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Suppressing nonstationary noise present in biomedical signals is important to
provide high-quality diagnoses. Nonstationary noise is difficult for removing
due to its time-varying and previously unknown characteristics. The application
of linear filtering to the electrooculograph (EOG) signals leads to the smoothing
of diagnostically important rapid changes in a signal caused by saccadic eye
movements. In this respect, for processing edges and other discontinuous transi-
tions, nonlinear filters based on robust estimators are more appropriate. The pa-
per introduces novel adaptive algorithms for real-time nonlinear filtering of non-
stationary noise in EOG signal with a noise- and signal-dependent filter switch-
ing, which is more appropriate for processing a local vicinity of the current input
signal sample. One of the algorithms is based on myriad filters and sub-filter
weighted FIR (which inite Impulse Responce) myriad hybrid filters. It suggests
replacing the median with a myriad operation, calculated by Newton’s numerical
technique with adaptive switching of window length and linearity parameter set-
tings. The other algorithm adaptively switches sub-filter weighted FIR median
hybrid and averaging filters with different window lengths, offering simpler cal-
culations and high-speed performance. These algorithms do not require time for
filter parameters modification and their exact tuning during real-time signal pro-
cessing and a prior knowledge of the signal model and noise variance. Numeri-
cal simulations were conducted to evaluate the filtering quality based on criteria
of mean-square error and signal-to-noise ratio for a model signal under different
levels of Gaussian noise. The achieved results show good performance and algo-
rithm high quality for suppression of nonstationary noise in EOG. The myriad type
adaptive algorithm prevails over the median in effectiveness but requires a nu-
merical technique for cost function minimization, however, myriad filtering real-
time implementation is possible with utilization of high-speed computers. Sug-
gested adaptive algorithms significantly improve the efficiency of nonadaptive
filters.

Keywords: electrooculographic signals, nonstationary noise, real time adaptive
filtering.
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Introduction

Electrooculographic (EOG) signals arise from the electrically charged eyes de-
scribed with an equivalent dipole located within the eye with the positive charge in the
cornea and the negative one in the retina [1]. The recording of eye movement biomedi-
cal signals is a relatively simple and nonintrusive procedure that does not cause discom-
fort or affect vision. It can be conducted over extended periods, both during the day and
at night, and can even be performed remotely. The necessary equipment (electrodes, di-
rect current amplifiers) for recording the electrical activity around the eye is cost-
effective and affordable. The signals registration does not violate the natural conditions
of oculomotor activity. These biomedical signals help diagnose the diseases and disor-
ders of the optokinetic and central nervous systems, brain, vision, as well as the influ-
ence of medicinal and narcotic drugs, alcohol, states of fatigue, etc. [2]. As well, the
registration of EOG signals can be used for the eye movements artifacts subtraction in
the electroencephalograms [3, 4].

Nonstationary noise contaminating biomedical signals is difficult for removing be-
cause its time-varying and previously unknown characteristics. Therefore, designing
adaptive algorithms to attenuate nonstationary noise is an important task to be per-
formed. For EOG signal processing it is essential to preserve sharp («step-like») chang-
es caused by saccadic eye movements, which are smoothed by linear filtering [5]. The
maximum speed of saccades, which is a very important diagnostic parameter [2, 6], can
be significantly distorted as a result of smoothing. In this respect, the median [5-7],
hybrid median [8-11], and myriad [12-16] filters, which effectively attenuate undesira-
ble noise, but retain diagnostic information in the step-like pulses, are more appropriate.
However, linear averaging high-effectively suppresses white noise on the constant and
linear parts of a signal [5, 17-19]. Therefore, the signal-adapting processing with com-
bining advantages of nonlinear and linear filters is reasonable. Such adaptive real-time
processing can be provided by the so-called «locally-adaptive» algorithms of nonlinear
filtering in a data sliding window for suppression noise in processes with different a priori
unknown behavior of the information component [20-22]. These algorithms involve the
so-called «local activity indicators» (LAIs) calculated for each signal sample, which
simplystically estimate the local signal behavior to switch adaptively a more appropriate
filter from the fixed set of relevant filter settings for processing the neighborhood of a
current i-th signal sample.

For nonstationary noise removal in the signals with different behavior of an in-
formative component, in particular for electrocardiographic and electronystagmographic
biomedical signal processing, the locally-adaptive algorithms with a noise- and signal-
dependent switching filter settings were introduced [23-25]. In these algorithms, a filter
set with more relevant window lengths is adaptively switched according to the pre-
estimated noise level and a more appropriate filter from the selected filter set is chosen
by LAIls comparisons for processing a vicinity of the current input signal sample. The
noise- and signal-dependent locally-adaptive filters prove to be efficient in preserving
the rapid changes within the signal by refraining from filtering at very low noise levels.
They also minimize dynamical errors resulting from filtering with small and medium
window lengths at low and mean noise levels. Furthermore, these filters enhance noise
attenuation by increasing the filter window length. The noise- and signal-dependent
flexible window length adjustment during processing with none-filtering in case of
noise absence initially was proposed in dynamic approximating algorithms [26-29],
which apply linear Savitzky and Golay approximation [30], leading to sharp edge
smoothing. In contrast to these algorithms [26-29, 31-33], the proposed locally-
adaptive algorithms with «hard» filter settings switching [23-25, 34-36] allow filtering
with different properties, including nonlinear and linear estimation, to preserve sharp
signal changes and other discontinuous transitions in a signal while ensuring efficient
noise attenuation, in particular on linear sections of the signal.
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The study is aimed to develop noise- and signal-adapting nonlinear filtering algo-
rithms for the purpose of removing nonstationary noise in EOG signals. The perfor-
mance of these algorithms will be evaluated and compared with other nonlinear filters
that have been effectively used for similar signals. The paper has four sections. Intro-
duction presents the reasons for development of adaptive nonlinear filtering algorithms
for nonstationary noise removal in the biomedical signals of eye movements. Section 1
describes the methods used in the study. Subsection 1.1 describes some reference non-
linear filters which are effective for the considered biomedical signals and the suggested
noise- and signal-adapting algorithms for nonstationary noise real-time filtering. Sub-
section 1.2 shows the way the experimental results were obtained and applied model
signal, it also states the criteria for filtering quality assessment. In subsection 1.3, the
adaptive filter parameters are specified. Section 2 performs some numerical experiments
and discusses the efficiency of the adaptive filtering algorithms introduced. Subsection 2.1
presents the statistical estimates of filter efficiency obtained by numerical simulations.
Subsection 2.2 illustrates the input signal with highly nonstationary noise and the corres-
ponding output signals and residual noise after filtering, and the plots, displaying LAIs
and adaptable parameters behaviour.

1. Methods

1.1. Filters under study.

Nonadaptive filters. The following nonlinear filters have been used for compa-
risons:

Median filter [5-7, 17, 18] that is the optimal M-estimate (maximum likelihood)
for the exponential probability density function (PDF) of random sample Xx; :

yi'ed = median{x, ..., %;,..., Xi}, W

where {x, ..., Xj,.... XNj} are input signal samples within the sliding window with
length N. The median filter is robust estimator with highly nonlinear properties [17, 18].
Myriad filter [12-16] that is optimal M-estimate for the Cauchy PDF:

My

yi " =myriad {x, ..., X;, .., X\; Ki}=arg minBZiN:llog K2 +w (% —3)°1. (2

where {X,..., %,..., Xyj} are input signal samples within the sliding window with
length N; K; is the linearity parameter of the myriad estimator, K; >0; B is the Cau-

chy PDF location estimate by the samples of a random variable {xi}|i"i1.

The myriad filter in the nonlinear operation mode (the linearity parameter K is
close to zero) has higher nonlinearity than the median filter, however, it requires more
complex calculations. The nonlinearity of myriad filter properties depends on the linear-
ity parameter K. The myriad filter performs highly nonlinear properties (in particular,
concerning step response [37, 38] at small K values and tends to linear averaging when
K increases [12-16].

Sub-filter weighted FIR (with finite impulse response) median hybrid filter [10, 11]:

ySWFMH = mediarXy, 20?%,\4 X vZO)A(gw, Kb ®)

. . ; ; . 0 K o0
where x; is the center element inside the filter window; Xy, ijlxi_j /k, Xpw, =

= Z'}lei i [k are the outputs of the FIR sub-filters which predict a current sample of the

signal described by the zero-order polynomial (level estimates); >”<1f\,\,I :Z'szlhj Xi_j
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)A(%)W. = Z'}zlhj Xj+j are the outputs of the FIR sub-filters which predict a current out-

put signal described by the first order polynomial (ramp estimates); the zeroth and the
first order FIR predictors which estimate output signal from k past («fwy» denotes for-
ward prediction) and k future input signal samples («bw» denotes backward prediction)
related to the current i-th sample within the sliding window with length N =2k +1;
hj =(4k-6j+2)/(k(k-1)) are the FIR coefficients for first order prediction,

j=1..,k [8-11, 39]; ¢ is nonlinear weighting operator (duplication of an element by
a given number of times).

Sub-filter weighted FIR median hybrid filter preserves step and ramp edge, simul-
taneously suppressing noise in their vicinities with high efficiency. The first-order FIR
sub-filters ensure the triangular signals preservation, while the standard FIR median hy-
brid filter [8-11, 17] introduces specific errors in extrema regions. By adding weights to
the zeroth order FIR sub-filters, the noise attenuation in the vicinity of the edges is in-
creased [10, 11].

o Sub-filter weighted FIR hybrid filter used myriad operation instead of median [38]:

yPWFMH :myriad{ilfv\,l, 2<>>”<(]2WI o Xi ,20)28W| , k[l)\,\,l h (4)

A myriad will be estimated from seven points in the window only; hence, that does
not cause a significant computational cost increase. The proposed median operation re-
placement by myriad improves filtering quality [38].

Noise- and signal-adapting nonlinear filtering algorithms. EOG signal processing
can be performed with a noise- and signal-dependent algorithm based on myriad filters
and weighted FIR myriad hybrid filters with adaptive switching of window length N
and linearity parameter Ka controlling filter nonlinearity:

Myrs; (Ngq,Kagq) .o 4
y, e et e g — 1) and (7 > thT) or 1Qz <tz1)),
M N, 1, K ir A
y a1 Nz K22 g (g —1yand (7 <th)and (Q, <ty),
X, if (f =D)and (t" <th")and Qs |>ty);
Myrs 5 (N3 ,,Kag,) .., .
yi o2 e R it (i =2) and (5" > ') or (1Qzi 1<tz1)),
M N, ,, K i A
y a2 (No2K22) e (b~ ) and (e <th’)and Q) I<ty),
yi e M) e (= and (5 <th") and Q7 >ty

yi=1 (5)
SWFMH i (N3 ., Kag i) . n .
yo s (s €8) g = fyand (57 > th) or QT I<tz0)
yor e (e 9 i (5 < ) and (51 <t ) end Q] I<ty),
o () e (g = jand (5 <t ) and 1Qz) [ty )
SWFMH Ns K . ~
y s s 8) e~ Lyand (5 > th) or Q2 1<tz0)),
yoWEMHmyrz (N2, K220 e (n = Lyand (7 <th)and (Q, <ty),
yor e (K e < Lyand (5 <) and Q21 15t
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My j (N K3 ) g3

where x; is an input signal; y; » J=1.., L, are out-

puts of myriad filters to be applied at low noise levels (fy =1 .., L);

yiSWFMHmyrk’j(Nk’j'Kak’j), k=1..,3, j=L+1..,L, are outputs of sub-filter

weighted FIR myriad hybrid filters to be applied at higher noise levels
ﬁi=Ll+],...,L); Nlj£N2j£N3j are window lengths for j-th filter set;

Kayj < Kayj < Kag; are parameters which set different nonlinearities to the myriad es-

timate, j=1..L; f; is a flag variable that defines different noise levels; rif thif ,

| Qy if | are LAls, as which the filtered Hampel identifiers [40, 41] and the absolute val-

ue of Z-parameter quasi-range [21, 22] are used; tz,, tz are the low and the upper
thresholds for IQZif | comparison.
Hampel filter [40, 41] identifiers r;, th; can be described as
G x—my ], thy =tsMAP,
SMAD — 14826 median{]| x, —m; |, [ Xo =y |, ..., | Xy —m; [}, (6)
where x; and my are the center sample and median of the input samples {xj}|’j\'=l with-

in a sliding window of length N ; SiMAD is a median absolute deviation (MAD), which
is a robust estimate of the scale (spread width of the PDF of a random variable), 1,4826

is a coefficient used for Gaussian PDF [12]; t is a fixed threshold; || denotes an abso-
lute value.
Z-parameter and its quasi-range in can be described as
(N, -1)/2 (N, -1)/2
AR S (AN VAR Y STy ©)
j=—(Nz-1)/2 j=—(Nz-1)/2

where Xi_j, yiﬂj are input and pre-filtered samples, respectively; N, is a window
length;

Q, =2~z q+p=Ng+1, q>p, ®)
where q and p are the order statistics ranks of the sorted set Zi(l) <.
<z <<z wiithin a sliding window {Zi_(x, 1y2: -+ Zi» -+ Zic (g2}
containing Z-parameter values; Ng is the length of this window.

A flag variable for preliminary noise level estimation can be written as
oo f f f f
Lif (- >thy )and (| Qy; |§tzl) and (" <m),

2,if (6" >th')and (1Qz/ I<tz,) and (n <" <my),

. | ©
jif (6 >t and (Q 1<tz) and (nj4 <" <np),

=
Il

L if (5" >th')and (Qz{ I<tz)and (5" 2 _y);
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where rif , thi'c , Qz if are filtered values of Hampel identifiers and Z-parameter quasi-
range, used as LAIs; tz is the low threshold for Z-parameter; ny, mp, ..., n are

thresholds for noise levels estimation; L is the number of estimated noise levels.
It is proposed to simply estimate the noise level by comparison a LAl with given
thresholds. «This estimation is performed on the slowly alternating signal part when

there is the condition (rif >thif )and (| QZif [<tz,)». Aflag variable conventionally de-

fines different noise levels from 1 — «very low» to L — «very highy, for which there
is a reason to switch the filters with enlarged (in case of increasing noise variance) or
diminished (in case of decreasing noise variance) window lengths.

When the computational complexity of signal processing algorithms is
significantly limited, not allowing myriad filtering, the locally-adaptive algorithm for
adaptive switching of sub-filter weighted FIR median hybrid filters (3), due to their high
quality in the edges vicinities, and simple averaging filters, which provide high degree
of noise suppression on the linear signal parts, with different window lengths is
suggested:

) it i =1y and (57 >t or Qg I<tz0))

ySWFMH 21 (N27)
i

Jif (f =1 and (" <th’)and (Q; I<ty),
X, if (A =1 and (r" <th")and (1Q; [>t,);

Jif (f = ) and (5" > thT) or (1Qz{ 1<tz)),

SWFMH, : (N, ;) . n .
yi =44y M2 M) e 2 and (nF <th ) and Q1<) . (10)

SWEMH  ; (Ny, )
i

yiAFa,j (N ;)

Jif (= jyand (5" <thlyand Qg |>1t7);

AF N e A

yi ot M0 e (6 = Ly and (5 >t or Q2 1<t0)
SWFMH 2L (NZ,L)
i

SWFMH | (Ny)
i

Jf (f =L)and (" <th')and (Q, |<ty),

Jf (f =L)and (" <th')and 1 Qs |>t);

SWEMH (N ) SWFMH ; (N;.;)
' i ’

«where x; is an input signal; ; j=1..L, are out-

Fs,j (N3 )

puts of sub-filter weighted FIR median hybrid filters (3)»; yiA are outputs of sim-

ple averaging filters; Ngj, Naj. N3j (Nlj < Npj ) are window lengths of j-th filter set.

1.2. Numerical simulation algorithm. Statistical estimates of filter efficiency
were obtained using numerical simulation (via Monte Carlo analysis) according to the
following algorithm [17]: 1) a test «clean» signal is formed; 2) a noise with given char-
acteristics is randomly generated and superimposed with the test signal; 3) a filtering al-
gorithm with specified parameters is applied; 4) performance indicators are calculated
and fixed; 5) the filtering is repeated many times for a large number of signal realiza-
tions with random noise, while the performance indicators are averaged.

The commonly filter efficiency estimation criteria of minimum mean square
error (MSE) and maximum signal-to-noise ratio (SNR) are applied to evaluate the
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filtering quality [17]. Statistical estimates of filter efficiency accordingly to the
MSE () and SNR (q) criteria are expressed as

=20 (27, 01 =) /1) Ng, (11)

where yif is the output of the evaluated filter of the i-th sample; s; is a «clean» signal;

I is the length of signal realization; Ny is the number of noisy test signal realizations
for statistical averaging:

a=3"510lg(p / py /Ng , Ps = Xi_y(5—5)° /1,

Pn :Zilzl(yif -5)2 11, §=Zi|:15i I, (12)

where pg and p, are signal and noise powers.

A piecewise signal with vertical step lines simulated model EOG signal (Fig. 1, a),
which is similar to the EOG signals sampled at 100 Hz (Fig. 1, b) was taken as a
«clean» signal to be used in numerical simulation. This model signal is somewhat
«ideal»: it is assumed that the upper-frequency spectrum limitation is absent and,
therefore, a high-frequency noise is present in the test signal since the step changes were
simulated as vertical lines. Similar real signals are recorded in simple conditions when
the examined person is looking to the left and to the right according to the rhythm given
by alternating LEDs (light-emitting diodes), which light up for a period of 1; 0,5 or 0,25
seconds, that allows determination of the eyeball angular velocity.

The suggested nonlinear locally-adaptive algorithms are applied to the signals
sampled at low frequencies when adaptive switching of not large windows is reasona-
ble. A filter with a large window length is required to suppress high-frequency
fluctuations in the signals with a high sampling rate; in this case, nonlinear trend
detection algorithms of the median or myriad types are efficient [42—44].

0125 Simulated test EOG signal
) 1

0,06
0,00
—-0,06
-0,12
0 400 800 1200 1600 i 2000 2400 2800 3200

0,12/% Real EOG signal
0,06
0,00
-0,06
-0,12
0 400 800 1200 1600 i 2000 2400 2800 3200

Fig. 1

1.3. Parameter settings for considered algorithms. For the proposed locally-
adaptive filters, the suitable filter parameters were chosen by numerical simulations for
the considered test signals (Fig. 1) according to a minimum of MSE (11) or a maximum
of SNR (12) at the filter output in the presence of the Gaussian noise with a zero mean
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and different variance. The proposed EOG processing myriad algorithm (5) and its
modification [23-25] with selective re-filtering (when the noise reaches a not very low
level, when flag variable A, (9) greater than 2) are denoted as ASWFmyrlP,

ASWFmyr2P, and the median algorithm (10) and its mentioned modification as
ASWFmed1P and ASWFmed2P.

The following parameters were chosen for LAIs calculations: for Hampel parame-
ters r;, th (6) the window with length N =21 and threshold t = 0.6 are used, these
parameters are smoothed by averaging filters with windows N; = 23 and N, =15,
respectively; for Z-parameter (3), the input signal is pre-filtered by myriad filter (2) with
parameters N =21, K =0,03, for Z-parameter (7) and its quasi-range in (8) calcula-
tions the windows Nz =11 and Ng =15 are used, the low and upper thresholds are
tz, =02; t; =04, the Qz values are processed by median filter with window

N3 = 11. For myriad adaptive filters ASWFmyr1P and ASWFmyr2P (5), the noise lev-
els are estimated by the following thresholds: n; =0,001; n, =0,002; ng =0,005;
ng =0,01; g =0,03; ng =0,08;, n; =0,15. Accordantly, in the first three filter sets,

the myriad filters based on Newton's numerical technique [45, 46] with an excellent step
response at low noise levels are adaptively switched, and in the next four filter sets the
sub-filter weighted FIR myriad hybrid filters, which preserve edges and strongly
suppress noise in their vicinities, are applied. The correspondent parameter sets for

adaptive switching are as follows: { Ny; = N3; =17, Kay; = Kag; = 0,03}, { Ny, =9,
Kaj, =0,01; Ny = N3 =19, Kay, = Kagy =0,03}, {Nyj3 =13, Kaz =0,01;
Ny = N3z =21, Kayg = Kagg =0,03}, {Nyy =21, Kay =0,01; Ny =21,
Kay, =0,03; Ngy =21, Kagy =01}, {Nyg =23, Kag =0,01; Ny =23,
Kays =0,03; Ngg =23, Kagg =0,1}, {Njg =25, Keyg =0,03; Nyg = Ngg =25,
Kays = Kagg = 0,1}, {Ny7 =27, Ka;; =0,03; Ny7 = N3z =27,
Kay; = Kagy =0,1}, where the first subscript indicates the component and the second

marks the filter set number.

For algorithms ASWFmed1P and ASWFmed2P (10), noise levels are distinguished
using the following thresholds: n; =0,001; n, =0,003; n3 =0,005; n, =0,02,
ns =0,09; ng =0,15; n; =0,2. Accordingly, filter sets are switched, where each set

has two components: a sub-filter weighted FIR median hybrid filter and a simple aver-
aging filter with the following parameters: {N,y; = N3; =9} {Np =9;
Npp = Ngp =11} {Ny3 =13; Np3 = N33 =13}, {Nyg =15 Npy = Ngg =15},
{N15 = 17, N25 = N35 = 17}, {N16 = 19, N26 = N36 = 19}, {N17 = 21,
N27 = N37 = 21}

The suggested noise and signal-adapting algorithms for nonstationary noise
removal are compared with nonadaptive nonlinear filters, which are effective for EOG
signals processing. The reference filters are denoted as follows: Med is a median
filter (1), Myr is a myriad filter (2), SWFMH is a sub-filter weighted FIR median
hybrid filter (3), SWFMHmyr is the SWFMH algorithm with the median replaced
by myriad (4); the number at the end of the filter abbreviation means the sliding
window length N, for myriad filters the linearity parameter K value is specified in-
side parentheses. All window lengths must be odd.
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2. Results and discussion

2.1. Numerical simulations results. The statistical estimates of filtering efficiency
for the EOG test signal (Fig. 1, a) are presented in Table, statistical estimates of effi-

ciency for EOG test signal according to criteria of MSE (x10 ~ 8) and SNR (sampling

frequency fs = 100 Hz). As can be seen from the numerical simulations results, at the
wide range of Gaussian noise variance changing (input SNR lays in the range from 30
to 0 dB) the suggested noise- and signal-adapting myriad algorithms ASWFmyr1p,
ASWFmyrzp are the most effective. The algorithm ASWFmyrip (5) prevails over the
median ASWFmedz1p (10) according to the SNR and MSE criteria: by 3,6-1,5 dB and in
2,3-1,4 times in the range of the input SNR from 35 to 20 dB and by 1,6- 0,8 dB and
in 1,4-1,2 times in the range of the input SNR from 15 to 0 dB. On the whole, the al-
gorithm ASWFmyrzpe is the most effective, it provides the following indicators of
the SNR increase and the MSE decrease due to filtering: by 7,1-10,6 dB and in 5-11,2 times
in the wide range of the input SNR from 35 to 10 dB; by 9,1-9,7 dB and in 8-9,3 times at
high noise level when the input SNR is in the range from 5 to 0 dB. The selective re-
filtering increases the filtering efficiency according to the SNR and MSE criteria: by
0,3-0,7 dB and in 1,07-1,17 times in the range of input SNR from 20 to 10 dB and
by 0,3 dB and in 1,07 times in the range of input SNR from 5 to 0 dB for the algorithm
ASWFmyrze comparing to ASWFmyrsp; by 0,2-0,3 dB and in 1,04-1,08 times when the
input SNR belongs to the wide range from 15 to 0 dB for ASWFmed2» comparing to
ASWFmedsp.

At low noise levels (input SNR lays in the range from 35 to 20 dB), the most effec-
tive is the myriad filter with nonlinear properties (linearity parameter K =0,01, win-
dow length N = 13 or 15), its output SNR increases by 7-9,6 dB and the MSE decreases
in 5,2-8,4 times. The advantage of the myriad filter over the median with the same win-
dow length according to the SNR and MSE criteria is by 3,8-4,6 dB and in 1,5-3 times
in the range of the input SNR from 35 to 25 dB and by 3,7 dB and in 2,1 times when the
input SNR is 20 dB, however, with noise variance increase the noise suppression by the
median filter becomes better. However, in the wide range of the input SNR from 15 to
0 dB, the myriad filter with increased linearity parameter (K =0,03, N =17) becomes
more effective than the myriad filter with higher nonlinear properties (K =0,01,
N =17): the improvements of the corresponding output SNR and MSE are by 4,2-1,2 dB
and in 2,7-1,3 times, respectively. Compared to the median (N = 17), the myriad filter
with increased linearity parameter (K =0,03) has better efficiency by 3,7-0,3 dB ac-
cording to SNR and in 2,3-1,1 times according to MSE in the range of the input SNR
from 15 to 5 dB, and the median filter performs stronger noise suppression at its very
high level (input SNR =0 dB).

For a wide range from middle to high noise levels (input SNR varies from 15 to
5dB), the sub-filter weighted FIR myriad hybrid filter (SWFMHmyr) with a larger
window length (N = 21) is the most effective among the considered nonadaptive filters,
while at high noise levels (input SNRs = 10, 5 dB), the estimates of efficiency for this
nonlinear filter are better with increased linearity parameter ( K = 0,03). The quantita-
tive assessment shows higher efficiency of the myriad filtering compared to the median.
In particular, the myriad algorithm SWFMHmyr (N =15, K =0,01) improves the effi-
ciency of the median counterpart SWFMH (N = 15) approximately by 2,2-0,6 dB and in
1,7-1,2 times accordantly to SNR and MSE criteria in a wide range from low to middle
noise levels (input SNR belongs to the range from 30 to 10 dB) but loses this advantage
at high noise levels (input SNRs = 5,0 dB).
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Table

Filter ‘ SNR ‘ MSE ‘ SNR ‘ MSE ‘ SNR ‘ MSE ‘ SNR ‘ MSE
1. Input SNR = 35 dB; NR = 200; 2.SNR=30dB; 3.SNR=25dB; 4 SNR=20dB;
None 35 211 | 30 | 667 | 25 | 2108 | 20 | 6666
Med13 3836 | 97 | 3504 | 209 | 3075 | 562 | 2599 | 1680
Med15 3750 | 119 | 3456 | 233 | 305 | 505 | 2583 | 1742
Myr13(0,01) 4216 | 41 | 3915 | 81 | 348 | 219 |2931| 793
Myr15(0,01) 4131 | 49 | 3893 | 85 | 3506 | 209 | 2955 | 761
SWFMH13 3862 | 92 | 3532 | 196 | 314 | 483 | 2695 | 1346
SWFFMH15 381 | 103 | 3517 | 203 | 315 | 472 | 2722 | 1266
SWFMHMyr13(001) | 4042 | 61 | 3739 | 122 | 3337 | 307 |2883| 874
SWFMHMyri5001) | 40,04 | 66 | 3739 | 122 | 3362 | 290 | 202 | 803
ASWFmed1P 3843 | 98 | 3618 | 161 | 3215 | 407 | 2797 | 1067
ASWFmed2P 3843 | 98 | 3612 | 166 | 320 | 431 | 2799 | 1064
ASWFmyriP 4205 | 42 | 30974 | 71 | 3568 | 181 | 2943 | 762
ASWFmyr2p 4205 | 42 | 3061 | 73 | 3872 | 179 | 2972 | 713
5. SNR = 15 dB; 6.SNR=10dB; 7.SNR=5dB; 8 SNR=0dB
None 15 |o21080 | 10 |eee62| 5 |210804| 0 | 666621
Med17 20,79 | 5569 | 1591 | 17100 | 11,31 | 49381 | 7,79 | 110043
Med21 2033 | 6186 | 155 | 18806 | 1099 | 53072 | 7,8 | 110869
Myr15(0,01) 2083 | 5664 | 1471 | 20662 | 9,95 | 67578 | 53 | 197222
Myr17(0,01) 2028 | 6432 | 1467 | 22018 | 1005 | 65080 | 547 | 189674
Myr17(0,03) 2446 | 2305 | 17,66 | 11511 | 1155 | 46774 | 6,62 | 145300
Myr21(0,01) 1936 | 7970 | 1445 | 24083 | 1012 | 65011 | 568 | 180509
Myr21(0,03) 2441 | 2427 | 1724 | 12707 | 1151 | 47182 | 681 | 139064
SWFMH15 2254 | 3722 | 17,74 | 11240 | 1303 | 33257 | 845 | 95454
SWFMH17 2264 | 3634 | 17,96 | 10673 | 1329 | 31319 | 875 | 88943
SWFMH21 2278 | 3523 | 1819 | 10131 | 1361 | 29080 | 9,18 | 80561
SWFMHMyri5001) | 2428 | 2497 | 1838 | 9722 | 1228 | 39506 | 7,24 | 126013
SWFMHMyrl7(001) | 2456 | 2341 | 1885 | 8740 | 1263 | 36491 | 7,53 | 117973
SWFMHMyr17(0,03) | 2352 | 2965 | 192 | 8043 | 1379 | 27961 | 85 | 94376
SWEMHMyr21(0,01) | 250 | 2116 | 19,48 | 7547 | 1317 | 32278 | 7,92 | 107834
SWFMHMyr21(0,03) | 2359 | 2924 | 1953 | 7444 | 1411 | 25937 | 89 | 85978
ASWFmed1P 2327 | 3147 | 1848 | 9480 | 1320 | 31985 | 864 | 91235
ASWFmed2P 2345 | 3019 | 1873 | e961 | 1348 | 30036 | 897 | 84638
ASWFmyr1p 2488 | 2175 | 198 | 6933 | 1378 | 28019 | 943 | 76113
ASWFmyr2p 2554 | 1874 | 2055 | 5049 | 1408 | 26206 | 971 | 71376
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Compared to the most effective myriad filter (N =15, K =0,01) at low noise
levels (input SNR belongs to the range from 35 to 20 dB), the advantage of the algo-
rithm ASWFmyrzp over this nonlinear filter becomes significant when the noise vari-
ance increases, namely: ASWFmyrze prevails in efficiency according to the SNR and
MSE indicators by 0,7-0,2 dB and in 1,2-1,1 times at low noise levels (input
SNRs = 35, 30, 25, 20 dB), by 4,7-5,8 dB and in 3-3,8 times at middle noise levels
(input SNRs = 15, 10 dB ), and by 4,1-4,4 dB and in 2,6-2, 8 times at high noise levels
(input SNRs =5, 0 dB). Compared to SWFMHmyr (N =17, K =0,01) that provides a
high degree of noise suppression in the edges vicinities and has the best performance
among the nonadaptive filters at middle-high noise levels (input SNR belongs to the
range from 20 to 0 dB), the locally-adaptive myriad algorithm ASWFmyrze also shows
a significant advantage for SNR and MSE criteria, namely: by 3,4-0,4 dB and in 2,2-1,1
times in the range from low to middle noise levels (input SNRs = 35, 30, 20 dB), by 1-
2,2 dB and in 1,3-1,7 times at middle-high noise levels (input SNRs = 15, 10, 5, 0 dB).
Besides, at high noise levels, the properties linearity for SWFMHmyr should be in-
creased by setting the parameter K =0,03. Concerning the most effective nonadaptive
filter for each of the simulated cases, the noise- and signal dependent algorithm
ASWFmyrzp has an advantage according to the SNR and MSE indicators, as follows: by
0,5-0,7 dB and in 1,11-1,17 times for the input SNR range from 30 to 25 dB, by 0,2,
0,5, and 1 dB and in 1,07, 1,13 and 1,25 times for the input SNRs = 20, 15, 10 dB,
respectively, and by 0,5 dB and in 1,13 times for the input SNR = 0 dB. Thus, when the
noise variance significantly changes from low to high levels, the application of the sug-
gested noise- and signal-adapting myriad filters is reasonable and much more effective.

2.2. Analysis of signals plots. Significantly more effective filtering in the presence
of nonstationary noise in an EOG signal (Fig. 2, a) is provided by the proposed noise
and signal-adapting myriad algorithms ASWFmyrip, ASWFmyrzp (5), as can be seen
from the plots of output signals, the LAIs and the filter parameters adaptively switched
(Fig. 2-4). Visual analysis of the filtering quality confirms the results of numerical
evaluations of efficiency (Table). As follows from visual analysis, the suggested real-
time noise- and signal-adapting algorithms are mostly correctly choosing the most suit-
able filter among the given filters for processing the vicinity of the current i-th signal
sample depending on the local signal-to-noise situation determined by LAIs. Hence, a high
quality of noise filtering and an evident advantage over nonadaptive filters are ensured.

Gaussian noise with different levels of variance is added to the EOG test signal
(Fig. 2, a): the sections of the test signal, specified by the indices indicated below, cor-
respond to the following values of the input SNR: 35 dB — the indices 1-200; 30 dB —
the indices 201-450 and 3201-3450; 25 dB — the indices 451-700 and 2951-3200; 20
dB — the indices 701-950 and 2701-2950; 15 dB — the indices 951-1200 and 2451—
2700; 10 dB — the indices 1201-1450 and 2201-2450; 5 dB — the indices 1451-1700
and 1951-2200; 0 dB — the indices 1701-1950.

As is seen (Fig. 2, filtering of a test EOG signal with nonstationary Gaussian noise;
a — input signal; b — output of median filter; ¢ — output of myriad filter; d — output
of sub-filter weighted FIR median hybrid filter; e — output of sub-filter weighted FIR
myriad hybrid filter f — output of one-pass adaptive myriad algorithm ASWFmyrip;
g — output of adaptive myriad algorithm ASWFmyrzp with selective re-filtering), all
considered nonlinear filters are characterized by high-quality processing of step-like
changes: sharp edges are shown to be well-preserved and noise is high-effectively
suppressed in their vicinity, at a constant signal a high degree of noise attenuation is
provided, as well. At a low noise level, the step edges are clearer depicted in the
output signals of the myriad (Myr) filter (Fig. 2, ¢) and the sub-filter weighted FIR
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myriad hybrid (SWFMHmyr) filter (Fig. 2, €), compared to the median (Med) filter
(Fig. 2, b) and the sub-filter weighted FIR median hybrid (SWFMH) filter (Fig. 2, d),
however, the median filter is more effective on the signal part with a very high noise
level. Compared to the nonadaptive filters (Fig. 2, b—e), the enhanced quality of output
signals is observed for the locally-adaptive algorithms ASWFmyrp (Fig. 2, f) and
ASWFmyra (Fig. 2, g), while the algorithm ASWFmyrop with selective re-filtering is
the most effective.

0,2 X; Input test EOG signal with non-stationary noise
0,0
-0,2
-0,3
0 400 800 1200 1600 i 2000 2400 2800 3200
a
0,18 yMed Filtered by the median (Med) filter (window length N=15)
0,06
—0,06
—-0,18
0 400 800 1200 1600 i 2000 2400 2800 3200
b
0,18 yMvr Filtered by the myriad (Myr) filter (window length N=15, linearity parameter K=0.01)
0,06
—0,06
—-0,18
0 400 800 1200 1600 i 2000 2400 2800 3200
C
0,18 ‘SWFMH Filtered by the Subfilter Weighted FIR-Median Hybrid filter (window length=15)
0,06
—0,06
018
0 400 800 1200 1600 i 2000 2400 2800 3200
d
0,18 ySWMHmyr Filtered by the Subfilter Weighted FIR-Myriad Hybrid filter (window length=15, linearity parameter k=0.01)
0,06
—0,06
—-0,18
0 400 800 1200 1600 i 2000 2400 2800 3200
e
0,18, yASWEmYTy Filtered by the adaptive myriad algorithm ASWFmyr,,
0,06
— 0,06
-0,18
0 400 800 1200 1600 i 2000 2400 2800 3200
f
0,18, yASWRmYze Filtered by the adaptive myriad algorithm ASWFmyr,, with selective re-filtering
0,06
— 0,06
-0,18 -
0 400 800 1200 1600 i 2000 2400 2800 3200
g
Fig. 2
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Similar conclusions follow from the visual analysis of residual noise plots at the
filter outputs (Fig. 3, Residual noise after filtering: a — simulated nonstationary noise;
b — residual noise after median filter; ¢ — residual noise after myriad filter; d — resid-
ual noise after sub-filter weighted FIR median hybrid filter; e — residual noise after
sub-filter weighted FIR myriad hybrid filter; f — residual noise after adaptive myriad
algorithm ASWFmyrip; g — residual noise after adaptive myriad algorithm
ASWFmyrzp with selective re-filtering). As can be seen, at the signal parts with low and
middle noise levels, the algorithms with the utilization of myriad filtering Myr (Fig. 3, c)
and SWFMHmyr (Fig. 3, ) suppress noise better as compared to the median filters Med
(Fig. 3, b) and SWFMH (Fig. 3, d), however, at the very noisy signal part, the residual
noise amplitude deviation after median filter applying is smaller. The residual noise
plots for the noise- and signal-dependent algorithms ASWFmyrip and ASWFmMyrzp
(Fig. 3, f, g) demonstrate a significant attenuation of noise power compared to the non-
adaptive filters (Fig. 3, b—e) and the usefulness of selective re-filtering for the locally-
adaptive algorithm ASWFmyr2p (Fig. 3, f, 9). As a result of median filtering (Fig. 3, b),
at the signal part with a high noise level, the maximum absolute deviation of the residu-
al noise is lower than for other filters (Fig. 3, c—g), however, on the whole, the quality
of nonstationary noise suppression for the noise- and signal-adapting myriad algorithms
(Fig. 3, f, g) is noticeably better.

0' 21N Simulated non-stationary noise
0,1
0,0 oy I.Y:; I ‘ —_
-0,1
-0,2
0 400 800 1200 1600 i 2000 2400 2800 3200
a
0.2 reslMed Residual noise after the median (Med) filter
0,1
00—t At
-0,1
-0,2
0 400 800 1200 1600 i 2000 2400 2800 3200
b
0,2 resV" Residual noise after the myriad (Myr) filter
0,1
0,0
-0,1
-0,2
0 400 800 1200 1600 i 2000 2400 2800 3200
C
0,2 resWFMH Residual noise after the Subfilter Weighted FIR-Median Hybrid filter (SWFMH)
0,1
o0 e
-0,1
-0,2
0 400 800 1200 1600 i 2000 2400 2800 3200
d
0.2] resSWFMHmY? Residual noise after the Subfilter Weighted FIR-Myriad Hybrid filter (SWFMHmyr)
0.1
0.0 Y
-0.1
-0.2
0 400 800 1200 1600 i 2000 2400 2800 3200
e
Fig. 3
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Continuation Fig. 3

0, 2| resfWFmyr, Residual noise after the adaptive myriad algorithm ASWFmyr,,
0,1
0,0
-0,1
-0,2
0 400 800 1200 1600 i 2000 2400 2800 3200
f
0,2 reziASWmerZP Residual noise after the adaptive myriad algorithm ASWFmyrswith selective re-filtering
0,1
0,0
-0,1
-0,2
0 400 800 1200 1600 i 2000 2400 2800 3200
g

The behavior of LAIs and filter parameters adaptable during signal processing for
the proposed locally-adaptive myriad algorithm (5) (Fig. 4, local activity indicators and

adaptable filter parameters: a) input signal; b) smoothed Hampel parameters rif , thif ;

¢ — filtered absolute value of Z-parameter quasi-range | Qz if |; d — noise level estima-

tion by flag variable, number of re-filtering; e — filter switching depending on noise
level estimation and LAIs comparison (y-axis is offset for illustration of IPF and NSF
by 10 and 20 units; e) adaptable algorithm’s parameters switching: window length, line-
arity parameter of myriad filter Ka (multiplied by 100)) clearly illustrates the idea of
locally-adaptive nonlinear filtering with «hard» switching of parameters' values. The

condition for Hampel parameters comparison thif > rif (Fig. 4, b) and close to unity Z-

parameter quasi-range |Qz if | values (Fig. 4, c) correctly determine edges and, accord-

ingly, switch the nonlinear filters with high dynamical properties for processing, in this
case, Myr or SWFMHmyr filters with a small linearity parameter value ( Ka =0,01). At
the constant signal parts, filters with linear properties ensuring high-effective noise sup-
pression are mainly used, in this case, Myr (at a low noise level) and SWFMHmyr (at
higher noise levels) with linearity parameter Ka =0,03 for Myr and Ka =0,1 for
SWFMHmyr (Fig. 4, d). The flag fi; (9) is tracking noise level changes (Fig. 4, ) and,
relatively, filter sets with more appropriate window length settings increasing by the
noise variance increase are being switched. For the entire signal, except its beginning
with a very low noise level, the flag f; is greater than 2, therefore the locally-adaptive

algorithm ASWFmyrze performs re-filtering. The window length N and the linearity
parameter Ka are switched to smaller values, ensuring the myriad filter high nonline-
arity mode in the vicinity of the edges, and to larger values, ensuring linear, close to av-
eraging, myriad filter properties at the constant signal segments (Fig. 4, f). The filter win-
dow length for processing the current sample is enlarged when the noise level increases
and is diminished otherwise (Fig. 4, f).

0.2 % Input EOG signal with non-stationary noise

400 800 1200 1600 i 2000 2400 2800 3200

a
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Continuation Fig. 4
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Conclusion

This paper introduced new noise- and signal-adapting real-time filtering algorithms
for nonstationary noise (with time-varying variance) removal in the electrooculographic
biomedical signals. During the sample-by-sample signal processing in these algorithms
the selection of the filter set and parameters is determined based on the local estimates
of the noise level and signal behavior. This is achieved through the comparison of the
local activity indicators calculated for each signal sample. By analyzing the LAls, a fil-
ter set with the most suitable window length settings and a filter with appropriate pa-
rameters are being automatically selected during a signal processing to process a vicini-
ty of the current sample. One of the proposed algorithms involves adaptive switching of
myriad and FIR hybrid filters with a proposed extension to replace median operation by
myriad with high edges processing quality taking into account. The algorithm chooses
the most suitable values of window length and linearity parameter controlling myriad
filter nonlinearity for local signal processing from the fixed set of relevant values. An
alternative algorithm is proposed to address scenarios with significant computational
complexity limitations during signal processing. This algorithm performs adaptive
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switching between sub-filter weighted FIR median hybrid filters for high-edge filtering
quality and simple averaging filters for effective noise suppression in linear signal sec-
tions. The advantages of such locally-adaptive algorithms include their independence
from prior knowledge about the local signal behavior model and noise variance. These
algorithms also eliminate the need for time-consuming adjustments and precise tuning
of filter parameters during signal processing. Moreover, they can be implemented with
low computational complexity, enabling real-time processing.

The statistical estimates of filtering efficiency evaluated by numerical simulations
for the EOG model signals and the output signals plots show the high quality of nonsta-
tionary noise suppression by the proposed noise- and signal-adapting algorithms, as
well as the expediency of selective re-filtering depending on the noise level preliminary
assessment. A significant advantage is demonstrated in the effectiveness of the pro-
posed locally-adaptive nonlinear filtering algorithms compared to the reference filters,
which are effective for the specified signals. For all simulated situations of the input
SNR wide range from 35 to 0 dB, the proposed locally-adaptive algorithm based on the
myriad and the sub-filter weighted FIR myriad hybrid filters demonstrates the best effi-
ciency indicators: in the wide range of input SNR changes from 35 to 10 dB, they pro-
vide the SNR increase by 7,1-10,6 dB while the corresponding MSE decrease in 5-11,2
times, and at high noise levels when input SNR varies from 5 to 0 dB, the SNR increas-
es by 9,1-9,7 dB and the MSE decreases 8-9,3 times. The locally-adaptive algorithm
based on sub-filter weighted FIR median hybrid filters and averaging filters require
simpler calculations, however, it inferiors in noise suppression efficiency compared to
the adaptive myriad algorithm which also allows real-time implementation with the uti-
lization of high-speed computers. The advantage of the locally-adaptive myriad algo-
rithm over the well-known median filter is 5-3 dB. The analysis of the filter output sig-
nals plots, the LAIs, and filter parameters, which during signal processing adapt to the
changes in local signal behavior and noise level, is confirmed with the calculated statis-
tical estimates of the filters' efficiency. The high quality of nonstationary noise attenua-
tion and the noticeable advantages over nonadaptive nonlinear filters are shown.
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VYcyHeHHsT B Oi0MEAMYHHMX CHTHAIAaX HECTal[iOHAPHOTO IIyMYy BaXJIUBO JUIS
3abe3MeYeHHs] BUCOKOSKICHOT AiarHOCTUKH. HecramioHapHU# IyM CKIaIHO
BUJAIUTH 4epe3 Horo 3MiHHI B 4aci i anpiopHO HEBIJOMi XapaKTEPUCTHKH.
3actocyBaHHS NiHINHOI QinpTpanii 1o enekrpookyinorpadivaux (EOT") cur-
HaJliB IPUBOAMTH [0 3TJIAJUKYBaHHS JIarHOCTHYHO BAXIHBHX Pi3KUX 3MiH
CUTHAJy, BUKIMKAHHUX CaKaJUYHUMH pyxaMmu oueil. 3 wi€l MpUYMHHU AN
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00po0KH mepenaaiB Ta iHIIUX TOYOK PO3PUBY MOXiAHOT OINBII JOUITLHUMU €
HeNiHI{HI (QIIBTPHM Ha OCHOBI POOACTHUX OWIHOK. Y CTAaTTi NpPEICTaBIICHO
aJanTHBHI aJITOPUTMHU HENiHIMHOI (inbTpalmii HecTalliOHapHOTO LIyMYy B pe-
anpHOMY 4Yaci B curHani EOI” 3a mormoMoroio mrymo- Ta CHUTHAN-3alIe)KHOTO
nepeMuKaHHs QiIbTpy, OUIBII MPUAATHOTO AL OOPOOKH JOKATBHOT'O OKOIY
MOTOYHOTO BiJUIIKYy BXiZHOTO cuTHaimy. OOuH 13 adropuTMmiB Oa3zyeThcs Ha
MipiagHux i 3BaxxeHnx KIX (kiHmeBa iMIyJnbCHa XapaKTepHCTHKA)-TiOpHI-
HUX MipiagHux QineTpax. Y HbOMY NPOMNOHYETHCS 3aMiHUTH MEIiaHHY OIle-
pariro MipiaJloio 3 aJanTUBHUM IIepeMHUKAHHSIM JOBKHHU BiKHa Ta 3HaYeHb
napaMeTpy JiHIHHOCTI. |HIIMKA anropuT™M afanTHBHO IEpPEMHUKAE 3BaXKECHI
KIX-ri6puani menianHi GinbTpu Ta QiIbTPU ycepeIHEHHs 3 Pi3HOIO AOBXKH-
HOIO BiKHa, 320€3MeUyI0YH MPOCTINIi 00YUCICHHS Ta BUCOKY MBHIKOII0. 11
AITOPUTMU He MOTpeOyroTh yacy ansg Moaudikamii mapamerpiB Ta IXHBOTO
TOYHOTO HANAMITYBaHHSA HiJ 9ac 0OpOOKH CUTHAIy, IMONEPEeAHHOTO 3HAHHS
MoOJeNi CHTHaly Ta gucnepcii mrymy. IIpoBefeHo udncenbHe MOAETIOBaHHSA
JUTSL OL(IHKU SKOCTi (inbTpanii 3a KpUTEPISIMU CepeIHBOKBAIPATUIHOT MOXH-
OKM Ta CHIBBIAHOIIEHHS CUTHAJ/IIYM I MOIEIBHOTO CUTHAIIy IIPH Pi3HUX
piBHAX raycoBa mymy. OTpuMaHi pe3ylbTaTH CBiAYaTh MPO BUCOKY SKICTh
3arIylyBaHHS HecTalioHapHoro mymy B EOI. ApxanTuBHMH aixroputm
MipiaHOTO THUITY MEepeBEpIIyE MeAiaHHUH 32 e()eKTHUBHICTIO, IPOTE BUMAarae
YHCEeIBHOr0 METOy AJIsl MiHiMi3amii (yHKIil BapTOCTi, OJHAK iX peaiizaris
B peaJbHOMY 4Yaci MOXJIHBa 3 BUKOPHCTAaHHSIM BHCOKOIIBHUAKICHUX KOMII'IO-
TepiB. 3ampoMOHOBaHI AZaNTHBHI aJTOPUTMH 3HAYHO IOKPAIIYIOTH e(ek-
THBHICTh HEAJAaNTHBHUX (IIBTPIB.

KurouyoBi ciioBa: enekTpookynorpadiyHi CHTHANH, HECTalllOHAPHHUH IIyM,
amanTuBHa QUIbTpaLis B peaqbHOMY Yaci.
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