed into a block­
diagonal form with four following types of blocks: 1 × 1 matrix (a scalar), rotation cell

R(a, b) =
(

a b
−b a

)
, a, b ∈ R \ {0}, (18)

aperiodic cell

L(λ) =


λ 1 0 0
0

0
1

0 0 λ

, λ ∈ R \ {0}, (19)

and rotation­aperiodic cell

S(a, b) =



a b 1 0
−b a 0 1

a b
−b a

a b 1 0
−b a 0 1

a b
−b a


, a, b ∈ R \ {0}. (20)

As with example in the previous section, each of resulting cells naturally corresponds
to a linear subspace of the original state­space, projection of the state x on which evolves
independently from projections on linear subspaces corrresponding to other cells. It means
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that impact of our controls (and of possible random perturbations) on future system’s states
remains isolated inside each corresponding linear subspace. In other words, consequences
of projection on such linear subspace of control impact Bu remain isolated inside the same
linear subspace indefinitely.

So, let there be a Jordan decomposition

A = P−1JP (21)

of the feedback matrix A.
What we can immediately see in aperiodic cells (19), (20) is that all of their corre­

sponding components of Pxk except for one impact not only their own future values in
Pxk+1, but also of neighboring ones. Thus, in order to be able to use the same approach, as
with diagonalizable feedback matrices A, it is important to reduce this unwanted impact
as much as possible.

Theoretically, we can do it as in

L(λ) =


ε−(n−1) 0 0
0

0
0 0 1



λ ε 0 0
0

0
ε

0 0 λ



εn−1 0 0
0

0
0 0 1

, (22)

S(a, b) =



ε−(n−1) 0
0 ε−(n−1)

ε−0 0
0 ε−0

×

×



a b ε 0
−b a 0 ε

a b
−b a

a b ε 0
−b a 0 ε

a b
−b a


×

×



εn−1 0
0 εn−1

ε0 0
0 ε0

, (23)

where the smaller ε > 0 we choose, the more independent become dimensions in the
feedback loop. The drawback of this approach is that in practice by decreasing εwe would
quickly encounter numerical problems in computations while calculating an optimal con­
trol on a computer. Thus, to achieve better results we need to extend the notion of real
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numbers we ubiquitously use in a way that would allow us to consistently operate with
concept of an infinitesimal number.

As a side note, you may notice that rotation Jordan blocks in form (18) are not di­
agonalizable (if we are not using complex numbers) and so we can not untangle them by
state­space transformations even to some degree. The same also applies to the rotation­
aperiodic cells (20): we can untangle from each other different rotation cells they are
consisting of as in (23), but we can not untangle them completely. But, considering their
nature, it is still fine: they produce a rotating vector in a projection of the state onto the
corresponding linear 2­d subspace, and thus, considering that our aim is system’s stabi­
lization, we need to minimize its Euclidean norm, but not the independent corresponding
transformed state­space components. If we use the Euclidean norm as a measure of whole
state’s distance from zero in (14)–(16), then this caveat does not make any difference. But
if we want for some reason to use another kind of norm, then we must make sure, that this
norm of our choice is calculated not from individual state vector’s components, but from:

• components corresponding to scalar (1× 1) Jordan cells;
• components corresponding to untangled variants of aperiodic Jordan cells (19) (as

in (22));
• Euclidean norms of component pairs corresponding to rotation Jordan cells (18);
• Euclidean norms of component pairs corresponding to rotation blocks of untangled

variants of rotation­aperiodic Jordan cells (20) (as in (23)).
For example, let us suppose that we want to use a variant of the so­called p­norm not

identical to the Euclidean norm (∥v∥p = p
√∑n

i=1 v
p
i , p ∈ [1, 2) ∪ (2,+∞)). In this case

if we have untangled Jordan decomposition



1/2 ε1 1
0 1/2 2

2 3
1 1 4

−1 1 5√
2

√
2 ε2 0 6

−
√
2

√
2 0 ε2 7√

2
√
2 8

−
√
2

√
2 9


, (24)

we must use norm constructed as following:

∥y∥ =
∥∥(y1, y2, y3, ∥(y4, y5)T∥2, ∥(y6, y7)T∥2, ∥(y8, y9)T∥2)T∥∥p . (25)

4. On the notion of the hyperreal line

The following sections will heavily use the notin of hyperreal numbers. As it is not
among mainstreammathematical instruments, this section will discuss some of their prop­
erties which are of interest in this paper.

The most distinct feature of the hyperreal number line HR is that, while containing
real numbers in itself, it introduces infinitesimal numbers. A positive infinitesimal is such
number d, that it is bigger than 0 and smaller than every positive real number ((d > 0)
∧∀ε ∈ R (ε > 0) → (d < ε)); a negative infinitesimal is such number d, that it is smaller
than 0 and bigger than every negative real number ((d < 0)∧∀ε ∈ R(ε < 0) → (d > ε)).
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Considering that all arithmetic operations and functions defined for the real line are
also applicable for the hyperreals, this automatically produces quite rich set of nonstandard
numbers. For example, if there exists some positive infinitesimal d, then there is also
−d (which is an example of negative infinitesimal), all of its powers, all of their linear
combinations and so on. And, for instance, its integer powers satisfy

0 < . . . < d3 < d2 < d < d0
=
1

< d−1 < d−2 < d−3 < . . . , (26)

where its negative powers (i. e. d−1) are examples of positive infinite hyperreals (which
are bigger than any real number).

Having the notion of infinitesimal numbers, the notion of infinitesimally close num­
bers naturally arises. Two hyperreals a, b ∈ HR are infinitesimally close (a ≈ b) if a−b is
infinitesimal. And so, there is another valuable property: any finite hyperreal is infinitely
close to some real number, which is called its shadow. For example, shadow of infinites­
imal number d is

�� ��d = 0, and
�� ��1+ d2 =

�� ��1 +
�� ��d2 = 1. Infinite hyperreals, obviously,

do not have shadows.
Every set of real numbers S ⊂ R has its ”enlarged” hyperreal counterpart S∗ ⊂ HR.

This way, for example, a real line segment [a, b] := {x ∈ R : (x ≥ a) ∧ (x ≤ b)} has its
enlarged counterpart [a, b]∗ = {x ∈ HR : (x ≥ a) ∧ (x ≤ b)}, which contains:

• all real numbers in [a, b];
• all hyperreals infinitely close to real numbers in (a, b);
• all hyperreals infinitely close to a from right;
• all hyperreals infinitely close to b from left.
Theorem (Robinson’s Compactness Criterion). S is a compact set in Rn iff for every

l ∈ S∗ exists
�� ��l ∈ S [4, p. 117].

Naturally, enlargement of any finite set of real numbers is the set itself ( {x1, . . ., xn}∗ =

{x1, . . ., xn}, n ∈ N) and enlargement of the whole real line is the hyperreal line ( R∗ =

= HR).
Finally, the most precious property of the hyperreal line is the transfer principle. It

can be loosely described as following: every true statement about real numbers formally
written in the first order logic has its counterpart about hyperreal numbers with all sets
replaced by their enlargements, which is also true. This is the reasonwhy hyperreals inherit
many valuable properties of real numbers, such as the fact that the hyperreal line is also
an ordered field.

Nevertheless, when using the hyperreal calculus it is important to be careful with ap­
plying well­known statements about real numbers onto hyperreal numbers. Being able to
do such transfer is one of the most important of their properties. But there is a caveat:
not all possible statements can be transferred. It is due to the fact that not all statements
can be described as a first order logic formula. For example, the statement that every
upper­bounded set of numbers has a least upper bound is true in R, but is not true in HR.
It is trivial to see, that set of all finite hyperreals is upper­bounded by any positive infinite
hyperreal, but its least upper bound does not exist ([4, p. 11], [5, Chapter 4]).

If reader is interested in more deep understanding of construction and usage of hy­
perreal numbers, here are works the author of this paper consulted with while preparing
it. For detailed and explicit construction of (different variants of) hyperreal line and for
formal discussion of their properties see [6]. For reasonably complete alternative calculus
built on top of hyperreals see [7]. For lightweight informal introduction into the notion of
hyperreals and the role of mathematical logic in describing their properties, see [5]. For a
complete lecture course on hyperreals adapted to a textbook, see [4].
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5. Defining optimal control with hyperreal­valued objective function

Let’s again consider equation (21). As we know, the Jordan decomposition matrix J
can be represented as

J =



Ψ1

Ψ2

Ψm

, (27)

where each of Ψ1, . . .,Ψm is either a scalar, or one of (18)–(20).
Thus, we can further decompose each cell as Ψi = ∆−1

i Λi∆i, i ∈ {1, . . .,m}, where:
• ∆i = δi ∈ {δ′ ∈ HR | δ′ > 0},Λi = Ψi, if Ψi ∈ R;

• ∆i =

(
δi 0
0 δi

)
for some δi ∈ {δ′ ∈ HR | δ′ > 0},Λi = Ψi, if Ψi = R(a, b) for

some a, b ∈ R \ {0} (see (18));

• ∆i =


δi,ni 0 0
0

0
0 0 δi,1

, Λi =



λ
δi,ni−1

δi,ni
0 0

0
0
δi,1

δi,2
0 0 λ


for some δi,1, . . ., δi,ni ∈ {δ′ ∈ HR | δ′ > 0},
where δi,j

δi,j+1
≈ 0 for j ∈ 1, . . ., (ni − 1),

if Ψi = L(λ) for some λ ∈ R (see (19));

• ∆i =



δi,ni 0
0 δi,ni

δi,1 0
0 δi,1

,

Λi =



a b δi,ni−1
δi,ni

0
−b a 0 δi,ni−1

δi,ni

a b

−b a

a b δi,1
δi,2

0
−b a 0 δi,1

δi,2

a b
−b a


for some δi,1, . . ., δi,ni ∈ {δ′ ∈ HR | δ′ > 0},
where δi,j

δi,j+1
≈ 0 for j ∈ 1, . . ., (ni − 1),

if Ψi = S(a, b) for some a, b ∈ R \ {0} (see (20)).
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This way we can say that

J =



∆−1
1

∆−1
2

∆−1
m


︸ ︷︷ ︸

Υ−1

×



Λ1

Λ2

Λm


︸ ︷︷ ︸

L

×

×



∆1

∆2

∆m

.
︸ ︷︷ ︸

Υ

(28)

So, from (21) we can produce

A = P−1Υ−1LΥP. (29)

As we can see, the shadow
�� ��L of matrix L is a block­diagonal matrix with only scalar

(1 × 1) and rotation (18) blocks. Thus, we can obtain such state­space transformation
y = ΥPx, whose components corresponding to 1 × 1 blocks and pairs of components
corresponding to the rotation blocks (18) evolve almost independently of each other. It
allows us to conveniently define the objective function as ∥yk+s∥2 → min in the same
way, as we have done it in Section 2. Thus, the convex optimization problem which is
proposed to be used for control synthesis can be represented as∥∥∥∥∥ΥP(Asxk +

s−1∑
i=0

As−1−iBuk+i

)∥∥∥∥∥
2︸ ︷︷ ︸

2
√

F0(uk,...,uk+s−1)

−→ min (30)

uk, . . ., uk+s−1 ∈ C ⊂ Rr. (31)

Similarly to the example with diagonalizable matrix A, it allows the norm in the objec­
tive function to capture changes in the almost­independent components. This way it is able
to capture long­term benefits or losses from different possible control sequences in more
consistent and explicit way. It is a significatnt improvement if compared with straight­
forward minimization of future state’s distance from zero ∥xk+s∥, because the latter is
indifferent to the system’s feedback loop structure defined by the matrix A. In particular, a
lower value of ∥xk+s∥ can hide more detrimental future impact of a corresponding future
state, than of some another possible state with higher value of the same norm.

The fact that coefficients on the main diagonal of Υ are hyperreals gives us another
valuable instrument in controller design: now we can explicitly specify that one of the
components of the transformed state­space has infinite times bigger stabilization priority
than another. This is exactly what happens for coefficients of Λ corresponding to untan­
gled aperiodic and rotational­aperiodic cells according to the decomposition above. But,
aside from these rules, we can freely tune comparative priorities of transformed state’s
dimensions corresponding to different Jordan cells. For example, we can make priority of
dimensions corresponding to unstable cells infinite times bigger then of those correspond­
ing to stable ones.
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It is also important to notice that while the objective function in (30), (31) is hyperreal­
valued, its variables uk, . . ., uk+s−1 are constrained by the set C, which is a subset ofRr and
thus is convex only in Rr, but not in HRr. It is reasonable to narrow the search area of the
problem’s solution to the real­valued vector space because in practice it is not possible, for
example, to apply a hyperreal­valued amount of voltage to some kind of electronic device.

6. On existence of the solution

Before trying to solve (some variant of) the problem (30), (31) it is important to discuss
whether its optimum exists. While the Extreme Value Theorem is a well­known result
in the classic mathematical analysis, in the nonstandard analysis, which arises from the
notion of hyperreal numbers, we need to be careful with transferring seemingly obvious
statements onto nonstandard entities. It is proven for one­dimensional case [4, p. 80], but
for (30), (31) we need to prove this theorem in a quite specific formulation.

Theorem (Extreme Value Theorem). If there is a continuous function f:Rm×S → R,
where S is a compact nonempty subset of Rn, then for each h ∈ HRm exist gmax(h) =

= argmaxg∈ S∗ f∗ (h, g) and gmin(h) = argming∈ S∗ f∗ (h, g).
Proof. It is a known fact, that every continuous real­valued function defined on any

compact nonempty set S ∈ Rn has its maximum and minimum values on it. The following
can be stated as its corollary for every continuous function f : Rm × S → R:

∀h ∈ Rm ∃gmax ∈ S ∀g ∈ S f(h, g) ≤ f(h, gmax), (32)

∀h ∈ Rm ∃gmin ∈ S ∀g ∈ S f(h, g) ≥ f(h, gmin). (33)

Thus, by the transfer principle:

∀h ∈ HRm ∃gmax ∈ S∗ ∀g ∈ S∗ f(h, g) ≤ f(h, gmax), (34)

∀h ∈ HRm ∃gmin ∈ S∗ ∀g ∈ S∗ f(h, g) ≥ f(h, gmin). (35)

Corollary. Objective function (30) has its minimum and maximum on (Cs)∗ .
It is important to notice, that in general case it is not guaranteed that gmax(h) and/or

gmin(h) are real­valued. Moreover, there are trivial cases when they are indeed non­
standard (not real­valued). We also don’t know whether there are any f(·, ·) and h for
which ming∈S f(h, g) and/or maxg∈S f(h, g) does not exist (while ming∈ S∗ f(h, g) and
maxg∈ S∗ f(h, g) still exists, as follows from this variant of the Extreme Value Theorem).

Nevertheless, the fact that (30), (31) always has real­valued solution will be shown
explicitly in the following section.

7. Decomposition of the convex optimization problem
with hyperreal­valued objective function

This section will discuss an explicit algorithm of solving the problem (30), (31) with
hyperreal­valued objective function by solving a sequence of problems with real­valued
objective function it is decomposed into. This procedure, described as in form of mathe­
matical induction, will also serve as a proof of the problem solution’s existence.

The idea of this procedure is to sequentially cut off parts of the set of possible con­
trols (31) in such way, that it would each time decrease maximum value of the objective
function (30) on the remaining subset of controls. As it will be demonstrated in the math­
ematical induction’s stop condition, after finite number of steps the remaining part will
produce equal values of the objective function (30), which thus are its minimum value on
the set of possible controls.
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7.1. Decomposition­based problem solving procedure.
Induction base. Let there be a diagonal hyperreal­valued matrix Υ0 := Υ (obtained

from the procedure described in the Section 5), an objective function

F0(uk, . . ., uk+s−1) :=

∥∥∥∥∥Υ0P
(
Asxk +

s−1∑
i=0

As−1−iBuk+i

)∥∥∥∥∥
2

2

(36)

and its domain

S0 := Cs ⊂ Rr·s, (37)

which are identical to (30) and (31) correspondingly.
Induction step. There is a diagonal matrix Υq−1 = diag(υq−1,1, . . ., υq−1,n), objec­

tive function

Fq−1(uk, . . ., uk+s−1) :=

∥∥∥∥∥Υq−1P
(
Asxk +

s−1∑
i=0

As−1−iBuk+i

)∥∥∥∥∥
2

2

(38)

and its domain Sq−1 ⊂ Cs ⊂ Rr·s.Υq−1 has all of its coefficients nonnegative and there is
at least one nonzero coefficient among them.Fq−1 preserves order withF0 onSq−1 (i. e. for
any (uk, . . ., uk+s−1) ∈ Sq−1 and (u′k, . . ., u′k+s−1) ∈ Sq−1 we haveFq−1(uk, . . ., uk+s−1) ≤
≤ Fq−1(u′k, . . ., u′k+s−1) iff F0(uk, . . ., uk+s−1) ≤ F0(u′k, . . ., u′k+s−1)).

From the Extreme Value Theorem follows, that (38) maps set of controls Sq−1 onto an
interval {f ∈ HR : fmin ≤ f ≤ fmax}, where fmin and fmax are the minimum and maximum
possible values of (38) on (Sq−1)

∗ ⊃ Sq−1.
Let us fix an index iq−1 such that υq−1,iq−1 is the biggest among dagonal coefficients

of Υq−1 (or one of the biggest, if there are several equal ones which are bigger than any
other). Then, a diagonal matrix Υ′

q−1 :=
(

1
υq−1,iq−1

Υq−1

)
has all of its coefficients in

[0, 1]∗ , and at least one of them is equal to 1. Thus, there exists its shadow
�� ��Υ′

q−1 .
Let there be a problem�

�
�
�

∥∥∥∥∥Υ′
q−1P

(
Asxk +

s−1∑
i=0

As−1−iBuk+i

)∥∥∥∥∥
2

2

−→ min , (39)

(uk, . . ., uk+s−1) ∈ Sq−1 ⊂ Cs ⊂ Rr·s. (40)

Considering that controls uk, . . ., uk+s−1 are real­valued, we can write that�
�

�
�

∥∥∥∥∥Υ′
q−1P

(
Asxk +

s−1∑
i=0

As−1−iBuk+i

)∥∥∥∥∥
2

2

=

=

∥∥∥∥∥�� ��Υ′
q−1 P

(
Asxk +

s−1∑
i=0

As−1−iBuk+i

)∥∥∥∥∥
2

2

. (41)

Then, considering the way the set Sq−1 was defined on the previous iteration, the
problem (39), (40) becomes an example of classic convex optimization problem, which
can be solved explicitly (for example, with the CVXOPT solver [8]). We denote set of its
solutions as Sq ⊂ Sq−1 ⊂ Cs.

It is an obvious fact that if two hyperreals a, and b are finite, then from
�� ��a <

�� ��b
follows a < b. As Sq ⊂ Sq−1 is a set of solutions of (39), (40), we can conclude that for
any combination of controls from Sq the value of the objective function Fq−1 is strictly
less than any other combination of controls from Sq−1 \ Sq.
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Fq−1 preserves order with F0 on Sq−1, so, again, for any combination of controls from
Sq the value of the objective function F0 is strictly less than any other combination of
controls from Sq−1 \ Sq.

Considering that Sq ⊂ Sq−1 ⊂ . . . ⊂ S0 and that we have the same property for all
previous steps, we conclude that for any combination of controls from Sq the value of the
objective function F0 is strictly less than any other combination of controls from S0 \ Sq.

We know that on Sq the value of (39) is a constant, so let’s denote this value as φq−1.
Function F′

q defined as

F′
q(uk, . . ., uk+s−1) :=

1
υq−1,iq−1

Fq−1(uk, . . ., uk+s−1)−

− min

l :
�� ��υq−1,l
υq−1,iq−1

̸=0


(

υq−1,l
υq−1,iq−1

)
�� ��υq−1,l
υq−1,iq−1


2

φq−1. (42)

preserves order with Fq−1 on Sq (i. e. Fq−1(uk, . . ., uk+s−1) ≤ Fq−1(u′k, . . ., u′k+s−1) iff
F′
q(uk, . . ., uk+s−1) ≤ F′

q(u′k, . . ., u′k+s−1)), so it also preserves order with F0 on Sq.
Let us denote rows of P as p1, . . ., pn. If we reduce domain of function F′

q to Sq, we
will obtain the following:

Fq(uk, . . ., uk+s−1) := F′
qSq
(uk, . . ., uk+s−1) =

=

n∑
j=1

(
υq−1,j

υq−1,iq−1

pj
(
Asxk +

s−1∑
i=0

As−1−iBuk+i

))2

−

− min

l :
�� ��υq−1,l
υq−1,iq−1

̸=0


(

υq−1,l
υq−1,iq−1

)
�� ��υq−1,l
υq−1,iq−1


2

×

×
n∑

j=1

(�



�
	υq−1,j

υq−1,iq−1

pj
(
Asxk +

s−1∑
i=0

As−1−iBuk+i

))2

=

=

n∑
j=1

( υq−1,j

υq−1,iq−1

)2

− min

l :
�� ��υq−1,l
υq−1,iq−1

̸=0


(

υq−1,l
υq−1,iq−1

)
�� ��υq−1,l
υq−1,iq−1


2

·
�



�
	υq−1,j

υq−1,iq−1

2


︸ ︷︷ ︸

υ2
q,j

×

×

(
pj
(
Asxk +

s−1∑
i=0

As−1−iBuk+i

))2

=

=

n∑
j=1

(
υq,jpj

(
Asxk +

s−1∑
i=0

As−1−iBuk+i

))2

=

=

∥∥∥∥∥ΥqP
(
Asxk +

s−1∑
i=0

As−1−iBuk+i

)∥∥∥∥∥
2

2

. (43)
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Stop condition. By construction, at each step q the next obtained diagonal matrixΥq

has at least one more coefficient on the main diagonal equal to zero, if compared to the
Υq−1. So, there is a step t at which we will obtain Υt = 0. Thus, Ft(uk, . . ., uk+s−1) ≡
≡ 0. But Ft preserves order with F0 on St. So, F0 has equal values on St. And from the
last step we have that for any (uk, . . ., uk+s−1) ∈ St and any (u′k, . . ., u′k+s−1) ∈ S0 \ St

F0(uk, . . ., uk+s−1) < F0(u′k, . . ., u′k+s−1). Or, in other words, St is the (nonempty) set of
solutions of the problem (30), (31).

7.2. On usage of non­Euclidean norms. While there seems to be no practical reason
to use norms other than Euclidean, it is possible to use some of them. For instance, the
procedure and proof in the previous subsection can be adapted to the example of the p­
norm based composite norms constructed like (25) from Section 3. But there may be
caveats with other norms.

First of all, we must make sure that the non­Euclidean norm we want to use satisfies
precautions about rotation and rotation­aperiodic cells, described at the end of Section 3.
But even if it satisfies them, it still may produce unwanted effects. For example, if we want
to use the maximum norm ∥v∥inf = maxni=1|vi| as a basis for composite norm complying
with the aforementioned precautions, it may (depending on coefficients of matrixΥ) leave
some of the dimensions effectively uncontrolled until other ones are completely stabilized.
Other nonstandard norms may even maximize part of components instead of minimizing
them if there is a coefficient υi infinitesimally smaller than other ones (i. e. if there is υj
such that υi

υj
≈ 0) and ∂∥y∥

∂yi

(
(y1, . . ., yi−1, 0, yi+1, . . .yn)T

)
̸= 0.
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СТРУКТУРНО­ОБУМОВЛЕНА ЗАДАЧА
ОПТИМІЗАЦІЇ ДЛЯ КЕРУВАННЯ ЗА ПРОГНОЗНОЮ
МОДЕЛЛЮ У ЛІНІЙНИХ СИСТЕМАХ ІЗ БАГАТЬМА
ЗМІННИМИ ТА ВХОДАМИ

Михайло Дмитрович Міщенко

Інститут прикладного системного аналізу, Національний технічний університет
України «Київський політехнічний інститут імені Ігоря Сікорського», м. Київ,
mdmisch@firemail.cc, mdmisch@protonmail.com

Різноманітні технічні та інші системи можуть бути змодельовані із пристой­
ною точністю як лінійні системи. Цей підхід є основою давно відомої і за­
гальноприйнятої теорії керування, математичний апарат якої є невід'ємним,
коли потрібно керувати деякою системою. Хоча важливість цього підходу
важко недооцінити, тривала історія досліджень у цьому напрямку показала
деякі його недоліки, які можуть у різні способи заважати його застосуванню.
Наприклад, він не дозволяє включити обмеження на величину керуючого си­
гналу у модель системи. Через це інженери змушені вручну підлаштовувати
параметри контролера в кожному випадку окремо, аби задовольнити ці обме­
ження. Дана стаття присвячена розробці альтернативного алгоритму керува­
ння на основі підходу керування за прогнозною моделлю. Його основна ідея
полягає у тому, щоб генерувати послідовності керування шляхом розв'язання
задачі оптимізації, цільова функція якої залежить від передбаченого майбу­
тнього стану. Це дозволяє генерувати швидкі стабілізаційні траєкторії без
додаткового підлаштовування алгоритму за рахунок використання еволюцій­
ного рівняння класичної лінійної системи як предиктора майбутнього стану,
а обмежень на керування— як обмежень задачі оптимізації. Змістовно задана
цільова функція критично необхідна, аби цей алгоритм працював належним
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чином. Як виявилося, задати цільову функцію з достатньо добрими власти­
востями є нетривіальною задачею. У даній статті застосовано сучасний не­
стандартний аналіз, аби зробити це можливим.

Ключові слова: лінійна система, оптимізація, керування за прогнозною мо­
деллю, стабілізація, нестандартний аналіз, гіпердійсні числа, гіпердійснозна­
чна цільова функція.
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