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To solve the problem of pursuit in linear differential games, L.S. Pontryagin
suggested two direct methods. Direct methods are of great importance in the de-
velopment of the theory of differential games and in control theory under the
conditions of uncertainty. It turned out to be useful also in solving the problem
of control synthesis. Pontryagin direct methods have proved themselves as an ef-
fective means for solving problems of pursuit- evasion and control. These use
integrals, having a number of significant differences from the classical integral.
One of the differences consists in the use of multivalued mapping. Pontryagin’s
second direct method, based on concept of the alternating integral, which has no
analogs in integration of real function. In definition of alternating integral partic-
ipate of integration of setvalued mappings and geometric difference (Minkovski
difference) of sets. These operations make difficulties for computation of alter-
nating integral. From this point of view, the integral used by the first direct
method has a simpler construction. Therefore, the question naturally arises of
generalization the first direct method of pursuit. In this paper it will be studied a
generalization of the first direct method for pursuit games, being described by
differential inclusions z e —F(t, v), where F is a continuous multivalued map-

ping. This method will be called the modified first direct method of pursuit for
differential inclusions. In particular, the class of stroboscopic strategies, the tra-
jectory of the system are determined. For these classes games, it is proved that if
the starting point belongs to the modified first integral (the integral from the
multivalued mapping, which is present in the definition of the modified fist di-
rect metod), then this is necessary and sufficient condition for completing the
game in a fixed time instant in the class of stroboscobic strategies. The problem
of computation this integral is important. In the present article it has also been
proved that the union operations in the definition of the modified first integral
can be narrowed down to the class of compact-valued mappings

Keywords: differential inclusion, differential games, crossection, stroboscopic
strategy, admissible control, evader, pursuer, pursuit partition, nearly strobo-
scopic strategy.

In the present paper it will be studied a generalization of the first direct method for
pursuit games, being described by differential inclusions z e —F(t,v), where F is a

continuous multivalued mapping. This method will be called the modified first direct
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method of pursuit for differential inclusions. On the basis of the integral of the modified
first direct method of pursueit, a necessary and sufficient condition for the completion
of the game in the class of stroboscopic strategies of the pursuer in a fixed time instant
is obtained.

Futher we shall use the following notations: | =[O0, t] is the fixed closed inter-

val of time; A is a subsegment of I ; |A| is the lenth of A; K¢ (Y, respectively)

is the collection of all nonempty compact (closed) subsets of RY. If the set A is
convex , we will writt AecoK? (AecoCY respectively); H ={z e Rd| |z|<Bis

the unit closed ball in R o={0=1p <71y <...<T 3 < T, =T} is the partition of the
segment | ;Q is the collection of all partition of the segment | ; A; =[7_1,7];

|Ai| =8 =T —ti1; || = max §; is the diameter of the partition «; [; is an integral
I<i<n

over the interval A;; If A is a subset of the Euclidean space, then A[A] is the aggre-
gate of all measurable functions a(-): A— A. Denoted by AC(J) the aggregate of all

absolutely continuous functions z(-):J — RY
We considered the controlled differential inclusion

ze—F(t, V), 1)

where zeRY,tel =[0,7],veQ,QeK? F:IxQ —coKY is a continuous mapping.

There is also given subset M, M e coc which is called terminal set of system (1).
The pursuit problem in L.S. Pontryagin’s approach is posed as follows:
o Let be chosen the class of strategies of the pursuer U and the initial point z;, a

positive number T be given. Is it possible from a point z; to complete the pursuit at

the time t in the game (1) for the class of strategies U ?
e To solve this problem L.S. Pontryagin has suggested two direct methods of pur-
suit in a linear differential game [1].

Let a(): 1 — R™ be a nonnegative measurable function that satisfies the condition

[ a(t)dt=1 and M ecoCY. Then the following equality

Joa(t)Mdt =M. (2)
holds [2].
Modifications of Pontryagin’s first direct method of pursuit based on the formula (2)
were given in [2, 3].

If forany Be cY aset {At)NB=J, teA} is closed then multivalued mapping
AG): 1 —CY is called measurable.

A function a():A— RY, a(t) € A(t) almost everywhere (a.e.) on A is called
a single-valued cross-section of mapping A(t) and L[A(-), A] is denoted the family of

all integrable single-valued cross-sections of mapping A(t) on A.
The set

[x Alh)dt ={[,a(t)dt, a(t) e L[A(), Al}

is called the integral of the measurable multivalued mapping A(): 1 — cd.
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Let cld (comp®, respectively) be an aggregate of all measurable closed-valued
(respectively compact-valued) mappings A(-): | —c! (AQ): 1 > K9, respectively)
that satisfy the condition

[g Alt)dt = M. ()

The first direct pursuit method based on formula (2) was developed in [4, 5].
We construct an integral

WIAQ), 71 =[N[AY) + F(t, v)] dt
forevery A(-) ecl®.

We will call every function v(-) e Q(l) as evader admissible control.

Let Ps ={U} be the aggregate of all Borel measurable cross-sections U : | xQ — rRd
of the mapping F(t,v) on the interval |. The elements U from the class Py are called
stroboscopic strategies of a pursuer. To each triple & e Rd, Uehs, v()eQ(l) the
mapping I assigns a function z(-) € AC(l) defined by the formula

2(t)=¢- }w(t)dt, where w(t) =U(t, v(t)).
0

We call the function z(t) =z(t, & U, v(?)) the trajectory of system (1) on the

segment | =[O0, t] corresponding to the initial state e Rd, the pursuer’s strategy

U € Pg, and the admissible control of the evader v(-) e Q(I).
Definition 1. We will say that it is possible to complete the pursuit from initial

point & e Rd in time t© ( at the time instant t) in the class of strategies Py, if there is
a pursuer strategy U e By for every v(-) e Q(l) for the trajectories z(t, &, U, v(-) e
el'(§,U,v()) corresponding to the triple §&U,v() there is an inclusion
z(t,, &, U,v()) eM for certain t, €1 (correspondingly z(t) e M ).

Let W:IxQ —coKY be measurable mapping with respect to t fixed v, contin-

uous (in Hausdorff metric) with respect to v fixed t, and the function g: 1 x RY 5 RY

be continuous and the function &: 1 —> RY be measurable. We consider the mapping

It v)={weW(t, v)|g(t, w) =&(t)}
Lemma 1. There exists a zero measure subset S, S < | such that the restriction of

the mapping T'(t, v) to the set GY ={(t,v)|te1\S,veQ} has a Borelean measurable
cross-section.
Proof. Let the function &(t) and mapping W(t,v) be continuous. Then the map-

ping I'(t,v) will be upper semicontinuous with respect to the inclusion. Therefore, the

upper semicontinuous mapping has a Borelean measurable cross-section [10].
Let the function &(t) and mapping W(t, v) be measurable with respect to t fixed v ».

Then there exists a set A, I, u(l \An)<l for any e, :l such that the func-
n n

tion &(t) and the mapping W(t,Vv) are continuous on this set A, . Therefore the map-
ping T(t,v)has a Borelean measurable section W, (t,v) on the set

G" ={(t,v)|teA,, Vv eQ}. We define

34 ISSN 2786-6491



w(t,v), (tv) € G

w(t,v), (tv) € G
w(t, v) =

w(t,v), (tv) € G
It is easy to verify that the constructed function w(t, v) is Borelean measurable and is

defined on the set G® = U G". We put S=1\U A, , then the mapping I'(t,v) has a

n=1 n=1
Borelean measurable cross-section w(t, v) defined on the set GO ={(t,v)|tel\S,veQ}
and u(S)=0.

Lemma is proved.
Theorem 1. If the following inclusion

29 €Winod = A )UckDW[A(')’ 1]
Ve

holds. Then it is possible to complete pursuit in time t in the game (1) in the class of
stroboscopic strategies Ug (see also [5-9]).

Proof. If zy e W04, then

20 €] N [A®M)+F( v)dt
0veQ

T
for some A() ecld. Hence we obtain zg = [ w(t)dt for some w(t) e[A(t)+F(t, V)
0

almost for all te][0, t]. Therefore, in virtue of Lemma 1, there exists a Borelean
measurable cross-section w(t, v) =a(t)+ f (t, v), a(t) € A{t), f(t,v) e F(t,v) of map-
ping A(t) + F(t,v) onacompactset | xQ such that

Zg = } w(t, v)dt = } a(t)dt+} f(t,v)dt forany veQ.
0 0 0

Let v(-) e Q(l) be chosen arbitrarily. We assume f (t, v(t)) =U(zq, v(t)).
We define the trajectory of system (1) corresponding to the initial point zy e R ,

the pursuer’s strategy f (t, v(t)) =U(zg, v(t)) € Ps, and the admissible control v(-) € Q(I)
of the evader on the interval | =[0, 1], as follows

t
z(t) =zo -] f(t, v(t))dt.
0
On the other hand,

20 = a)dt+] f(t, v()dt.
0 0

T
Since [a(t)dt e M. It follows z(t) € M.
0

Theorem is proved.

The set Wy,oq is called the integral of the modified first direct method of pursuit.
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We give an example demonstrating the advantages of the integral Wy over the

integral W* of the first pursuit method [6].

0 -1
Example. Let 2eF(t,v), where zeR® F(t v)=¢“[P-v], C:(l oj’

|
P={(@,0)e RZHU\ <I},te[0,n] and veQ, Q ={(o, V)e R2| |V] 35}’ M ={(z,2,) e
€ Rz‘zl2 +z§ <12},
In this case, the integral of the first direct method [6] W* =& for any t>0. Let

us prove that the integral of the modified first direct method Wpoq # <& for any t>0.

T
Let t=m We put A(t) =€'°Q. Then it follows from [11] [ A(t)dt = IH.
0
We calculate [11]

WIA(), n] = Tjt A [AGQ) + F(t, v)]dt = Tjtetc Pdt =2IH.
oveQ 0

It is easy to verify that Winoq -
The problem of computation Wpnog is important. However, in most cases the inte-

gral Wy,oq cannot be calculated exactly. For computation Wy,oq it is necessary to take

the union over all possible measurable closed-valued mappings. Naturally, there is a
question: is it possible to single out a subfamily of measurable closed-valued mappings,
which would have a simpler structure and sufficient for an approximate calculation of the

set Wioq - In the present article, by narrowing the union operations in the definition Wifoq
to the class of compact-valued mappings to the posed question the answer is given

Lemma 2. Let Ac Cd , B BH . Then the following inclusions hold

(A+B)NaH < AN(a+B)H +B,

4)
(AsB)NaH < AN (o+P)H*B.

Proof. Let x be an arbitrary element from the left side of the first inclu-
sion (4). By definition xe A+B and xeaH . Moreover, x=a+b,ac A beBand
| x|<a. It follows |a|< o+ . On the other side ae A. That’s why ae A (a+B)H.
Therefore x e AN (a+B)H + B .The proof of the second inclusion (3) is similar to the

proof of the first inclusion (3).
On the basis of the inclusions (3), the following theorem is proved.
Theorem 2. The equality holds

Wt= U WIAQ), tl.
A(:) e comp®

Note that the mappings A(), A() ecomp® that participate in the union operations
of the right-hand side of this equality are integrable. More precisely, there will be an in-
tegrable function a(t) = A(t)|. Here | A|=sup{|a|a e A}for Ae cd.

Let o be an arbitrary partition from Q and A(-) e comp®d. We put
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A = AL F V) =[ F(t v,
= IA RO XTAO. o =zl Y,

We define X*[A()]= N X'[A(), ®].
e

Let y(8) =minh[F(t, vy), F(ty, V)], |ty —tp| <8, [vy —V,| < 8} be modulus of con-
tinuity of the mapping F(t, v).
Theorem 3. Let A(-) e comp®. Then the following equality holds:
WIA(), t]= X*[AQ)].
Proof. It is possible to verify easily the validity of the inclusion W[A(), 1] <
< XT[A()]. Let us prove now inverse inclusion

XA = WIA(), 1.

Let An (t) be a sequence of piecewise constant mappings converging to A(t) al-
most everywhere on the interval 1. Moreover, we can assume that Aq(t)ca(t)H ,
(M)
| Av®) |

a,(t) is a sequence of piecewise constant functions that converges to a(t) a.e. on |

where a(t) g A(t)|. If A(t)za(t)H, then we replace it with A, (t), where

and &,(t)<a(t)at tel.Let a,(t)=h[A,(t), Alt)] and ¢, _1 . Then it is easy to ver-
n
ify that o, (t) >0 a.e. on |. Then by the Egorov theorem it follows that for any

€n :% there exists a set €, — | such that p(e,) <e, and the sequence o, (t) uni-

formly converges to 0. Therefore, we can assume o, (t) <e, on I\e,.
Let ®, ={0=T) <7 <..<Tp4 <Tn =1} be a sequence of refining (monoto-

nously decreasing ) partitions of segments 1, i.e. §, =| @, |=max |z, -7 |. Let us
I<i<n

define a sequence of mappings F,(t,v) = F(§',v), &' e Al =[1]' 4, 1], teA], & —
fixed point from A['. Note that the sequence F,(t,v) uniformly converges to
F(t,v)on | and we will assume y(8,) <e,. On the other hand, there is a sequence
on ={0=17 <1 <..<ip_1 <ih =t}of partitions of a segment | such that
A(t)=A for te AP =1, 4],

We put @, =®, Ud, . We extend the sequences A, (t) and F,(t,v) on ®, and
we can assume that A, (t) and F,(t, v)converge uniformly to A(t) and F(t,v) on the

set I\e,, respectively.

Let us consider the partition @, ={A{ \e,, A3 \e, ..., A{' \e,, e,}.Then

!
WIA(Q), dle X [AQT = XT[AQ), &= 2‘1 va UAi” \e, A(t)dt +
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+ap g, AT+ 1 [, ADdt+ [, F et |

| )
ey ﬂQ[JAp\e (A (0) + &g H)dtn+ [ (Fn(t,v)+anH)dt}+pu(en)H -
i=1ve v L

| . .
Y ﬂ(A,']+28nH+F,:)u(Ain\en)+p8nH. (5)
i=1veQ

On the other hand,
-[I ﬂQ[A(t) +4g,H + F(t,v)]dt + (4, +p)eH =

Ve

=[1\e NIA®)+4e,H +F(t v)dt+ [, N [A®)+4e,H +F(t, v)]dt +
"veQ "veQ

+(4e, +p)epH O -[I\e N [A(t) +4e H + F(t,v)]dt. (6)
"veQ

Now, by the following inclusions A(t)c,&h(t)+an, F( v)c Rt v)+e,H
on I\e, we have
jl\e N [A(t)+4e nH + F(t, v)]dt jl\e N [A () +2¢ H + F, (t, v)]dt =
"veQ "veQ

= 'z N (A, +2e,H + Fyu(a] \ey). (7)
i=1veQ

In virtue of (4), (5) and (6) we obtain

WIA(), 1] < X [A()] = Iz N (Al +2e,H + FhuaMe,)+pe H

i=1 veQ

< ﬂQ[A(t) +4e,H + F(t, v)dt + (4e,, +2p)e,H.

Vel
This implies

WIA(), tl = X [AO]< N JI N [A(t) +4e,H + F(t, v)]dt +
0

g,>0 " veQ
+(4e, +2p)eH =WIA(), t].

This concludes W[A("), t] = X *[A()].

Theorem is also proved.

Definition 2. Let the mapping U : I xQ — RY for every partition ® € Q and for
every function v;(-) eQ(4;) associate with the Borelean measurable cross-section
fi (t, v; (t)) of the mappings F(t, v;(t)) on A; and hold the conditions

UG, =UCv0)|, Torevery w0, =20,

We call such mapping nearly stroboscopic pursuer strategy. Denote the family of
all such pursuer strategies by ﬁB .
We put X*[M]= U X [AG)]
A(-)e comp @
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Theorem 4. In order to complete pursuit in game (1) at time instant t in the class
f’B of nearly stroboscopic strategies, zg € X *[M] is necessary and sufficient .
Proof. Let us prove initially the necessity. Let the strategy U e f’B completes a

game at time instant <, i.e. z(t,U, v())=M forevery v(-) eQ(l).

Let @ Q and v(-) e Q(l) be arbitrary. Then z; —jSU(t, v(t))dt e M . Otherwise,
n
-2 Ut vi)dte M, 8
i=1
where v; (t) = v(t) for t e A; . We can rewrite the inequality (8) as
n-1
7p— X [U(tv(t)dt e M +[ U (t,v(t))dt
i=1

Due to the convexity and closedness of the set, we have [13]

n Yioq
> [ =Mdt=M.

=17,

Taking this into account and arbitrariness of the function v(-) e Q(l), and substitu-
tion of its values by t € A,,, we obtain

n-1 1 n-1 1
-2 Ut vt)dte N I{—M +F(t,v(t)}dt+ > f;=Mdt.
i= T i=1 T

= v() € Q(A,) =

Repeating this process (n—1) times, we pass to the relation zy € X *[A(), @],

1 . N -
where A(t) ==M ecl®. In virtue of the arbitrariness of the partition ® € Q, we have
T

2 € ﬂQ XTIAQ), o] = X[AQ)]-

Let us prove now the sufficiency of the condition z; € X*[M] for the com-

pletion of the game in the class f’B. This implies that there exists A(-) € comp®

n
such that zy e X [A(), ®] for arbitrary © € Q. We have Zg €} Z;, where z e

i=1
e N LIAD+F v(t)]dt.
v()eQ(4y)
Thus, z; =if;[A®t)+F(t, v(t))]ldt for every v(-) e Q(&;).
Let v(-) be an arbitrary admissible control of the evader on | =[0,1], i.e.

v(-)€Q(l). Then by virtue of Lemma 1 it follows that there is g (t)+ f;(t, v(t))
Borelean measurable cross-section of mapping A(t)+F(t, v(t)) on A;, such that
z = fi[& ® + fit, v(t)]dt .

We define the mapping U (t, v(t)) on the interval tel as U(t, v(t)) = f; (t, v(t))
on every interval t € A; . Itis evident that U (-, v(-)) € f’B.

This implies

20 € ] At)dt +]U (t, v(t)dt ©)
0 0
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Let us determine the trajectory z(t, zg, U, v(-)) of system (1) corresponding to the ini-

tial point Z,, the admissible control v(-) € Q(I) of an evader and the strategy of the pursuer
on the segment , is defined as follows:

z(t) = z9 —i U (s, v(s))ds.

In virtue of condition (8), we get z(z) € M . This means that on game (1) from the
initial position Z; it is possible to complete the pursuit at time instant t in the class of

the strategies Ps .

Theorem is proved.

It should be noted that an analogue of Theorem 4 for linear differential games is
proved in [12].

Theorem 5. To complete pursuit at time instant t in the class Pz of stroboscopic

strategies in game (1) from the point Z; it is necessary and sufficient that

g € anod . (10)

Proof. The sufficiency of condition (9) follows from Theorem 1. Let us prove the
necessity of condition (9) for pursuit completion in the class strategies Ps . Let for eve-

ry v(-) € Q(l) there be a strategy of pursuer U € By from the point Z, completes pur-
suit at time instant t. Since every stroboscopic strategy is nearly stroboscopic it follows

from Theorem 4 that nzy e X *[M]. In virtue of the Theorem 3 we obtain zy € Wiog-
Theorem is proved.

I.M. Ickanaoocies

Y3AT AJIBHEHHA ITEPIIOTO TTPAMOI'O
METO/Y IEPECIIAYBAHHA
JUOEPEHUIAJIBHUX BKJIKOYEHDb

Ickanapxie Ixpom:xon MagameBua
TamKkeHTChKUIA XiMiKO-TeXHOJIOTIYHIIA iHCTUTYT, ¥ 30€KUCTaH,

kaltatay@gmail.com

Jlnst BUpilIeHHST 33/1a4i MepeciliiyBaHHs B JIHIHHUX AuU(epeHLianbHuX irpax
JI.C. IloHTpATiH 3aIpOIIOHYBAB J[Ba NPSIMi METOAH, SIKi MAlOTh BEJIMKE 3HAYECHHS
B PO3BUTKY Teopii Au(epeHIianbHuX irop i Teopii kepyBaHHS B YMOBaxX HEBHU-
3Ha4ueHOCTi. lle BUSBMIOCS KOPHCHHM 1 TIpW BUPINICHHI 3a7a4i CHHTE3Yy Kepy-
BauHs1. [Ipsimi MeTosn [ToHTpsTiHA 3apekoMeHayBaIH cede Ik epeKTHBHUI 3acid
BUpILIEHHS MPOGJIEM MepecIiyBaHHI-yXUICHHS Ta KOHTPOJIO. Y HUX BUKOPHC-
TOBYIOThCSI IHTETPaJIH, 10 MAIOTh HU3KY ICTOTHHUX BiIMIHHOCTEH Bij KJIACHYHO-
ro interpana. OHi€r0 3 BiIMIHHOCTEH € BUKOPHUCTaHHS 0araTo3HayHOTO Bif0-
Opaxennst. [Ipsmuit Mmetox IToHTpsTriHA, 3aCHOBAaHUI Ha MOHSTTI 3HAKO3MIHHOTO
iHTerpaja, He Ma€ aHaJoTiB B iHTerpyBaHHi AificHol QyHkuii. {11 BU3HAUCHHS
3MIHHOTO iHTeTpajla BUKOPUCTOBYETHCS IHTETPYBaHHS OaraTO3HA4YHUX BimoOpa-
JKeHb 1 TeOMETpUYHa Pi3HUL MHOXUHHM (pi3Huis MinkoBcebkoro). Lli omeparii
YCKIIAHIOIOTE OOYMCIICHHS 3MIHHOTO iHTerpana. 3 Ii€l TOYKH 30py IHTerpai,
SIKU BUKOPHCTOBYETBCS MEPIIUM MPSIMUM METOJIOM, Ma€ OiIbII MPOCTY KOHCT-
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pykuiro. ToMy 3aKOHOMIpHO IOCTa€ MUTAHHS PO y3araJbHEHHS MEPIIOro Mpsi-
MOTO croco0y mepeciigyBaHHs. Y CTaTTi JOCHIIKYETbCS y3araabHEHHs MepIIo-
IO MPSIMOT0 METOJY IUIS irop IepeciigyBaHHsd, 0 ONHUCYEThCS AU(epeHIiaTb-
HUMH BKJIIOUCHHSIMH, ¢ F € HemepepBHHM OaraTo3HauHMM BiZOOpa’KCHHSIM.
Le#t meTon Oynemo Ha3uBaTH MOJM(IKOBAaHUM IEPILIUM MPSIMUM METOJOM Iie-
pecninyBaHHA quepeHIliabHUX BKIIOUSHb. 30KpeMa, BU3HAYEeHO Ki1ac cTpobo-
CKONIYHUX CTPATETil, TPAEKTOPiI0 pyXy cucTeMu. s IMX KIaciB irop goBe-
JICHO, SIKIO BUXiJHA TOYKA HAJIEKHUTh MOJU(PIKOBAaHOMY HEPUIOMY IHTETPally
(inTerpany 3 OaraTo3HA4yHOTrO BiZOOpaXKCHHS, SIKMH MPUCYTHIH y BH3HAYEHHI
MOIH(IKOBAHOTO IIEPIIOrO MPSMOTO METOAY), TO Il € HeoOXiTHOIo i JocTat-
HBOIO YMOBOIO JUISl 3aBEPILCHHS TPH B (PIKCOBAaHWI MOMEHT 4acy B KJlaci CTpO-
OockomiyHuX crpareriid. [Ipobiaema oO4HCIEHHA IIHOTO IHTETpala € BaXIIUBOIO.
V 1iif cTaTTi TaKOX ITOBEIEHO, IO onepamnii 00’ eHaHHS Y BU3HaYeHHI MOIUpi-
KOBAHOTO IIEPIIOro iHTerpaja MOXKHA 3BY3HTH JO KJIACy KOMIAKTHO3HAUYHHX
BiJTOOpaKeHb.

Kiouosi ciioBa: nudepeHnianbHe BKIIOYCHHS, Tu(epeHiaabHi irpyu, MepeTHH,
CTpOOOCKOIIIYHA CTPATETis, JOIYCTUMHUH KOHTPOJIb, YTiKad, MepeciiayBad, po3-
OHTTS MepeciayBaHHs, Maike cTpOOOCKOIIYHA CTPaTeTis.
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