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The concept of a complex system in this work is understood as a large set
of dynamic interconnected systems, the exact mathematical model of which
is not known or has a very large dimension. In such situation the use of
standard methods for synthesizing feedback becomes difficult or even im-
possible due to the degeneracy of the corresponding mathematical prob-
lems. One way out of this situation is to build an approximation model of
reduced dimension. This can be done using a system of initial equations, if
they are available, or using identification methods based on measurements
of output and input variables acting on the system. In this case, the process of
constructing a mathematical model is reduced to a sequential enumeration
of possible models of increasing complexity. As a criterion for the adequacy of
the model, the norm of deviation of the output of the adjusted model from
the measured value of the output of the system under study is considered.
The article deals with the construction of linear models, the complexity of
which is determined by their dimension. In the framework of nonstochastic
approach it is developed the methodological and mathematical basis for
model reconstruction which describes processes in complex systems. As-
ymptotic modelling allows for such system to form model classes appropri-
ate to solve identification problem. Precise description corresponds to infi-
nite expansion so the model quality is improved when its dimension is in-
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creased. However errors in available data do not allow increase their dimen-
sion limitlessly due to ill-conditionality of the identification problem begin-
ning from some dimension. Regularization procedure permits to determine
the effective approximate solution of identification problem which for non-
stochastic case is in agreement with errors in data. Properties and peculiari-
ties of the proposed approach are illustrated by simulation results.

Keywords: system identification, linear regression, regularization, asymptotic
modelling, approximate solution

Introduction

System identification, that is, the construction of a mathematical model of a system
based on data obtained as a result of experiments, is primarily focused on complex dy-
namic processes for which it is impossible to establish the laws of their behaviour in
other ways. This means that even in a general form it is impossible to indicate a class of
mathematical models containing an exact description of the system under study.

Here we consider a new concept or paradigm of system identification within a non-
stochastic approach for linear time invariant (LTI) systems. We shell assume the exist-
ence of abstract transfer function matrix G(z) including nonrational cases, which con-

nects the input and the measured output. According to the concept of asymptotic model-
ling, widely used in computational mathematics, an unknown transfer function can be
written as finite or infinite expansions for some basis functions, which makes it possible
to write a class of models in a form convenient for identification.

At such approach, we are talking about the construction of finite-dimensional approxi-
mating models. At the same time, with an increase in the dimension, the accuracy of the de-
scription of the system increases if certain requirements for the system under study are met.
For example, truncated rational approximation of infinite-dimensional LTI system with fi-
nite-dimensional input and output that induced nuclear type Hankel operator with distinct
singular values convergences to precise model as it dimension tends to infinity [1].

Asymptotically stable system can be written as an infinity expansion

G(2)= 2 G (2) 1)

k=0
where {fy (2)}x—0.12, ... is a sequence of orthonormal functions and {Gy}x_g10 ... isa
sequence of parameters. Then task of identification is to find a finite-dimensional model

N n-1
G(2) = 2 G (D) )
k=0

The accuracy of the model depend on the choice of basis functions and dimen-
sion n. The case of f, = 7K corresponds to Infinite Impulse Response (IIR) mode-

ling [2]. In some cases the use of Laguerre or Kautz polynomials gives a better approx-
imation [3, 4]. In general, the advantage in identification and approximation can be
achieved by using such orthonormal basis functions that correspond to dynamics close
to the dynamics of the object under study [5].

A very popular form for rational approximation is the Linear Regression which di-
rectly links input and output variables [2]. Here, for ease of paradigm presentation, we
consider an ARX model with a scalar input u(t) and output y(t)

y(t)+a1y(t—1)+...+anay(t—na):blu(t—l)+...+bnbu(t—nb) 3)
in discrete time t=0,1,.... Let us denote vectors 6, =[g,..., ana]T, Op=[by-... by, 1,
ea ) =[-y(t-1), ..., —yt—n)]" and @p(t)=[u(t-1),...,ut—n,)]", so (3) can be

written as follows
y(t) =g (t) -0 +p () - Op. 4)
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The special case n, =0 gives us Finite Impulse Response (FIR) approximate mo-

del. Any ARX model has an equivalent state-space model representation, so it is easy to pass
from one description to another using linear transformation. It is important because the trun-
cated state-space models are approximating for nuclear type nonrational system [1].

1. Paradigm of stochastic identification

Let us briefly consider identification paradigm in stochastic case according to [6].
Mathematical difficulties in system identification are associated with the presence of
uncertainty in the data. The generally accepted is the stochastic interpretation of uncer-
tainty, which assumes that measurement errors are independent and identically distrib-
uted (i.i.d.) random variables. This paradigm underlies all classical statistical methods in
system identification. Model parameters of a given order are estimated by maximum
likelihood methods (prediction errors), which in most cases are formulated as extremal
problems

~ - N A~
0 =argmin 3" || y(t) - y(t/0) [ (5)
GeDt:1

where y(t) is a measured output, §(t/0) is a prediction by the model, D is a set of

values 6. There are many publications devoted to the identification problem in such
statement, see, for example [2, 7, 8].

Under concept of asymptotic modeling the key question in identification is a model
order determination. It is known that a higher order model can better approximate the
measured output of the system, i.e. reduce the error called «bias». On the other hand, a
higher-order model is more sensitive to errors in the data, which corresponds to a larger
variance in model parameter estimates. The mismatch between system and model in-
cludes both of these components. Traditional system identification often uses the bias-
variance trade-off to minimize the total mean square error (MSE). Various procedures
have been proposed for this, among which are the Akaike’s Information Criteria (AIC)
and Bayesian Information Criteria (BIC) order criteria described in the books men-
tioned above.

2. Nonstochastic approach to EIV-identification

In many cases on practice, errors occur at output and input variables measurement.
Such situation in system identification is called «errors in variables» (EIV) and was
considered by many authors. Results obtained in the framework of stochastic paradigm
are described in [9-13]. Recently EIV identification in frequency domain was consid-
ered in [14]. New results also presented in [15-17].

This article develops an alternative approach based on the non-stochastic para-
digm. We assume that data errors are random variables belonging to known bounded
sets with arbitrary distributions, including worst cases. With this formulation, the max-
imum likelihood method is not appropriate. Early the similar approach was implement-
ed in so-called set membership identification (SMI) in which the main goal was to de-
termine a guaranteed set of models, including the exact one. The description of these
methods is given in [18-21].

The approach developing in this article is an alternative to SMI and aims to find a
single approximate solution of identification problem consistent with errors in availa-
ble data.

We have the following measurements of true values u(t) and y(t)

aE) =u()+&, (1), ¥(t) =yt)+&y (1), (6)
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where &, (t) and &, (t) are errors. According to the mentioned assumption & (t) and

Ey(t) are unknown arbitrary random sequences satisfying conditions

lea®]<eu, [Ey® [<ey. )

An important issue in identification is the informative input that excites all modes
of the system. In stochastic methods, a persistent excitation signal of a given order is
usually used for this. In the case of non-stochastic identification, we propose an active
experiment in which each mode of the system at a certain moment of observation makes
the maximum possible contribution to the output. For an asymptotically stable system,
this can be achieved by two ways. The first is to collect data from separate experiments
consisting of the intervals of excitation and following relaxation. An alternative is a sin-
gle continuous experiment where excitation intervals alternate with relaxations. In both
cases, the duration of relaxation should exceed the transient time.

Consider an observable and controllable discrete LTI system. Such a system can be
represented by linear regression or its state-space equivalent

X(t+1) = Ax(t) +bu(t), y(t)= cTx(t) +du(t) (8)

where t is a discrete time and «T» denotes a transposition. Assume that this system
does not have multiple eigenvalues. Then we can choose the Jordan block realization:
A=diag(Ap), b=col(b,), c=col(c,), where real eigenvalues A, =0 corre-

spond to blocks
_KC _.C

and complex eigenvalues &, = o, £if, correspond to blocks

ap —Bp by Cp
AIO = , bp = , Cp = . (10)
Bp ap bf) c;

In case of finite-dimensional system with y(t)=0 at t<0, u(t)=0 at t<0 and
u(t) =0 at t >0 input-output ration (8)—(10) is equivalent to

t-1 P

y(t) =2 X hop(t—1)-u(i), (11)

j=0p=1
_ kr¢c S o _ _ C_
where o, (k) =pyl fg coskay + fisinkagl,  pp=|hp|, wp=arghy, f5=
__ CRKC SIS S _ .CRkS SIC c S
=Cpbp +Cpbp, fp=cpbp—cpby. Parameters p,, w,, f;, f; completely deter-

p~p’
mine the system dynamics. In case of real eigenvalues we have Pp=0p, ®p=0,

cp =bp =0.

In EIV identification the informativeness of the input is defined by the signal-to-
noise ratio (SNR). The larger SNR of the output for each mode (10), the more informa-
tive the input is. Therefore, we will shape the input so that at the end of the excitation
interval, a certain mode has the largest output signal. Different u(t) across experiments

should effectively excite each of the modes. Two types of input signal will be used for
this. The first is a rectangular pulse
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0, else

a0 :{1, t=11 12)

where t; is of a varied duration across experiments: t; =i, i =1, 2,..., iy Short rec-
tangular pulses provide stronger excitation of fast modes. Increasing the duration will
add a contribution from slow modes. Therefore a set of rectangular pulses of different
duration should provide separate excitation of individual modes corresponding to real
eigenvalues (9).

The second type of input is a single harmonic

inoit, t=1r1
ut) = sinoj T (13)
0, else

where frequency ; change across experiments o; =A-j, j=12,..., gy and cover

the range (0, ©/2). For modes corresponding to complex eigenvalues (10), we aim to
catch resonant excitation when ® j happens to be close to the natural frequency ®p-

When wj are varied with a small step, it is possible to provide resonant excitation of all

oscillating modes of the system. In this case the duration < is chosen to be sufficient to
establish steady-state forced oscillations. With an appropriate choice of parameters
imax: Jmax» A and t it is possible to collect informative data with acceptable SNR
with a fairly general knowledge of the system under study. More detailed information
on this can be found in [22].

3. Method of identification

Here will be developed the identification method in the framework of nonstohastic
approach. The goal is to obtaine a regularized solution that gives an approximation with
an accuracy corresponding to the noise in data.

As mentioned, the asymptotic class of linear autoregressive models is considered to
identify complex systems that in this class have a large or infinite dimension. Conception of
approximate regularized solution means that the model dimension may be less then the order
of the true system. Therefore, identification must include the choice of model order.

3.1. Model order selection. The type of control signals proposed above makes it
possible to divide the identification process into independent tasks. Measurements on
relaxation intervals are used to determine the vector a and its dimension. For this we
will use the equation

y(O) =—ayt-D-ay(t-2)—...—ayy(t—n), (14)

which describe free motion on relaxation intervals. Applying controls (12) and (13), we
collect the corresponding outputs into the following matrix:

7pulse
Y~= relax ’
Vo
Y Pse = col L9 (g +2) ... 9Py +1), i =1k, (15)

Ve = col (952 ™ (v+2) ... §1¥™ (c+D]), =1k,

where yip”'se is a measured response on the i-th rectangular pulse (12), k; is a total
number of rectangular pulses, y*}a”“ is a measured response on the j-th harmonic in-
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put (13), k, is a total number of input harmonics and | is the relaxation duration, the same

for all experiments. We denote the total number of rows of Y by k =k, +k,. Value |
should be more then transient time and both k and | must exceed supposed model order.
Let us produce singular value decomposition (SVD) of the matrix Y

Y =UxVv", (16)

where U, X, V are matrices of dimensions kxk, kxI and IxI respectively.
In the deterministic case for a finite dimensional system the rank of Y is equal to
true dimension n and only the first n singular numbers oy,..., o, are non-zero. Then

the dimension of the system can be precisely determined by the number of non-zero di-
agonal elements of X.

In the non-deterministic case the matrix Y almost always will be of full rank and
all singular numbers will be positive. Even then the true dimension n can sometimes be
determined by singular values, if there is a gap between the values o, and o, ;. How-

ever there is often no clear gap. Result depends on the SNR of individual modes. Modes
of the system with a low SNR becomes indistinguishable from background noise, mak-
ing impossible in the non-stochastic case to establish the true dimension. In such cases,
we can find a model of reduced dimension applying the known in regularization princi-
ple that approximate solution should be consistent in accuracy with the data errors.

For any chosen value i we can divide the measured output into «signal» and
«noise» part using a low-rank approximation in Frobenius norm. For this we split (16)

¥ 0

usvT =[us UN][ ][\/SVN]T, 17)

o xN

where 5 contains fi largest singular values. Indices «S» and «N» denote «signal» and
«noisex» part. As a result we get decomposition
7 _vS ,yN
Y =Y +Yq (18)
S _11SvSa/S\T N _ [ NeNA/NNT ; ;
where Y =U>X>(V>)" and Y, =U"Z7 (V") . Expansion (18) allows one to find
the matrix of the given rank closest to full-rank matrix Y in Frobenius norm using ¢ -rank
property [23]. So we have rank (Yﬁs )=h and
N
o = Yy e (19)
where subscript «F» means Frobenius norm, defined as ||A||F ;fzi jaﬁ for any ma-
trix A= (a;). Matrix YﬁS will be considered as the output of the desired model.
Again we represent the matrix Y in the form
Y =Y +AY, (20)

where Y corresponds to noise-free output generated by true system, and AY corre-
sponds to the noise, which, according to condition (7), is bounded in the infinity norm

laY|, =y (21)

Since all available information about Y is limited only by condition (21), then, ac-
cording to the guaranteed approach, any Y' that satisfies the inequality ||Y’—\7|| <g
00
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can be considered as corresponding to a noise-free output of the exact model. Among all
exact models, we are looking for a model of minimal order, which corresponds to the min-
imal rank of the matrix Y’ Using decomposition (18) we determine the model by its out-

put as Yﬁs, increasing the dimension A until condition ||YﬁS —\7||OO <g, is satisfied. From
here comes the criterion
N N
IYa e <&y < I¥a2alo- (22)
Using equivalence of norms [|A[_ <[|A[- <[A],, Jk-1, which is valid for an arbi-

trary matrix Ae ka', from (22) and (19) we derive inequality

S+l

N

(o) >8y, (23)
OR+1 < Sy\/ﬁ.

<gy <oy,

or

The condition (23) can be used to determine the dimension of the model that is
consistent in accuracy with the errors.

3.2. Parametric identification. After determining the order ny =1i of vector a, it
can be found from the basic equations (3), (4), where @ (t) =u=0. For this we construct

an overdetermined linear system
WA . Oa = WA, (24)

where the matrix W, and vector w, are formed from the matrix YnS as follows:
a

1 1

Wg) WS_\)

(2) (2)

W, = Wy Wy = YVA
Wf\l—na) Wgfna)

Here, W,gl) contains the first n, columns of the matrix Yns, the matrix WE) also
a

contains n, columns, starting from the second, and so on. The vector ng) is the

(ny +1)-th column of YnS, wff) is the (ny +2)—th column, etc. The last one vector
a

Wg_na) is the first column of the matrix YnN.
a
System (24) is a strongly overdetermined for large r and |I. Then we can discard non-
informative equations with small SNR, i.e. having Yay /ay less than some threshold,

where Y.y 1S the maximum modulus of regressors. As a result, we obtain a truncated but
still overdetermined system
Wy -0, =Wy (25)

The solution of (25) can be found by ordinary least squares (OLS) or by total least
squares (TLS) [23]. However, in practice, very often problem (25) turns out to be ill-
posed, having an ill-conditioned matrix W,. Therefore, it is proposed to implement the

LS based on the SVD decomposition of the matrix Y_na

Wp =UzVy'" (26)
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Substituting (26) into (25), we obtain
El N 91 = V=VA, (27)

where 6, =V,'0,, Wa =UJ -W,. The ratio of the first singular value of the matrix %,

to the last one determines the conditionality of the problem. Under good conditionality,
the least squares solution of (26) is

0 =V4Z1 U] Wy, (28)

When the matrix W, is ill-conditioned, one should find a regularized solution, the
construction of which is given below.

At the last stage of identification, the dimension n, and coefficients of the
vector b are determined. It is preceded by extracting data corresponding to a purely
forced part of model. With an estimated vector a, such a signal y(t) for the moment t
is determined by the relation

Y(t) = §(t) + 3, §(t —1) +a, J(t —2) +...+a, Yt —n,). (29)

Then the basic equation for finding the vector b is

J(t) =bu(t—1) +...+byu(t —ny), (30)

where dimension n,, of the vector b in the main not exceed dimension of vector a. In
principle, case n, > n, is possible if there is a static connection between input and output,
caused by very fast modes having a transient process shorter than the sampling step.

After obtaining y(t) from (29), we select samples corresponding to excitation in-
tervals defined by (12) and (13) and form an overdetermined system

WB Gb =WB, (31)

similar to the construction of W, and using n, =n,. Elements of the matrix Wg are
measured control signals u(t). The chosen method of excitation (12), (13) provides
good conditionality of the matrix Wg, so system (31) can be solved by TLS.

This completes the solution of the identification problem. As a result we obtain an
approximate mathematical model, consistent in accuracy with the errors in the data de-
termined by conditions (6), (7).

4. lll-conditioning

The solvability of the identification problem in the formulation under consideration is
determined by the properties of the matrices W, in (24) and Wg in (31), and, first of all, by

their condition number. It was proposed to solve (24) and (31) using instead of OLS, a com-
pletely equivalent method based on the SVD decomposition of these matrices. Then the con-

dition number of these matrices with respect to the norm | - |, can be found from the relation

k=21, (32)

On
where n=n,, n, correspond to the dimensions of the allocated blocks when choosing
the order of the model. Due to the properties of the SVD decomposition, as the
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number n increases, the number x can only grow. The growth nature of (n) of
matrices W, and Wy is usually different, and each of them depends on its own factors.
Since the matrix Wy is formed from input signals, it is possible to control and influence
behavior of k(n,) in active experiments. The method of excitation with alternating in-
tervals of excitation and relaxation makes it possible to provide a rather weak change of
k(ny) with increasing n,. Moreover, there is every reason to believe, that with values
of k(n,) remaining close to unity, we will have the most informative signal.

The behavior of condition number of the matrix W, depends on the following fac-

tors. What remains is its dependence on the informative input action, i.e. its ability to
excite all modes of the system with an acceptable SNR. The SNR indicator, which is a
relative value, naturally includes all errors acting on the system. This equally applies to
both matrices W, and Wg. The value of «(n,) significantly depends on the dynamic

features of the system, determined by the values of the invariants op and Pp, as well

as fg and fs. There is a rapid increase in the condition number with increase of n
when the eigenvalues of the system are clustered or when there are very fast modes in
the system. Small values of flg and fS lead to small output signals of the correspond-

ing modes, so that for them the SNR becomes of the order of unity. Nevertheless, even
for systems with the most favorable values of these invariants and with an informative
input, the condition number of matrix W, grows rather quickly as n, increases, which

is clearly seen from the Table.
Table

Ny 10 12 14

©(ny) 10° 10° 107

Table shows only the order of the condition number and it is calculated here only
with exact data. With more unfavourable dynamic properties of the system, w(n,)

grows only faster, which makes the problem of parametric identification with increasing
n, more sensitive to errors in the data, i.e. we have a manifestation of bad conditionali-

ty of W,. This property is fundamental and does not essentially depend on the dynamic

properties of systems and methods that solve the problem of parametric identification.
Therefore, at larger dimensions, when the problem becomes ill-posed, it is necessary to
use regularization procedures, which can be used to ensure the stability of the obtained
solutions and improve the quality of the models. Poor conditionality is also inherent to
stochastic identification problems, which led to a shift in a paradigm for system identi-
fication [6].

The main attention in stochastic case was paid to the choice of various stabilizers
that make it possible to ensure the consistency of the estimation. The most widely used
is the Kernel structure for stabilizator, which contains parameters that are subject to tun-
ing in order to provide optimal regularization. Various types of Kernel structure can be
found in works [24-32]. Here in the framework of nonstohastic approach will be con-
sidered regularization more familiar to classical one [33].

5. Regularization

Since an ill-posed problem arises when solving (24), it is proposed to find a solu-
tion from (27) using the stabilizer X, in the following form:
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(64/cy, O ... 0 O]

0 o,loy ... 0 0

Zotab =| ¢ R : 2,
0 0 ..o,/op4 0

| 0 0o .. 0 1]

where o4, oy, ..., o, are singular values of X;. Instead of (27) we get the system
() + ) -0y = T, (33)

where o — is a regularization parameter, which is chosen from the residual principle
by [33]. Parameter o changes in a geometric progression

{ou =0y} 0<y<1k=012,...,

where oy is chosen to be of order 10-2. With k =0 we have an regularized solu-
tion 6

00 =V; - (2 + 0tgZgqap) UL V. (34)

Without regularization, the vector ef)o) is found and the impulse response function
of the model is calculated. It is compared with the impulse response function of the sys-
tem, which can be taken as the free motion on the relaxation interval after excitation by
a long rectangular pulse. Let ho (t) be the impulse response function of the model, and

ﬁ(t) — impulse response function of the systems. The accuracy of the solution is de-
fined as
"ﬁa)—ﬁoa)"w::n?x|ﬁa)—ﬁ°a)L

Next, we check the fulfillment of the condition
IR -h°@®) |, <2ey. (35)

When the condition (35) is met, we obtain a regularized solution that is consistent
in accuracy with the data error. Otherwise, we take o =o, and repeat the above steps.

The decrease of o continues until (35) is fulfilled.
If, starting from some k, the monotonic character of the residual in (28) is violat-
ed, we increase n, and n, by one and continue the search for a regularized solution.

The increase in dimensions is interrupted if there is no improvement in the quality of the
model. In this case, the model of the smallest dimension is taken, among those that give
a suitable approximation.

6. Simulation results

This section presents experimental studies of the fundamental features of identifi-
cation for systems with different dynamic properties and structures using numerical
simulation. They are mainly determined by the system dimension and invariants, includ-
ing eigenvalues and identifiability parameters characterizing the contribution of each
individual mode to the output.
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To do this, we use the model representation (10), (11), in which the specified in-
variants are represented by parameters p,, o, and fg, fs . The complexity of the sys-

tem is characterized by dimension n. Errors in measured output and input were as-
sumed to be uniformly distributed over the membership intervals (7).
For a given model dimension, the main characteristics that determine the quality of

parameter estimation are the conditionality of the matrix W, in the overdetermined sys-
tem (25) and the matrix Wg in a similar system (31). The proposed excitation of the
system by a large number of signals of types (12), (13) provides good conditionality of
the matrices Wy in a wide range of values for any system under study.

The conditionality of the matrix W, essentially depends on the dynamic properties

of the system, determined by its dimension and the values of the above invariants. As
the dimension of the system and the approximating model increase, the conditionality
grows rapidly. This is clearly seen from Fig. 1 and Fig. 2, where dependence of condi-

tionality of the matrix VVA on model order is shown for the systems of order 6 (Fig. 1) and

of order 15 (Fig. 2). The dashed line shows the case with an uncertainty level of 1078

On Fig. 1, the data generating system has dimension n =6, with two real and two
complex conjugate eigenvalues. The conditionality of the system with n=15, which
has three real and six complex conjugate eigenvalues, is shown in Fig. 2.

1016

1012

108

10*

10°

Fig. 1

1016

1012

108

10 -

10°

Fig. 2
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The conditionality of the matrix VVA for approximate models of different dimen-
sions is shown to the left of n=n,. The solid line shows the deterministic case, when
there is no uncertainty in the data. The dashed line shows the case with an uncertainty

level of 1078
As can be seen from the figures, starting from a certain dimension, the condition
number reached a constant level. In the deterministic case, the growth of conditionality

stops when n, =n+1, and is set at the level of the computational error (10716). In the
non-deterministic case, the increase in conditionality may stop earlier, as soon as it
reaches a level corresponding to the uncertainty in the data (10‘16). Then the dimen-

sion is determined to be smaller than the true one, since some of the system modes have
a signal with too low SNR.
The results presented in Fig. 1, 2 are obtained for a well-identified system, when

oy is uniformly distributed over the interval [O, g} all p, are close to unity, and all

values of f; and f; are the same. If the eigenvalues are clustered or there are modes

with relatively small coefficients f; and fg, then the growth of the conditionality \/\7A
with increasing dimension accelerates even more.
10%,
1012 L

108

10*

10°

2 6 10 14 18

Fig. 3

Fig. 3 shows the conditionality of W, for a system with n =15, whose eigenval-
ues form clusters near the stability boundary. It can be seen that for a well-identified
system, the condition number for model of order n, =10 has a value of about 10%, and
for a system with clustering of eigenvalues, it has a value of about 108,

The property of asymptotic convergence for the described identification method
was investigated. The same system that was used to build Fig. 2 was chosen. The re-
sponses of the system and asymptotic models for different n, to a rectangular pulse are

shown in Fig. 4-6. On Fig. 4 the model has a dimension of n, =10, in Fig. 5 —
ny =13, in Fig. 6 — ny =15, i.e. coincided with the dimension of the original system.

The plots to the left at the figures corresponds to the deterministic case and the right
plots correspond to the non-deterministic case with input and output uncertainty of

value 1078, True system response is shown as solid line, and model response is
shown as dashed line.
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’ Since the conditioning is bad in all cases, the regularization procedure (34), (35)
was used. When approaching the exact dimension, the quality of the model improved.

When n, exceed n, in the deterministic case, the coincidence of impulse response
functions was obtained, which indicates the construction of a hon-minimal model. For
such models, the rank of the product of the controllability and observability matrices
remained equal to n. In the non-deterministic case, the rank of the identifiability matrix
increased with a probability of almost one, but the quality of the model did not improve
significantly.

At a higher level of uncertainty, this effect appears for asymptotic models starting
from a certain dimension n, less than n, so further increase in dimension did not sig-
nificantly improve the quality of the model. This value can be considered as the most
appropriate dimension of the asymptotic model. It corresponds as a rule, to the stop of
the growth of the conditionality of the matrix Y, , according to Fig. 3. Thus, there is

reason to believe that the dimension n,, at which the condition number reaches satura-
tion, is the most appropriate for the approximating model.
The dependence of the singular values of the matrices Y (15) and VVA (25) on dy-

namic invariants and the magnitude of the uncertainty was studied. It has been found
that the singular values can be used to judge the dynamic properties of the system, the
number of essentially excited modes, and the level of noise.
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For example, Fig. 7 shows the singular values of the matrix Y (15) with different
noise levels. Generating system has dimension 15 with 6 complex conjugate pairs and 3

real eigenvalues. The values of the invariants fg and f; for different modes differ up
to 100 times. Solid line shows singular values in the deterministic case, dashed and
dashed-dotted lines correspond to the noise &, =gy =107° and gy =&y =1073, re-

spectively.

10°

1073

10"

2 6 10 14 18

Fig. 7
Dealing specifically with this system in the deterministic case, one can hope to
build a full-size model. In the case g, = gy :10_6, the successful construction of a full-

size model is unlikely. In the case g, =gy =103 a model with ny 210 is non-

minimal, because all further modes will have an SNR below one.
Conclusion

The non-stochastic approach to the identification of complex systems in the
framework of asymptotic modeling is more realistic for practical use, since it uses less
stringent restrictions on the uncertainty in the data, including finite-time observation. To
ensure the effectiveness of this method, two main requirements must be met.

The first, it is necessary that the input signal be universally informative, i.e. for a
system with arbitrary dynamic properties, the output of each mode of the system had an
acceptable SNR. Otherwise, low SNR modes are poorly identified. The proposed design
of active experiment with alternating intervals of excitation and relaxation partially
solves this problem, due to the use of resonance effects. If the frequencies of the input
signals vary with a small step, then the informativeness of the input becomes more uni-
versal. In principle, the most versatile informative input signals are white noise signals.
However, their implementation in practice can cause certain problems. The proposed
method of excitation allows you to control its spectrum, which allows you to use, for
example, a priori knowledge about the dynamic properties of the system.

The second important aspect of non-stochastic identification is related to the choice
of model dimension, which is the best in each particular case. To do this, within the
framework of the described method, it is proposed to use the principle of choosing a
model that is consistent in accuracy with the errors in the available data. In the first ap-
proximation, it is used in condition (20). Further, for the dimension established by (23),
the problem of parametric identification is solved, after which the consistency of the
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model and the system is checked by the difference in responses. If the principle is ful-
filled, then the taken dimension of the model is final. If the model error is greater, we
increase its dimension and perform parametric identification again. The principle of
consistency is checked and a decision is made to stop or to continue increasing the di-
mension of the model. In this case, if the problem is ill-posed, regularization should be
used. However, the case is not ruled out when the quality of the model reaches satura-
tion and does not improve. Then, as the desired dimension, we take the smallest one
corresponding to saturation.

In conclusion, we note that the process of identifying complex systems cannot be
reduced to a formal solution of a strictly formulated mathematical problem. It is rather a
research process of establishing patterns of system behavior based on the data of one or
more experiments with the analysis of their results and the use of mathematical tools,
the basics of which are described in this paper.
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[lin MOHATTAM CKJIaIHA CHCTEMa Y LIl poOOTi pO3yMI€ThCS BENUKA CYKYII-
HICTh JWHAMIYHUX B3a€MOJIIOUYMX CHCTEM, TOYHA MaTEMaTHYHA MOJCI]b
SIKAX HEBiZIOMa YW Ma€ JyXKe BENHUKY PO3MIpHICTh. 3aCTOCYBaHHS CTaHAAPT-
HUX METOJIB CHHTE3y 3BOPOTHUX 3B’SI3KiB ISl TAKUX CHCTEM CTA€ CKIaTHUM
i HaBiTh HEMOXXJIMBUM 13-32 BHPOJIKEHOCTI BiJMOBITHMX MaTeMaTHYHHX 3a-
nad. OnuH i3 BUXOJIB 13 Takoi cuTyamii moydrae y moOymoBi ampoKCHMaIii-
HOT MOJIeJi 3HIKEHOT po3MipHOCTi. le Moxke OyTu 3po0OeHO 3 BUKOPHCTAH-
HSM CHCTEMH BHUXIJHUX PiBHSHb, SKIIO BOHHU €, a00 MeTONiB imeHTH]IKAIiT
Ha OCHOBi BUMIpPIOBaHb BUXI/IHHX 1 BXiJHUX 3MiHHUX, IO JiIOTh HA CUCTEMY.
VY 1poMy BUMNAAKY Mpornec moOymIoBH MaTEeMaTHYHOT MOJENi 3BOJUTHCSA 0
MOCTIIOBHOTO Tepe0opy MOXKIUBHUX MOJENEH 31 3pOCTal0Y0I0 CKIIaTHICTIO.
Sk KpuTepiil aJeKBaTHOCTI MOJEII PO3TIAAAETECS HOpMa BiIXHUICHHS BUXO-
Iy MOJENi BiJl BHUMIpPSHOTO 3HAYCHHS BHUXOAY MOCITIKYBaHOI CHUCTEMH.
VY cratTi po3rianaeTscs noOynoBa JMiHIHHUX MoJeNel, CKIagHICTh SIKUX BH-
3HAYa€ThCA PO3MIPHICTIO. Y paMKax HECTOXaCTHYHOTO IAX0AY Po3poOiIeHo
METOJI0JIOTIYHY Ta MaTeMaTHYHy OCHOBY PEKOHCTPYKIIT Mojeseil, mo omnu-
CYIOTh MPOLECH Y CKIAJHAX CHCTeMax. ACHMITOTHYHE MOJEIIOBAHHS J103-
BOJISIE JUI Takoi cUcTeMH (GOpMyBaTH KJIacH MOJeNeH, sKi MigXOAATh s
po3B’s3aHHs 3amavi igeHTUdikanil. ToyHUE OmMKUC BiANMOBiTaEe HECKIHYCHHO-
My PO3IIHUPEHHIO, TOMY SIKICTh MOJIENI MOKPAIIYEThCs 31 30UIBIICHHAM 11 pO3-
MmipHOCTi. OgHAK TMOMWJIKH B HasBHHUX JaHHX HE I03BOJAIOTH OE3MEKHO
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30ibIIyBaTH IXHIO PO3MIpHICTh 4Yepe3 moraHy oOyMOBIICHICTh 3ajadi ieH-
tudikanii, mounHaO4M 3 geskoro BuMmipy. IIpomemypa perynspusamii mo-
3BOJIsIE BU3HAYUTH e(eKTHBHE HaOIIKeHe pilleHHs 3amadi igeHtudikamii,
AK€ Ui HECTOXAaCTHYHOTO BHUIAJKY Y3TODKYETbCA 3 NOMHIKAMHU JaHHX.
BitacTHBOCTI Ta OCOOIUBOCTI MPOMOHOBAHOTO IMIAXOAY IMIOCTPYIOTBHCS pe-
3yJIbTaTaMH MOJICIIIOBAHHS.

KarwouoBi cioBa: ineHTudikamis CUCTeMH, JiHiHa perpecis, perysspu3ais,
ACHMIITOTHYHE MOJICTIOBAHHS, HAOJIIDKEHUH pPO3B’SI30K.
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