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The concept of a complex system in this work is understood as a large set 

of dynamic interconnected systems, the exact mathematical model of which 

is not known or has a very large dimension. In such situation the use of 

standard methods for synthesizing feedback becomes difficult or even im-

possible due to the degeneracy of the corresponding mathematical prob-

lems. One way out of this situation is to build an approximation model of 

reduced dimension. This can be done using a system of initial equations , if 

they are available, or using identification methods based on measurements 

of output and input variables acting on the system. In this case, the process of 

constructing a mathematical model is reduced to a sequential enumeration 

of possible models of increasing complexity. As a criterion for the adequacy of 

the model, the norm of deviation of the output of the adjusted model from 

the measured value of the output of the system under study is considered. 

The article deals with the construction of linear models, the complexity of 

which is determined by their dimension. In the framework of nonstochastic 

approach it is developed the methodological and mathematical basis for 

model reconstruction which describes processes in complex systems. As-

ymptotic modelling allows for such system to form model classes appropri-

ate to solve identification problem. Precise description corresponds to infi-

nite expansion so the model quality is improved when its dimension is in-
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creased. However errors in available data do not allow increase their dimen-

sion limitlessly due to ill-conditionality of the identification problem begin-

ning from some dimension. Regularization procedure permits to determine 

the effective approximate solution of identification problem which for non-

stochastic case is in agreement with errors in data. Properties and peculiari-

ties of the proposed approach are illustrated by simulation results. 

Keywords: system identification, linear regression, regularization, asymptotic 

modelling, approximate solution 

Introduction 

System identification, that is, the construction of a mathematical model of a system 

based on data obtained as a result of experiments, is primarily focused on complex dy-

namic processes for which it is impossible to establish the laws of their behaviour in 

other ways. This means that even in a general form it is impossible to indicate a class of 

mathematical models containing an exact description of the system under study. 

Here we consider a new concept or paradigm of system identification within a non-

stochastic approach for linear time invariant (LTI) systems. We shell assume the exist-

ence of abstract transfer function matrix ( )G z  including nonrational cases, which con-

nects the input and the measured output. According to the concept of asymptotic model-

ling, widely used in computational mathematics, an unknown transfer function can be 

written as finite or infinite expansions for some basis functions, which makes it possible 

to write a class of models in a form convenient for identification. 

At such approach, we are talking about the construction of finite-dimensional approxi-

mating models. At the same time, with an increase in the dimension, the accuracy of the de-

scription of the system increases if certain requirements for the system under study are met. 

For example, truncated rational approximation of infinite-dimensional LTI system with fi-

nite-dimensional input and output that induced nuclear type Hankel operator with distinct 

singular values convergences to precise model as it dimension tends to infinity [1].  

Asymptotically stable system can be written as an infinity expansion 

 
0

( ) ( )k k
k
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

   (1) 

where 0,1,2,{ ( )}k kf z   is a sequence of orthonormal functions and 0,1,2,{ }k kG   is a 

sequence of parameters. Then task of identification is to find a finite-dimensional model 
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The accuracy of the model depend on the choice of basis functions and dimen-

sion .n  The case of k
kf z  corresponds to Infinite Impulse Response (IIR) mode-

ling [2]. In some cases the use of Laguerre or Kautz polynomials gives a better approx-

imation [3, 4]. In general, the advantage in identification and approximation can be 

achieved by using such orthonormal basis functions that correspond to dynamics close 

to the dynamics of the object under study [5].  

A very popular form for rational approximation is the Linear Regression which di-

rectly links input and output variables [2]. Here, for ease of paradigm presentation, we 

consider an ARX model with a scalar input ( )u t and output ( )y t  

 1 1( ) ( 1) ( ) ( 1) ( )
a bn a n by t a y t a y t n b u t b u t n           (3) 

in discrete time 0, 1,t  . Let us denote vectors 
T

1[ , , ] ,
aa na a   

T
1[ , , ] ,

bb nb b   

T( ) [ ( 1), , ( )]a at y t y t n       and T( ) [ ( 1), , ( )] ,b bt u t u t n     so (3) can be 

written as follows 

 T T( ) ( ) ( ) .a a b by t t t      (4) 
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The special case 0an   gives us Finite Impulse Response (FIR) approximate mo-

del. Any ARX model has an equivalent state-space model representation, so it is easy to pass 

from one description to another using linear transformation. It is important because the trun-

cated state-space models are approximating for nuclear type nonrational system [1]. 

1. Paradigm of stochastic identification 

Let us briefly consider identification paradigm in stochastic case according to [6]. 

Mathematical difficulties in system identification are associated with the presence of 

uncertainty in the data. The generally accepted is the stochastic interpretation of uncer-

tainty, which assumes that measurement errors are independent and identically distrib-

uted (i.i.d.) random variables. This paradigm underlies all classical statistical methods in 

system identification. Model parameters of a given order are estimated by maximum 

likelihood methods (prediction errors), which in most cases are formulated as extremal 

problems 

 
2

1

ˆ ˆarg min ( ) ( / ) ,
N

D t

y t y t
 

     (5) 

where ( )y t  is a measured output, ˆ( / )y t   is a prediction by the model, D  is a set of 

values .  There are many publications devoted to the identification problem in such 

statement, see, for example [2, 7, 8].  

Under concept of asymptotic modeling the key question in identification is a model 

order determination. It is known that a higher order model can better approximate the 

measured output of the system, i.e. reduce the error called «bias». On the other hand, a 

higher-order model is more sensitive to errors in the data, which corresponds to a larger 

variance in model parameter estimates. The mismatch between system and model in-

cludes both of these components. Traditional system identification often uses the bias-

variance trade-off to minimize the total mean square error (MSE). Various procedures 

have been proposed for this, among which are the Akaikeʼs Information Criteria (AIC) 

and Bayesian Information Criteria (BIC) order criteria described in the books men-

tioned above. 

2. Nonstochastic approach to EIV-identification 

In many cases on practice, errors occur at output and input variables measurement. 

Such situation in system identification is called «errors in variables» (EIV) and was 

considered by many authors. Results obtained in the framework of stochastic paradigm 

are described in [9–13]. Recently EIV identification in frequency domain was consid-

ered in [14]. New results also presented in [15–17]. 

This article develops an alternative approach based on the non-stochastic para-

digm. We assume that data errors are random variables belonging to known bounded 

sets with arbitrary distributions, including worst cases. With this formulation, the max-

imum likelihood method is not appropriate. Early the similar approach was implement-

ed in so-called set membership identification (SMI) in which the main goal was to de-

termine a guaranteed set of models, including the exact one. The description of these 

methods is given in [18–21].  

The approach developing in this article is an alternative to SMI and aims to find a 

single approximate solution of identification problem consistent with errors in availa-

ble data. 

We have the following measurements of true values ( )u t  and ( )y t  

 ( ) ( ) ( ),uu t u t t   ( ) ( ) ( ),yy t y t t   (6) 
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where ( )u t  and ( )y t  are errors. According to the mentioned assumption ( )u t  and 

( )y t  are unknown arbitrary random sequences satisfying conditions 

 ( ) ,u ut    ( ) .y yt    (7) 

An important issue in identification is the informative input that excites all modes 

of the system. In stochastic methods, a persistent excitation signal of a given order is 

usually used for this. In the case of non-stochastic identification, we propose an active 

experiment in which each mode of the system at a certain moment of observation makes 

the maximum possible contribution to the output. For an asymptotically stable system, 

this can be achieved by two ways. The first is to collect data from separate experiments 

consisting of the intervals of excitation and following relaxation. An alternative is a sin-

gle continuous experiment where excitation intervals alternate with relaxations. In both 

cases, the duration of relaxation should exceed the transient time. 

Consider an observable and controllable discrete LTI system. Such a system can be 

represented by linear regression or its state-space equivalent  

 ( 1) ( ) ( ),x t Ax t bu t    T( ) ( ) ( )y t c x t du t   (8) 

where t  is a discrete time and «T» denotes a transposition. Assume that this system 

does not have multiple eigenvalues. Then we can choose the Jordan block realization: 

diag ( ),pA A  col( ),pb b  col( ),pc c  where real eigenvalues p p    corre-

spond to blocks  

 ,p pA    ,c
p pb b  ,c

p pc c  (9) 

and complex eigenvalues p p pi      correspond to blocks  
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. (10) 

In case of finite-dimensional system with ( ) 0y t   at 0,t   ( ) 0u t   at 0t   and 

( ) 0u t   at 0t   input-output ration (8)–(10) is equivalent to  

 
1

0
0 1

( ) ( ) ( ),
t P

p
j p

y t h t j u j


 

     (11) 

where 0 ( ) [ cos sin ],k c s
p p p p p ph k f k f k     p p   , arg ,p p    c

pf   

,c c s s
p p p pc b c b   .s c s s c

p p p p pf c b c b   Parameters ,p  ,p  ,c
pf  

s
pf  completely deter-

mine the system dynamics. In case of real eigenvalues we have ,p p    0,p   

0.s s
p pc b   

In EIV identification the informativeness of the input is defined by the signal-to-

noise ratio (SNR). The larger SNR of the output for each mode (10), the more informa-

tive the input is. Therefore, we will shape the input so that at the end of the excitation 

interval, a certain mode has the largest output signal. Different ( )u t  across experiments 

should effectively excite each of the modes. Two types of input signal will be used for 

this. The first is a rectangular pulse 
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1,    1,

( )
0,     else    

it
u t
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 


 (12) 

where i  is of a varied duration across experiments: ,i i  max1, 2, , .i i  Short rec-

tangular pulses provide stronger excitation of fast modes. Increasing the duration will 

add a contribution from slow modes. Therefore a set of rectangular pulses of different 

duration should provide separate excitation of individual modes corresponding to real 

eigenvalues (9). 

The second type of input is a single harmonic 

 
sin ,    1,

( )
0,             else    

jt t
u t

   
 


 (13) 

where frequency j  change across experiments ,j j    max1, 2, ,j j  and cover 

the range (0, π / 2). For modes corresponding to complex eigenvalues (10), we aim to 

catch resonant excitation when j  happens to be close to the natural frequency .p  

When j  are varied with a small step, it is possible to provide resonant excitation of all 

oscillating modes of the system. In this case the duration   is chosen to be sufficient to 

establish steady-state forced oscillations. With an appropriate choice of parameters 

max ,i  max ,j    and   it is possible to collect informative data with acceptable SNR 

with a fairly general knowledge of the system under study. More detailed information 

on this can be found in [22]. 

3. Method of identification 

Here will be developed the identification method in the framework of nonstohastic 

approach. The goal is to obtaine a regularized solution that gives an approximation with 

an accuracy corresponding to the noise in data. 

As mentioned, the asymptotic class of linear autoregressive models is considered to 

identify complex systems that in this class have a large or infinite dimension. Conception of 

approximate regularized solution means that the model dimension may be less then the order 

of the true system. Therefore, identification must include the choice of model order. 

3.1. Model order selection. The type of control signals proposed above makes it 

possible to divide the identification process into independent tasks. Measurements on 

relaxation intervals are used to determine the vector a  and its dimension. For this we 

will use the equation 

 1 2( ) ( 1) ( 2) ( ),ny t a y t a y t a y t n         (14) 

which describe free motion on relaxation intervals. Applying controls (12) and (13), we 

collect the corresponding outputs into the following matrix:  

 

pulse
relax

harm
relax

pulse pulse pulse
1relax

harm harm harm
relax 2

,

col ([ ( 1) ( ), 1, ,

col ([ ( 1) ( )]),  1, ,

i ii i

j j

Y
Y

Y

Y y y l i k

Y y y l j k

 
 
 
 

     

    

 (15) 

where 
pulse
iy  is a measured response on the i -th rectangular pulse (12), 1k  is a total 

number of rectangular pulses, 
harm
jy  is a measured response on the j-th harmonic in-
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put (13), 2k  is a total number of input harmonics and l  is the relaxation duration, the same 

for all experiments. We denote the total number of rows of Y  by 1 2.k k k   Value l  

should be more then transient time and both k  and l  must exceed supposed model order. 

Let us produce singular value decomposition (SVD) of the matrix Y  

 T,Y U V    (16) 

where ,U  ,  V  are matrices of dimensions ,k k  k l  and l l  respectively.  

In the deterministic case for a finite dimensional system the rank of Y  is equal to 

true dimension n  and only the first n  singular numbers 1, , n   are non-zero. Then 

the dimension of the system can be precisely determined by the number of non-zero di-

agonal elements of .  

In the non-deterministic case the matrix Y  almost always will be of full rank and 

all singular numbers will be positive. Even then the true dimension n  can sometimes be 

determined by singular values, if there is a gap between the values n  and 1.n  How-

ever there is often no clear gap. Result depends on the SNR of individual modes. Modes 

of the system with a low SNR becomes indistinguishable from background noise, mak-

ing impossible in the non-stochastic case to establish the true dimension. In such cases, 

we can find a model of reduced dimension applying the known in regularization princi-

ple that approximate solution should be consistent in accuracy with the data errors. 

For any chosen value n̂  we can divide the measured output into «signal» and 

«noise» part using a low-rank approximation in Frobenius norm. For this we split (16)  

 
T T0

[  ] [  ] ,
0

S
S N S N

N
U V U U V V

 
  
  

 (17) 

where S  contains n̂  largest singular values. Indices «S» and «N» denote «signal» and 

«noise» part. As a result we get decomposition 

 
ˆ ˆ

,S N
n n

Y Y Y   (18) 

where T
ˆ

( )S S S S
n

Y U V   and T
ˆ

( ) .N N N N
n

Y U V   Expansion (18) allows one to find 

the matrix of the given rank closest to full-rank matrix Y  in Frobenius norm using  -rank 

property [23]. So we have 
ˆ

ˆrank( )S
n

Y n  and 

 ˆ 1 ˆ
,N

n n F
Y   (19) 

where subscript «F» means Frobenius norm, defined as 2
, iji jF

A a   for any ma-

trix ( ).ijA a  Matrix 
ˆ
S

n
Y  will be considered as the output of the desired model.  

Again we represent the matrix Y  in the form  

 ,Y Y Y   (20) 

where Y  corresponds to noise-free output generated by true system, and Y  corre-

sponds to the noise, which, according to condition (7), is bounded in the infinity norm  

 .yY


    (21) 

Since all available information about Y  is limited only by condition (21), then, ac-

cording to the guaranteed approach, any Y   that satisfies the inequality Y Y


     
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can be considered as corresponding to a noise-free output of the exact model. Among all 

exact models, we are looking for a model of minimal order, which corresponds to the min-

imal rank of the matrix .Y   Using decomposition (18) we determine the model by its out-

put as 
ˆ

,S
n

Y  increasing the dimension n̂  until condition 
ˆ
S

yn
Y Y


    is satisfied. From 

here comes the criterion 

 
ˆ ˆ 1

.N N
yn n

Y Y
 

    (22) 

Using equivalence of norms ,
F

A A A k l
 
    which is valid for an arbi-

trary matrix ,k lA R   from (22) and (19) we derive inequality 

 ˆ 1
ˆ ,n

y n
kl


     

or 

 
ˆ

ˆ 1

,         

.

n y

n y kl

  

  

 (23) 

The condition (23) can be used to determine the dimension of the model that is 

consistent in accuracy with the errors. 

3.2. Parametric identification. After determining the order ˆan n  of vector ,a  it 

can be found from the basic equations (3), (4), where ( ) 0.b t u    For this we construct 

an overdetermined linear system 

 ,A a AW w   (24) 

where the matrix AW  and vector Aw  are formed from the matrix 
a

S
n

Y  as follows: 
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Here, 
(1)
AW  contains the first an  columns of the matrix ,

a

S
n

Y  the matrix 
(2)
AW  also 

contains an  columns, starting from the second, and so on. The vector 
(1)
Aw  is the 

( 1)an  –th column of ,
a

S
n

Y  
(2)
Aw  is the ( 2)an  –th column, etc. The last one vector 

( )al n
Aw


 is the first column of the matrix .
a

N
n

Y  

System (24) is a strongly overdetermined for large r  and .l  Then we can discard non-

informative equations with small SNR, i.e. having max / yy   less than some threshold, 

where maxy  is the maximum modulus of regressors. As a result, we obtain a truncated but 

still overdetermined system 

 .A a AW w   (25) 

The solution of (25) can be found by ordinary least squares (OLS) or by total least 

squares (TLS) [23]. However, in practice, very often problem (25) turns out to be ill-

posed, having an ill-conditioned matrix .AW  Therefore, it is proposed to implement the 

LS based on the SVD decomposition of the matrix 
anY  

 T
1 1 1 .AW U V   (26) 
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Substituting (26) into (25), we obtain 

 1 1 ,Aw     (27) 

where T
1 1 ,aV    T

1 .A Aw U w   The ratio of the first singular value of the matrix 1  

to the last one determines the conditionality of the problem. Under good conditionality, 

the least squares solution of (26) is 

 1 T
1 1 1 .a AV U w    (28) 

When the matrix AW  is ill-conditioned, one should find a regularized solution, the 

construction of which is given below.  

At the last stage of identification, the dimension bn  and coefficients of the 

vector b  are determined. It is preceded by extracting data corresponding to a purely 

forced part of model. With an estimated vector ,a  such a signal ( )y t  for the moment t  

is determined by the relation 

 1 2( ) ( ) ( 1) ( 2) ( ).n ay t y t a y t a y t a y t n         (29) 

Then the basic equation for finding the vector b  is  

 1( ) ( 1) ( ),m by t b u t b u t n      (30) 

where dimension bn  of the vector b  in the main not exceed dimension of vector .a  In 

principle, case b an n  is possible if there is a static connection between input and output, 

caused by very fast modes having a transient process shorter than the sampling step. 

After obtaining ( )y t  from (29), we select samples corresponding to excitation in-

tervals defined by (12) and (13) and form an overdetermined system 

 ,B b BW w   (31) 

similar to the construction of AW  and using .b an n  Elements of the matrix BW  are 

measured control signals ( ).u t  The chosen method of excitation (12), (13) provides 

good conditionality of the matrix ,BW  so system (31) can be solved by TLS. 

This completes the solution of the identification problem. As a result we obtain an 

approximate mathematical model, consistent in accuracy with the errors in the data de-

termined by conditions (6), (7). 

4. Ill-conditioning 

The solvability of the identification problem in the formulation under consideration is 

determined by the properties of the matrices AW  in (24) and BW  in (31), and, first of all, by 

their condition number. It was proposed to solve (24) and (31) using instead of OLS, a com-

pletely equivalent method based on the SVD decomposition of these matrices. Then the con-

dition number of these matrices with respect to the norm 
2

  can be found from the relation 

 1 ,
n


 


 (32) 

where ,a bn n n  correspond to the dimensions of the allocated blocks when choosing 

the order of the model. Due to the properties of the SVD decomposition, as the 
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number n  increases, the number   can only grow. The growth nature of ( )n  of 

matrices AW  and BW  is usually different, and each of them depends on its own factors. 

Since the matrix BW  is formed from input signals, it is possible to control and influence 

behavior of ( )bn  in active experiments. The method of excitation with alternating in-

tervals of excitation and relaxation makes it possible to provide a rather weak change of 

( )bn  with increasing .bn  Moreover, there is every reason to believe, that with values 

of ( )bn  remaining close to unity, we will have the most informative signal. 

The behavior of condition number of the matrix AW  depends on the following fac-

tors. What remains is its dependence on the informative input action, i.e. its ability to 

excite all modes of the system with an acceptable SNR. The SNR indicator, which is a 

relative value, naturally includes all errors acting on the system. This equally applies to 

both matrices AW  and .BW  The value of ( )an  significantly depends on the dynamic 

features of the system, determined by the values of the invariants p  and ,p  as well 

as 
c
pf  and .s

pf  There is a rapid increase in the condition number with increase of n  

when the eigenvalues of the system are clustered or when there are very fast modes in 

the system. Small values of 
c
pf  and 

s
pf  lead to small output signals of the correspond-

ing modes, so that for them the SNR becomes of the order of unity. Nevertheless, even 

for systems with the most favorable values of these invariants and with an informative 

input, the condition number of matrix AW  grows rather quickly as an  increases, which 

is clearly seen from the Table. 
Table 

an  10 12 14 

( )an  310  510  710  

Table shows only the order of the condition number and it is calculated here only 

with exact data. With more unfavourable dynamic properties of the system, ( )an  

grows only faster, which makes the problem of parametric identification with increasing 

an  more sensitive to errors in the data, i.e. we have a manifestation of bad conditionali-

ty of .AW  This property is fundamental and does not essentially depend on the dynamic 

properties of systems and methods that solve the problem of parametric identification. 

Therefore, at larger dimensions, when the problem becomes ill-posed, it is necessary to 

use regularization procedures, which can be used to ensure the stability of the obtained 

solutions and improve the quality of the models. Poor conditionality is also inherent to 

stochastic identification problems, which led to a shift in a paradigm for system identi-

fication [6]. 

The main attention in stochastic case was paid to the choice of various stabilizers 

that make it possible to ensure the consistency of the estimation. The most widely used 

is the Kernel structure for stabilizator, which contains parameters that are subject to tun-

ing in order to provide optimal regularization. Various types of Kernel structure can be 

found in works [24–32]. Here in the framework of nonstohastic approach will be con-

sidered regularization more familiar to classical one [33]. 

5. Regularization 

Since an ill-posed problem arises when solving (24), it is proposed to find a solu-

tion from (27) using the stabilizer stab  in the following form: 
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 
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 
  
 
  
 
 
 

, 

where 1, 2 , …,
an  are singular values of 1.  Instead of (27) we get the system 

 1
1 stab 1( ) ,y     (33) 

where   — is a regularization parameter, which is chosen from the residual principle 

by [33]. Parameter   changes in a geometric progression 

 0{ } { }, 0 1, 0,1, 2, ,k
k k         

where 0  is chosen to be of order 10-2. With 0k   we have an regularized solu-

tion (0)
a  

 (0) 1 T
1 1 0 stab 1( ) .a V U y       (34) 

Without regularization, the vector 
(0)
b
  is found and the impulse response function 

of the model is calculated. It is compared with the impulse response function of the sys-

tem, which can be taken as the free motion on the relaxation interval after excitation by 

a long rectangular pulse. Let 0ˆ ( )h t  be the impulse response function of the model, and 

( )h t  — impulse response function of the systems. The accuracy of the solution is de-

fined as 

 
0 0ˆ ˆ( ) ( ) max ( ) ( ) .

t
h t h t h t h t


    

Next, we check the fulfillment of the condition 

 
0ˆ( ) ( ) 2 .yh t h t


    (35) 

When the condition (35) is met, we obtain a regularized solution that is consistent 

in accuracy with the data error. Otherwise, we take 2   and repeat the above steps. 

The decrease of   continues until (35) is fulfilled.  

If, starting from some ,k  the monotonic character of the residual in (28) is violat-

ed, we increase an  and bn  by one and continue the search for a regularized solution. 

The increase in dimensions is interrupted if there is no improvement in the quality of the 

model. In this case, the model of the smallest dimension is taken, among those that give 

a suitable approximation. 

6. Simulation results 

This section presents experimental studies of the fundamental features of identifi-

cation for systems with different dynamic properties and structures using numerical 

simulation. They are mainly determined by the system dimension and invariants, includ-

ing eigenvalues and identifiability parameters characterizing the contribution of each 

individual mode to the output. 
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To do this, we use the model representation (10), (11), in which the specified in-

variants are represented by parameters ,p p  and , .c s
p pf f  The complexity of the sys-

tem is characterized by dimension .n  Errors in measured output and input were as-

sumed to be uniformly distributed over the membership intervals (7). 

For a given model dimension, the main characteristics that determine the quality of 

parameter estimation are the conditionality of the matrix AW  in the overdetermined sys-

tem (25) and the matrix BW  in a similar system (31). The proposed excitation of the 

system by a large number of signals of types (12), (13) provides good conditionality of 

the matrices BW  in a wide range of values for any system under study. 

The conditionality of the matrix AW  essentially depends on the dynamic properties 

of the system, determined by its dimension and the values of the above invariants. As 

the dimension of the system and the approximating model increase, the conditionality 

grows rapidly. This is clearly seen from Fig. 1 and Fig. 2, where dependence of condi-

tionality of the matrix AW  on model order is shown for the systems of order 6 (Fig. 1) and 

of order 15 (Fig. 2). The dashed line shows the case with an uncertainty level of 610 .  

On Fig. 1, the data generating system has dimension 6,n   with two real and two 

complex conjugate eigenvalues. The conditionality of the system with 15,n   which 

has three real and six complex conjugate eigenvalues, is shown in Fig. 2. 
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Fig. 2 
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The conditionality of the matrix AW  for approximate models of different dimen-

sions is shown to the left of .an n  The solid line shows the deterministic case, when 

there is no uncertainty in the data. The dashed line shows the case with an uncertainty 

level of 610 .  

As can be seen from the figures, starting from a certain dimension, the condition 

number reached a constant level. In the deterministic case, the growth of conditionality 

stops when 1,an n   and is set at the level of the computational error 16(10 ).  In the 

non-deterministic case, the increase in conditionality may stop earlier, as soon as it 

reaches a level corresponding to the uncertainty in the data 16(10 ).  Then the dimen-

sion is determined to be smaller than the true one, since some of the system modes have 

a signal with too low SNR. 

The results presented in Fig. 1, 2 are obtained for a well-identified system, when 

p  is uniformly distributed over the interval 0,
2

 
 
 

, all p  are close to unity, and all 

values of 
s
pf  and 

c
pf  are the same. If the eigenvalues are clustered or there are modes 

with relatively small coefficients s
pf  and ,c

pf  then the growth of the conditionality AW  

with increasing dimension accelerates even more. 

 
Fig. 3 

Fig. 3 shows the conditionality of AW  for a system with 15,n   whose eigenval-

ues form clusters near the stability boundary. It can be seen that for a well-identified 

system, the condition number for model of order 10an   has a value of about 410 ,  and 

for a system with clustering of eigenvalues, it has a value of about 610 .  

The property of asymptotic convergence for the described identification method 

was investigated. The same system that was used to build Fig. 2 was chosen. The re-

sponses of the system and asymptotic models for different an  to a rectangular pulse are 

shown in Fig. 4–6. On Fig. 4 the model has a dimension of 10,an   in Fig. 5 — 

13,an   in Fig. 6 — 15,an   i.e. coincided with the dimension of the original system. 

The plots to the left at the figures corresponds to the deterministic case and the right 

plots correspond to the non-deterministic case with input and output uncertainty of 

value 610 .  True system response is shown as solid line, and model response is 

shown as dashed line. 
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Fig. 4 

     
Fig. 5  

     
Fig. 6 

Since the conditioning is bad in all cases, the regularization procedure (34), (35) 

was used. When approaching the exact dimension, the quality of the model improved. 

When an  exceed ,n  in the deterministic case, the coincidence of impulse response 

functions was obtained, which indicates the construction of a non-minimal model. For 

such models, the rank of the product of the controllability and observability matrices 

remained equal to .n  In the non-deterministic case, the rank of the identifiability matrix 

increased with a probability of almost one, but the quality of the model did not improve 

significantly. 

At a higher level of uncertainty, this effect appears for asymptotic models starting 

from a certain dimension an  less than ,n  so further increase in dimension did not sig-

nificantly improve the quality of the model. This value can be considered as the most 

appropriate dimension of the asymptotic model. It corresponds as a rule, to the stop of 

the growth of the conditionality of the matrix ,
anY  according to Fig. 3. Thus, there is 

reason to believe that the dimension ,an  at which the condition number reaches satura-

tion, is the most appropriate for the approximating model. 

The dependence of the singular values of the matrices Y  (15) and AW  (25) on dy-

namic invariants and the magnitude of the uncertainty was studied. It has been found 

that the singular values can be used to judge the dynamic properties of the system, the 

number of essentially excited modes, and the level of noise. 
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For example, Fig. 7 shows the singular values of the matrix Y  (15) with different 

noise levels. Generating system has dimension 15 with 6 complex conjugate pairs and 3 

real eigenvalues. The values of the invariants c
pf  and s

pf  for different modes differ up 

to 100 times. Solid line shows singular values in the deterministic case, dashed and 

dashed-dotted lines correspond to the noise 610u y
     and 310 ,u y

     re-

spectively. 

 
Fig. 7 

Dealing specifically with this system in the deterministic case, one can hope to 

build a full-size model. In the case 
610 ,u y
     the successful construction of a full-

size model is unlikely. In the case 310 ,u y
     a model with 10an   is non-

minimal, because all further modes will have an SNR below one. 

Conclusion 

The non-stochastic approach to the identification of complex systems in the 

framework of asymptotic modeling is more realistic for practical use, since it uses less 

stringent restrictions on the uncertainty in the data, including finite-time observation. To 

ensure the effectiveness of this method, two main requirements must be met. 

The first, it is necessary that the input signal be universally informative, i.e. for a 

system with arbitrary dynamic properties, the output of each mode of the system had an 

acceptable SNR. Otherwise, low SNR modes are poorly identified. The proposed design 

of active experiment with alternating intervals of excitation and relaxation partially 

solves this problem, due to the use of resonance effects. If the frequencies of the input 

signals vary with a small step, then the informativeness of the input becomes more uni-

versal. In principle, the most versatile informative input signals are white noise signals. 

However, their implementation in practice can cause certain problems. The proposed 

method of excitation allows you to control its spectrum, which allows you to use, for 

example, a priori knowledge about the dynamic properties of the system. 

The second important aspect of non-stochastic identification is related to the choice 

of model dimension, which is the best in each particular case. To do this, within the 

framework of the described method, it is proposed to use the principle of choosing a 

model that is consistent in accuracy with the errors in the available data. In the first ap-

proximation, it is used in condition (20). Further, for the dimension established by (23), 

the problem of parametric identification is solved, after which the consistency of the 
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model and the system is checked by the difference in responses. If the principle is ful-

filled, then the taken dimension of the model is final. If the model error is greater, we 

increase its dimension and perform parametric identification again. The principle of 

consistency is checked and a decision is made to stop or to continue increasing the di-

mension of the model. In this case, if the problem is ill-posed, regularization should be 

used. However, the case is not ruled out when the quality of the model reaches satura-

tion and does not improve. Then, as the desired dimension, we take the smallest one 

corresponding to saturation. 

In conclusion, we note that the process of identifying complex systems cannot be 

reduced to a formal solution of a strictly formulated mathematical problem. It is rather a 

research process of establishing patterns of system behavior based on the data of one or 

more experiments with the analysis of their results and the use of mathematical tools, 

the basics of which are described in this paper. 
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Під поняттям складна система у цій роботі розуміється велика сукуп-

ність динамічних взаємодіючих систем, точна математична модель 

яких невідома чи має дуже велику розмірність. Застосування стандарт-

них методів синтезу зворотних звʼязків для таких систем стає складним 

і навіть неможливим із-за виродженості відповідних математичних за-

дач. Один із виходів із такої ситуації полягає у побудові апроксимацій-

ної моделі зниженої розмірності. Це може бути зроблено з використан-

ням системи вихідних рівнянь, якщо вони є, або методів ідентифікації 

на основі вимірювань вихідних і вхідних змінних, що діють на систему. 

У цьому випадку процес побудови математичної моделі зводиться до 

послідовного перебору можливих моделей зі зростаючою складністю. 

Як критерій адекватності моделі розглядається норма відхилення вихо-

ду моделі від виміряного значення виходу досліджуваної системи. 

У статті розглядається побудова лінійних моделей, складність яких ви-

значається розмірністю. У рамках нестохастичного підходу розроблено 

методологічну та математичну основу реконструкції моделей, що опи-

сують процеси у складних системах. Асимптотичне моделювання доз-

воляє для такої системи формувати класи моделей, які підходять для 

розв’язання задачі ідентифікації. Точний опис відповідає нескінченно-

му розширенню, тому якість моделі покращується зі збільшенням її роз-

мірності. Однак помилки в наявних даних не дозволяють безмежно 
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збільшувати їхню розмірність через погану обумовленість задачі іден-

тифікації, починаючи з деякого виміру. Процедура регуляризації до-

зволяє визначити ефективне наближене рішення задачі ідентифікації, 

яке для нестохастичного випадку узгоджується з помилками даних. 

Властивості та особливості пропонованого підходу ілюструються ре-

зультатами моделювання. 

Kлючові слова: ідентифікація системи, лінійна регресія, регуляризація, 

асимптотичне моделювання, наближений розв’язок. 
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