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It is often required to control a system whose state is not observable directly. In-
stead, there are indirect incomplete and noised measurements of its state. In such
situation it is required to estimate current system’s state from these indirect mea-
surements first in order to control the system. For this purpose the Kalman filter is
the long established and classical approach on estimation of linear system’s state
from indirect measurements. It is recursive by desin, and thus indirectly takes into
account the whole previous history of measurements. Here we explore an alterna-
tive approach: estimation with measurements on a limited historic horizon. The
article first discusses application of the generalized linear least squares (GLLS)
estimator to this problem and conditions under which it is appropriate to use this
method. For situations when it is not fully appropriate, we propose a way to rep-
resent the GLLS estimator as a quadratic cone programming problem which helps
producing its modifications tuned for various nonstandard linear system designs.
The article also explores various properties and behavior of the GLLS estimator
and its modifications. For instance, it is completely expectable that such estima-
tors demonstrate diferent precision with different number of historic measurements
considered. Thus, application of the absolute condition number of the GLLS es-
timator to choosing an optimal horizon length was explored. It was demonstrated
how the absolute condition number of GLLS, while being a hard limit on estima-
tion precision, also limits expected value of error norm. Choice of the best horizon
length was discussed from both of these points of view. For situations when best
possible estimation precision is still not enough, a regularization method was pro-
posed. Pros and cons of this regularization method and a way to make an informed
choice regarding the degree of regularization was explored. The theoretical results
were confirmed with computational experiments.
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Introduction

For state-space model-based feedback control design built with existing methods the
knowledge of full state vector at each current time is required. In practice, this knowl-
edge is often not available through direct measurements and the so-called output vector
can be measured instead. This output vector depends on the actual current state through a
linear equation and its dimension is less then state vector’s. This means that control sys-
tem should include a state estimator which takes output vector measurements and motion
equation as its input. For deterministic case the Luenberger observer was proposed, which
for precise model and data can recover insufficient information [1]. However, usage of
the Kalman filter is currently more realistic and widespread approach in practical appli-
cations, as for process impacted by white noise gives the optimal state estimation. This
method also obtained wide application in many other fields and not only in control de-
sign. As it applies to linear time-invariant discrete systems, the Kalman filter description
is given in monographs [2]. Other approaches to state estimation are also considered along
with the Kalman filter [3]. One of them is a guaranteed ellipsoidal state estimation, see for
example [4–7]. Its distinctive feature is that instead of interpretation of stochastic noise
and disturbances it uses nonstohastic approach where errors in data are represented as
possible values’ set. Comparatively not long ago it established a new trend in control: the
so called ”Model Predictive Control” (MPC). Number of its practical applications grows
fast. [8] This approach is also model-based and equations of dynamic system are used to
synthesize producing an optimal control for some future horizon. During the application
of the synthesized control signals system’s actual state is compared to the predicted one
and further controls are corrected accordingly. If system’s state is not measured directly,
then it implies that some kind of state estimator is also required. Having dimensionality of
output vector smaller than state vector’s, the only way to make an estimation is to directly
or indirectly consider multiple historical output vector’s measurements. The Kalman fil-
ter’s approach on this is to store essential data extracted from previous measurements in
its internal variables. Another way to do it is to consider explicitly a specific number of
prevous output vector measurements in an estimation, which is called the moving horizon
estimation (MHE). The MHE problem has been studied by many authors, see [9–12].

One possible way of implementing such an estimator is presented in this paper. Fea-
tures of estimation process and conditions of its applicability are considered.

1. Estimation in deterministic situation

For starters, let us consider a simplistic and naive deterministic variant of MHE prob-
lem statement in order to outline the research landscape. This variant of problem statement
ignores possibility of any noise impact and imprecise measurements, empathizing only on
insufficiency of data obtained from a single measurement.

Let there be controllable and observable discrete-time linear system, whose evolution
can be described as

x(k+ 1) = Ax(k)+ Bu(k), (1)

y(k) = Cx(k), (2)

where x(k) is an (unobservable) system’s state vector of dimensionalty n for current point
of time k; A is an n×nmatrix; u(k) is an input impact (control) of dimensionality r applied
at point of time k; B is a n × r matrix; y(k) is an (observable) measurement vector of
dimensionality m at point of time k; C is an m× n matrix.

For simplicity, A, B and C will be further considered time invariant. Nevertheless,
everything discussed here is also applicable when they also change in time; it is only
required to know their precise state at each point of time. Corresponding equations can be
trivially rewritten for this case.
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Formulas (1), (2) describe dependence between values at two consecutive points of
time. As only r scalars from y(k) vector can be measured, they do not contain enough data
to recover all n scalars of current state x(k) by themselves. Obviously, measurement of at
least n scalars is required to recover n scalars. Thus, at least

⌈ n
r
⌉

measurements of the
output vector at different points of time are required, as well as an equation binding states
and outputs at different points of time together. The well-known Cauchy formula for linear
system (1), (2)

x(k+ p) = Apx(k)+
p−1∑
i=0

Ap−1−iBu(k+ i) (3)

can be used for this purpose. Thus, having measurements x(k−s), . . ., x(k), where s+ 1 ≥
≥

⌈ n
r
⌉
, and equation (2) applicable for every point of time, we obtain

y(k− s+ p) = CApx(k− s)+
p−1∑
i=0

CAp−1−iBuk−s+i, p ∈ {0, . . ., s}, (4)

x(k) = Asx(k− s)+
s∑

i=0
As−1−iBu(k− s+ i), (5)

where (4) can be conveniently rewritten in trajectorial form as
y(k− s)
y(k− s+ 1)

y(k)


︸ ︷︷ ︸

y(k,s)

=


C
CA

CAs


︸ ︷︷ ︸

Γs+1

x(k− s)+

+



0 0
CB
CAB CB

CAs−2B CAs−3 CAB CB 0
CAs−1B CAs−2 CAB CB


︸ ︷︷ ︸

Φs+1


u(k− s)
u(k− s+ 1)

u(k)


︸ ︷︷ ︸

u(k,s)

. (6)

Here y(k, s) is an observation trajectory and u(k, s) is a control trajectory on the historic
horizon, Γs+1 is a m · (s+ 1)× n observability matrix, Φs+1 is a m · (s+ 1)× r historic
controllablity matrix. x(k − s) is considered to be unknown variable and everything else
in (6) is considered to be known.

Having any n rows of equation (6) with linear-independent corresponding rows of
Γs+1 we can trivially recover initial state x(k − s) of this historic horizon in this overly-
idealized example. Thus, having (5), we can fast-forward system’s state and recover cur-
rent state.

While this particular approach is useless in practice, more useful models and state
recovery approaches discussed further will be formed as its different modifications and
complications. Such narration approach was chosen in order to be as explicit as possible
about how various forms of nondeterminism were introduced in models.

2. Classic linear least square estimation

The linear least square (LLS) algorithm is the most obvious, well-known and broadly
used approach to find estimation of a vector in a overdefined system of linear equations
with some kind of noise applied to variables.
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This approach implies that an (unknown) noise with some known covariance matrix is
additively applied to all output measurements from considered system of linear equations.
In order to conform with this presupposition of the method, the model of linear system
(1), (2) should be transformed into

x(k+ 1) = Ax(k)+ Bu(k), (7)

y(k) = Cx(k)+ δ(k), (8)

where δ(k) is unknown measurement noise.
The Cauchy formula (3) written for the deterministic linear system model remains

unchanged in this case, while relation (4) for historic measurements transforms into

y(k− s+ p) =CApx(k− s)+

+

p−1∑
i=0

CAp−1−iBuk−s+i + δ(k− s+ p), p ∈ {0, . . ., s}. (9)

Equation (6) thus becomes
C
CA

CAs


︸ ︷︷ ︸

Γs+1

x(k− s) =


y(k− s)
y(k− s+ 1)

y(k)


︸ ︷︷ ︸

y(k,s)

−


δ(k− s)
δ(k− s+ 1)

δ(k)


︸ ︷︷ ︸

δ(k,s)︸ ︷︷ ︸
ỹ(k,s)

−

−



0 0
CB
CAB CB

CAs−2B CAs−3 CAB CB 0
CAs−1B CAs−2 CAB CB


︸ ︷︷ ︸

Φs+1


u(k− s)
u(k− s+ 1)

u(k)


︸ ︷︷ ︸

u(k,s)

, (10)

where y(k, s) is a measured observation on historic horizon, δ(k, s) is and unknown mea-
surement noise and ỹ(k, s) is an (unknown) unnoised observation. Like in previous model,
initial state x(k − s) is considered unknown. Here, the well-known linear least squares
(LLS) method allows to estimate x(k− s) as following:

xest.(k− s) =
(
Γ⊺
s+1Ω

−1(s)Γs+1
)−1

Γ⊺
s+1Ω

−1(s)
(
y(k, s)− Φs+1u(k, s)

)
, (11)

where Ω(s) is a covariance matrix of the errors δ(k, s), if we know it and want to ap-
ply the generalized variant of linear least squares (GLLS). Otherwise, Ω(s) is often con-
sidered to be an identity matrix, which turns (11) into the ordinary LLS method. This
method is computationally cheap if we can precompute the generalized pseudoinverse

matrix
(
Γ⊺
s+1Ω

−1(s)Γs+1
)−1

Γ⊺
s+1Ω

−1(s).

3. Estimatior stability and regularization

Stability of estimators is rarely (if ever) discussed in literature on state estimation and
control. Nevertheless, it is important if we want to discuss systematically such things as
regularization in state estimators or impact of system’s structural properties on estimation
precision.

If we discuss regularization, we need a consistent way to measure degree of estima-
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tion’s disturbance which we are trying to avoid in this way. We also need to understand at
cost of forsaking what information we achieve this.

Structural properties of the considered system define limits of estimation precision
which is possible to achieve for a particular system. It becomes apparent if we notice that
we are forced to use past measurements to reconstruct a present system’s state and thus
any estimator regardless of its design must somehow (explicitly or implicitly) reconstruct
state transformations inside the system.

The most obvious and well-known example of such limits imposed on estimators by
system’s structure is the notion of linear system’s observability. It states that the state
x(·) of a linear system (1), (2) can not be estimated completely if rankΓn−1 is less than
dimensionality of the state. If we consider a noised linear system like in (7), (8), these
limitations go beyond that. In some cases past system’s states do not impact its present state
significantly enough to derive sufficient information to estimate it with required precision
considering noise levels affecting the system. It is important to understand that such cases
exist and that this problem inherently can not be solved by improving estimator’s design.
An example of this kind of limitation will be shown further by example of the generalized
linear least squares (GLLS) estimator.

3.1. Estimator stability appraisal by example of GLLS. While contents of this sub-
section can be considered trivial, empathizing on the notion of problem’s stability, its ori-
gins, properties and consequences is required for completeness of further discussion.

Here we will follow a traditional approach to measure problem’s stability in terms of
condition number. As system’s state change in time (while statistical properties of noise
typically are not), the absolute condition number [13, p. 90]

κ = lim
ε→0

sup
∥∆x∥≤ε

∥∆f∥
∥∆x∥

, (12)

seems to be the most appropriate measure (in contrast to the relative condition number).
Here∆x is a disturbance of the input data,∆f = f(x+∆x)−f(x) is a disturbance of solver’s
result, where f is the problem’s solver (in our case — estimator) and x is its undisturbed
(i. e. theoretical precise) input data.

If ∆f depends linearly on ∆x (like in LLS and GLLS), i. e. there is a matrix ∂f such
that∆f(∆x) = ∂f ·∆x, the absolute condition number becomes

κ = sup
∆x

∥∂f ·∆x∥
∥∆x∥

= ∥∂f∥ (13)

by definition of the matrix norm.
In regard to state estimators, the estimator’s condition number suggests us how bad

will be the impact of noises affecting a system on state estimation. In particular, with the
Cauchy–Bunyakovsky–Schwarz inequality we can show that it limits estimation’s error
norm (don’t confuse with variance) as following:

E∥∆f∥ =E
(
∥∆f∥
∥∆x∥

· ∥∆x∥
)

≤

≤

√
E
(
∥∆f∥
∥∆x∥

)2
· E∥∆x∥2 ≤

≤

√
sup
∆x

(
∥∆f∥
∥∆x∥

)2
· E∥∆x∥2 =

=κ ·
√
E∥∆x∥2. (14)
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Having (13), the absolute condition number of the GLLS estimator for a past state
x(k− s) which considers historic horizon of length s (i. e. last s + 1 measurements
y(k− s) , . . ., y(k)) can be calculated as following.

From (10), (11) we get

xest.(k− s) =
(
Γ⊺
s+1Ω

−1(s)Γs+1
)−1

Γ⊺
s+1Ω

−1(s)
(
Γs+1x(k− s)+ δ(k, s)

)
=

=x(k− s)+
(
Γ⊺
s+1Ω

−1(s)Γs+1
)−1

Γ⊺
s+1Ω

−1(s)δ(k, s), (15)

xest.(k− s)− x(k− s)︸ ︷︷ ︸
∆fGLLS(s,k−s)

=
(
Γ⊺
s+1Ω

−1(s)Γs+1
)−1

Γ⊺s+1Ω
−1(s)︸ ︷︷ ︸

∂fGLLS(s,k−s)

δ(k, s)︸ ︷︷ ︸
∆xGLLS(s)

. (16)

Thus, absolute condition number for this estimator is

κGLLS(s,k−s) =

∥∥∥∥(Γ⊺s+1Ω
−1(s)Γs+1

)−1
Γ⊺s+1Ω

−1(s)
∥∥∥∥. (17)

For LLS (where Ω−1(s) is the identity matrix) it becomes

κLLS(s,k−s) = ∥Γ+
s+1∥, (18)

where Γ+
s+1 := (Γ⊺s+1Γs+1)−1Γ⊺

s+1 is the pseudoinverse of Γs+1. If we consider the Eu-
clidean norm, we get

κLLS(s,k−s) = 1/σn, (19)

where σn is the smallest singular value of Γs+1. The absolute condition number of the
LLS estimator is also the smallest possible absolute condition number of GLLS (at least
in terms of the Euclidean norm). Let us show this explicitly.

Let there be a singular value decomposition (SVD) of Γs+1 and its compact form:

Γs+1 = PQR⊺ =
(
P1 |P2

)
︸ ︷︷ ︸

P

(
Q1
0

)
︸ ︷︷ ︸

Q

R⊺ = P1Q1R⊺. (20)

Here P is an m · (s+ 1)×m · (s+ 1) orthonormal matrix, R is an n× n orthogonal matrix
and Q is m · (s + 1) × n with singular values (in descending order) on its main diagonal.
Correspondingly, P1 consists of the first n columns of P, P2 contains the rest of its columns
andQ1 is square n×n part ofQ. With this we can transform the generalized pseudoinverse
matrix ∂f as following:

∂fGLLS(s,k−s) =
(
Γ
⊺
s+1Ω

−1(s)Γs+1
)−1

Γ
⊺
s+1Ω

−1(s) =

=
(
RQ1P

⊺
1Ω

−1(s)P1Q1R⊺
)−1

RQ1P
⊺
1Ω

−1(s) =

= RQ−1
1

(
P⊺1Ω

−1(s)P1
)−1

Q−1
1 R⊺RQ1︸ ︷︷ ︸

identity matrix

P⊺1Ω
−1(s) =

= RQ−1
1

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s). (21)

From (16) and (21) we get

xest.(k− s)− x(k− s) = RQ−1
1

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)δ(k, s) (22)

and thus we can transform the formula (13) for the absolute condition number of GLLS
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like this:

κGLLS(s,k−s) = sup
δ(k,s)

∥xest.(k− s)− x(k− s)∥2
∥δ(k, s)∥2

=

= sup
δ(k,s)

∥RQ−1
1

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)δ(k, s)∥2

∥δ(k, s)∥2
. (23)

With substitution

δ(k, s) =
(
P1 |Ω(s)P2

)( ε1
ε2

)
= P1ε1 +Ω(s)P2ε2, (24)

where ε1 ∈ Rn and ε2 ∈ Rm·(s+1)−n, we can transform it further into this:

κGLLS(s,k−s) = sup
ε1,ε2

∥∥∥∥RQ−1
1

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)

(
P1 |Ω(s)P2

)( ε1
ε2

)∥∥∥∥
2∥∥∥∥(P1 |Ω(s)P2)( ε1

ε2

)∥∥∥∥
2

. (25)

Hence, it can be significantly simplified as following:(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)

(
P1 |Ω(s)P2

)( ε1
ε2

)
=

=
(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)

(
P1ε1 +Ω(s)P2ε2

)
=

=
(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)P1︸ ︷︷ ︸

identity matrix

ε1 +
(
P⊺1Ω

−1(s)P1
)−1

P⊺1 Ω
−1(s)Ω(s)︸ ︷︷ ︸

identity matrix

P2ε2 =

= ε1 +
(
P⊺1Ω

−1(s)P1
)−1

P⊺1P2︸ ︷︷ ︸
0

ε2 = ε1. (26)

And finally, considering that R and P consist of ortonormal columns, we get

κGLLS(s,k−s) = sup
ε1,ε2

∥RQ−1
1 ε1∥2

∥P1ε1 +Ω(s)P2ε2∥2
≥

≥ sup
ε1

∥RQ−1
1 ε1∥2

∥P1ε1∥2
= sup

ε1

∥Q−1
1 ε1∥2
∥ε1∥2

= 1/σn︸︷︷︸
κLLS(s,k−s)

. (27)

From results obtained above we should notice that condition numbers of LLS and
GLLS appeared to be properties of not these algorithms themselves, but of a system they
are applied to. Thus, we confirmed that for LLS and GLLS estimators system’s properties
define by themselves how well its state can be estimated.

3.2. Regularization in GLLS. As we have seen previously, the largest precision loss
is related to the smallest singular values of the observation matrix Γs+1. Thus, it is tempt-
ing deal with it by artificially getting rid of the smallest its singular values. Let us show,
what happens if we do this and what do we loose with this modification of GLLS.

Having (11), (21) we can express the GLLS estimator as

xest.(k− s) = RQ−1
1

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)

(
y(k, s)− Φs+1u(k, s)

)
. (28)

If we zero-out inverses of some smallest observation matrix’s singular values in con-
struction of Q−1

1 like proposed above, we obtain following regularized estimator:
Міжнародний науково-технічний журнал
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xreg. est.(k− s) =R


σ−1
1

σ−1
p

0

0 0

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)×

×
(
y(k, s)− Φs+1u(k, s)

)
. (29)

Here p is the number of singular values we decided to leave as-is and σ1, · · · , σp are p
largest singular values of Γs+1.

If we apply (10), like we did in the previous section, we get

xreg. est.(k− s) =R


σ−1
1

σ−1
p

0

0 0

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)×

×
(
P1Q1R⊺︸ ︷︷ ︸

Γs+1

x(k− s)+ δ(k, s)
)
=

=R


σ−1
1

σ−1
p

0

0 0

Q1R⊺x(k− s)+

+ R


σ−1
1

σ−1
p

0

0 0

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)δ(k, s) =

=R


1

1
0

0 0


p times

R⊺x(k− s)+

+ R


σ−1
1

σ−1
p

0

0 0

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)δ(k, s). (30)

As we can see, we obtained an estimation xreg. est.(k− s) of state’s projection

xpr.(k− s) = R


1

1
0

0 0


p times

R⊺x(k− s), (31)

but not of the state x(k− s) itself. This way we forsake recovering a certain state subspace
for which signal-noise ratio is too small to consider an estimation usable. In other words,
measurements y(k, s), loosely speaking, do not contain enough information about this state
subspace, and thus we decided not even to try to estimate it.

Absolute condition number of xreg. est.(k − s) can be calculated the same way, as of
xest.(k− s) in the previous section. This way we get
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κreg. GLLS(s,k−s) = sup
δ(k,s)

∥xreg. est.(k− s)− xpr.(k− s)∥2
∥δ(k, s)∥2

=

=

∥∥∥∥∥∥∥∥∥R


σ−1
1

σ−1
p

0

0 0

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)

∥∥∥∥∥∥∥∥∥
2

=

=

∥∥∥∥∥∥∥∥∥


σ−1
1

σ−1
p

0

0 0

(
P⊺1Ω

−1(s)P1
)−1

P⊺1Ω
−1(s)

∥∥∥∥∥∥∥∥∥
2

≥

≥1/σp = κreg. LLS(s,k−s). (32)

3.3. Choosing a horizon length and regularization degree. While regularization ap-
proach described in the previous subsection can be used as a last resort, we can notice that
inability to estimate properly a part of the state-space is due to the lack of information con-
tained in observations on the history horizon we have chosen. Thus, extending considered
history horizon may improve estimation by giving additional information.

Absolute conditional numbers of GLLS and its regularized variants for different hori-
zon lengths give us indispensable information regarding what precision we get in which
case and thus can be used to make informed judgement about reasonable history horizon
length and/or a linear sub-space of the state-space we consider being impossible to esti-
mate. In simplified case of the ordinary LLS (i. e. whenΩ(s) is the identity matrix for all s)
the absolute condition numbers are exactly the inverses of singular values of observability
matrices for corresponding horizon lengths.

Fig. 1 displays how these singular values change with increasing horizon length for
three example systems. Vertical scales on this figure is logarithmic. Typically (i. e. in all
cases we have seen), singular values of system’s observability matrices are increasing with
the historic horizon length. But as we can see on Fig. 1, a, c, a singular value may not grow
indefinitely and asymptotically approach a certain limit value instead.
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104
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100
101
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Fig. 1

There are cases when all observability matrice’s singular values are limited, when part
of them are limited (like on Fig. 1, a, c) and also cases when growth of all of them is
unlimited (like on Fig. 1, b). There are also some convoluted cases like in Fig. 1, a.
Міжнародний науково-технічний журнал
Проблеми керування та інформатики, 2023, № 4 13



In order to make a decision, we need to define precisely what does we consider to be
the precision of the estimator in general (contrary to a precision of a particular estimation
this estimator made). If we use the robust control approach, we suppose that there is a
maximum value µ such that in the system (7), (8)

∀k ∥δ(k)∥2 ≤ µ (33)

and our objective is to minimize worst possible estimation error under this condition. Then
we conclude that

∥δ(k, s)∥2 ≤
√
s · µ (34)

and

∥xest.(k− s)− x(k− s)∥2 ≤
√
s · µ · κGLLS(s,k−s), (35)

∥xreg. est.(k− s)− x(k− s)∥2 ≤
√
s · µ · κreg. GLLS(s,k−s). (36)

For ordinary LLS it becomes

∥xest.(k− s)− x(k− s)∥2 ≤
√
s · µ / σn(Γs+1), (37)

∥xreg. est.(k− s)− x(k− s)∥2 ≤
√
s · µ / σp(Γs+1), (38)

where σn(Γs+1) and σp(Γs+1) are the n-th (the smallest) and the p-th singular values of
Γs+1 (which is used to estimate x(k− s)).

If our objective is instead to minimize the expected estimation error (i. e. to make best
estimations in most cases), we should consider (14). For GLLS it becomes

E∥xest.(k− s)− x(k− s)∥2 ≤
√
E∥δ(k, s)∥22 · κGLLS(s,k−s), (39)

E∥xreg. est.(k− s)− x(k− s)∥2 ≤
√

E∥δ(k, s)∥22 · κreg. GLLS(s,k−s). (40)√
E∥δ(k, s)∥22 increases with horizon length growth. In particular, if scalar elements of

δ(k, s) are independent and have the same distribution, then it is proportional to
√
s · m.

As we can see, in both cases our notions of estimator’s general precision are propor-
tional to

√
s · κGLLS(s,k−s) (or

√
s · κreg. GLLS(s,k−s) for regularized estimator) and if we

consider only ordinary LLS, it becomes inversely proportional to σn(Γs+1)√
s (or σp(Γs+1)√

s for
regularized estimator). Fig. 2 displays this index for the same systems as on Fig. 1. Vertical
scales here are also logarithmic.
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If index σn(Γs+1)√
s grows indefinitely, like on Fig. 2, b, the only things which limit es-
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timation precision are available history of measurements, computational resources and
possible numerical problems caused by operating with huge matrices in floating point
arithmetic. If there exists maxs

σn(Γs+1)√
s , like on Fig. 2, a, c, it is reasonable to consider

the corresponding horizon length as the best one. If we, for example, decide for system a,
that it is not possible to meaningfully estimate full state, we can discard several smallest
singular values. In this case, considering that we discarded n−p singluar values, we should
use horizon length corresponding to maxs

σp(Γs+1)√
s instead. Take note that the best hori-

zon length for regularized estimator in most cases is different from one for non-regularized
estimator.

We should empathise here that R in the singular value decomposition (20) would be
different for different historic horizon lengths s, and thus we can not just simply estimate
different components of the state space using different horizon lengths and combine results
afterwards.

3.4. Stability and regularization of current state estimation. Careful reader may
notice, that while considered estimators are intended to reconstruct system’s state in the
past, what is actually important to control the system is its current state. Of course, having
an estimation of a past state and subsequent controls for system (7), (8), we can fast-
forward this estimation like this:

xest.(k) = Asxest.(k− s)+
s−1∑
i=0

As−1−iBuk−s+i. (41)

This solves the problem, but now we need to know an absolute condition number for
current state’s estimation to make an educated choice of considered historic horizon length
s and regarding regularization.

By substituting (3) from (41) we get

xest.(k)− x(k) = As
(
xest.(k− s)− x(k− s)

)
(42)

and by substituting (16) into it we obtain

xest.(k)− x(k)︸ ︷︷ ︸
∆fGLLS(s,k)

= As
(
Γ⊺s+1Ω

−1(s)Γs+1
)−1

Γ⊺s+1Ω
−1(s)δ(k, s) =

=
(
(A−s)⊺Γ⊺

s+1Ω
−1(s)Γs+1A−s

)−1
(A−s)⊺Γ⊺

s+1Ω
−1(s)︸ ︷︷ ︸

∂fGLLS(s,k)

δ(k, s)︸ ︷︷ ︸
∆xGLLS(s)

. (43)

Having this and a singular value decomposition

Γs+1A−s = P′Q′R′⊺ =
(
P′1 |P

′
2
)

︸ ︷︷ ︸
P′

(
Q′
1
0

)
︸ ︷︷ ︸

Q′

R′⊺ = P′1Q
′
1R

′⊺. (44)

we can repeat inferences from two previous subsections and get similar results.
For instance, the absolute condition numbers (implying the Euclidean norm) of the

GLLS and ordinary LLS estimators for current state x(k) which consider historic horizon
of length s (i. e. last s+ 1 measurements y(k− s), . . ., y(k)) would be

κGLLS(s,k) =

∥∥∥∥((A−s)⊺Γ⊺s+1Ω
−1(s)Γs+1A−s

)−1
(A−s)⊺Γ⊺s+1Ω

−1(s)
∥∥∥∥
2
≥

≥1/σ′n = κLLS(s,k), (45)

where is the smallest singular value of Γs+1A−s.
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From (11), (41), (44) we get

xest.(k) =R′Q′−1
1

(
P′⊺1 Ω

−1(s)P′1
)−1

P′⊺1 Ω
−1(s)

(
y(k, s)− Φs+1u(k, s)

)
+

+
s−1∑
i=0

As−1−iBuk−s+i, (46)

which allows us to do its regularization

xreg. est.(k) =R′


σ′−1
1

σ′−1
p

0

0 0

(
P′⊺1 Ω

−1(s)P′1
)−1

P′⊺1 Ω
−1(s)×

×
(
y(k, s)− Φs+1u(k, s)

)
+

+ R′


1

1
0

0 0


p times

R′⊺
s−1∑
i=0

As−1−iBuk−s+i, (47)

where p is the number of singular values we decided to leave as-is and σ′1, . . ., σ
′
p are p

largest singular values of Γs+1A−s.
Like in the previous subsection we can demonstrate, that

xreg. est.(k) =R′


1

1
0

0 0


p times

R′⊺x(k)

︸ ︷︷ ︸
xpr.(k)

+

+ R′


σ′−1
1

σ′−1
p

0

0 0

(
P′⊺1 Ω

−1(s)P′1
)−1

P′⊺1 Ω
−1(s)δ(k, s) (48)

and thus

κreg. GLLS(s,k) =

∥∥∥∥∥∥∥∥∥


σ−1
1

σ−1
p

0

0 0

(
P′⊺1 Ω

−1(s)P′1
)−1

P′⊺1 Ω
−1(s)

∥∥∥∥∥∥∥∥∥
2

≥

≥1/σ′p = κreg. LLS(s,k). (49)

For some reason, singular values of Γs+1 and Γs+1A−s appeared to be the same (or at
least numerically almost the same, considering imprecision of floating point calculations)
for all systems tested by authors. This empirical fact should be taken with care and requires
further investigation.

4. Quadratic cone state estimators

LLS is a well-known estimator which properties are already deeply researched. As we
have demonstrated previously, it can be applied to linear systems like (7), (8) for state
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estimation. The main presupposition of (7), (8) is that noises are impacting only state
measurement, but this is not always the case. For example, a system may be disturbed at
the state transition stage instead. This section is dedicated to describing how the GLLS
estimator can be modified for such cases.

4.1. Quadratic cone programming form of LLS. The estimation made by GLLS
(11) is actually a solution of the following (made-up) problem:

min
xest.(k−s)

s∑
p=0

∥∥∥Ω− 1
2
(
y(k− s+ p)− yest.(k− s+ p, xest.(k− s))

)∥∥∥
2

(50)

considering

yest.(k− s+ p | xest.(k− s)) :=CApxest.(k− s)+

+

p−1∑
i=0

CAp−1−iBu(k− s+ i), p ∈ {0, . . ., s}, (51)

where Ω is a covariance matrix of measurement noise δ(k) in (8) at each step k, and thus
Ω− 1

2 is a hermitian square root of its inverse.
Formulating the optimization problem this way is motivated by hypotheses that mea-

surements are where the noise impacts the system. But, obviously, this is not always the
case. In order to get some insights on how to modify this problem for other cases, let us
reformulate it as a quadratic cone program

min


xest.(k− s)
δest.(k− s)

δest.(k)


⊺


0

0
Ω−1

Ω−1



n times

s+1 times


xest.(k− s)
δest.(k− s)

δest.(k)

 (52)

considering 

1

1
1

1
. . .

1

1

C

CA

...

CAs



r times

r times

r times

︸ ︷︷ ︸
Γs+1


xest.(k− s)
δest.(k− s)

δest.(k)

 =

=


y(k− s)
y(k− s+ 1)− CBu(k− s)

y(k) −
s−1∑
i=0

CAs−1−iBu(k− s+ i)

, (53)

where δest.(k− s+ p) := y(k− s+ p)− yest.(k− s+ p, xest.(k− s)) for p = {0, . . ., s}.
After careful consideration, it appears that highlighted parts of (52), (53) are originat-

ing not in the system’s structure, but in the presupposition about noise properties. Thus,
other presupposition would lead us to modification of these parts of the optimization prob-
lem producing state estimation. Also take note that the observability matrix Γs+1 is an in-
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variant part of the optimization problem which should proliferate to other modifications.
4.2. Estimation based on noised state model. Having template from previous sec-

tion, let us design a similar optimization problem for the case when state transition is
noised and measurements are precise. A linear system corresponding to this particular
presupposition would look like

x(k+ 1) = Ax(k)+ Bu(k)+ ξ(k), (54)

y(k) = Cx(k), (55)

where ξ(k) is an (unknown) random noise with covariance matrix Ω. The Cauchy formula
for system (54), (55) would be

x(k+ p) = Apx(k)+
p−1∑
i=0

Ap−1−iBu(k+ i)+
p−1∑
i=0

Ap−1−iξ(k+ i). (56)

Like in previous models, we can derive following relations for the historic horizon:

y(k− s+ p) = CApx(k− s)+

+

p−1∑
i=0

CAp−1−iBu(k− s+ i)+

+

p−1∑
i=0

CAp−1−iξ(k− s+ i), p ∈ {0, . . ., s}, (57)

x(k) = Asx(k− s)+
p−1∑
i=0

Ap−1−iBu(k− s+ i)+
p−1∑
i=0

Ap−1−iξ(k− s+ i). (58)

These two equations correspond to (4), (5) in the deterministic model and (9), (5) for the
LLS model.

The equation (57) in trajectorial form would be
y(k− s)
y(k− s+ 1)

y(k)


︸ ︷︷ ︸

y(k,s)

=


C
CA

CAs


︸ ︷︷ ︸

Γs+1

x(k− s)+

+



0 0
CB
CAB CB

CAs−2B CAs−3B CAB CB 0
CAs−1B CAs−2B CAB CB


︸ ︷︷ ︸

Φs+1


u(k− s)
u(k− s+ 1)

u(k)


︸ ︷︷ ︸

u(k,s)

+

+



0 0
C
CA C

CAs−2 CAs−3 CA C 0
CAs−1 CAs−2 CA C




ξ(k− s)
ξ(k− s+ 1)

ξ(k)

. (59)
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Let us apply the approach used in the design of the LLSmethod in this situation. Like in
LLS, wewill build an optimization problemwhose objective functionminimizes estimated
values of noises while considering known relations on historic horizon originating from
system’s dynamics. This way we obtain following optimization problem:

min

s−1∑
p=0

∥Ω− 1
2 ξest.(k− s+ p)∥2 (60)

considering

yest.(k− s+ p | xest.(k− s), ξest.(k− s), . . ., ξest.(k− s+ p− 1)) = y(k+ s− p), (61)

where

yest.(k− s+ p | xest.(k− s), ξest.(k− s), . . ., ξest.(k− s+ p− 1)) =

= CApxest.(k− s)+
p−1∑
i=0

CAp−1−iBu(k− s+ i)+
p−1∑
i=0

CAp−1−iξest.(k− s+ i). (62)

If we transform it to the quadratic cone programming form, we obtain

min


xest.(k− s)
ξest.(k− s)

ξest.(k− 1)


⊺


0

0
Ω−1

Ω−1



n times

s times


xest.(k− s)
ξest.(k− s)

ξest.(k− 1)

 (63)

considering 

C 0 0
CA C

CAs−1 CAs−2 CA C 0
CAs CAs−1 CA C


︸ ︷︷ ︸
Γs+1


xest.(k− s)
ξest.(k− s)

ξest.(k− 1)

 =

=


y(k− s)
y(k− s+ 1)− CBu(k− s)

y(k) −
s−1∑
i=0

CAs−1−iBu(k− s+ i)

. (64)

Together with (58), this optimization problem allows us to estimate the current state x(k).
As we can see, the problem (63), (64) has the same structure, as (52), (53) for the LLS

case, with parts dealing with (highlighted) noise estimations modified. This way we can
build a broad class of state estimators corresponding to different presuppositions about
system’s design and noises affecting it. The core computational primitive of this estimator
class would be quadratic cone programming solving, which allows us to use the readily-
available CVXOPT solver [14].

5. Computational experiments

5.1. Precision of the LLS estimator compared to its theoretical limit. Fig. 3 shows
results of computation experiments made using the same model systems as on previous
figures. During each experiment evolution of a system (7), (8) was simulated for 40 steps.
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Experiments with each model system started from the same corresponding initial state.
Independent noises δ(·) with independent elements were applied during simulation. After-
wards multiple estimations of the last state using the LLS method were done considering
different historic horizons. Then estimations were compared with system’s actual state.
There were 100 000 such experiments done for each model system.
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10−3
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Fig. 3

Violins on the plot show density of estimation precisions obtained during experiments
for corresponding horizon lengths on abscissa. In other words, horizon length 4 on abscissa
corresponds to estimations made using five measurements y(k − 4), . . ., y(k). Precisions
here were calculated as ∥xest.(k) − x(k)∥2. Minimum, maximum and mean of them are
marked on each violin.

Values of κLLS(s,k) ·
√

E∥δ(k, s)∥22 for corresponding systems and horizon lengths were
also plotted for comparison.

As we can see on Fig. 3, c, the error limiting inequality (14) can become rather conser-
vative for long horizons. At the same time, an estimator implementation when may fail to
make use of theoretically predicted precision improvement on longer horizons because of
errors originating from floating point computations, as we can see on Fig. 3, b. For com-
parison, mean norm of system’s actual state in experiments on Fig. 3, b is approximately
1.47 · 107, which explains the abnormal precision loss.

It is worth to note that while noises δ(·) used in experiments on Fig. 3 had normal dis-
tributions, usage of noises with continuous uniform distribution instead produced similar
results.

5.2. Comparison between modified and LLS estimators’ performance with sys-
tem having nosed state. Like in previous subsection, an ensemble of 100 000 experi-
ments was done. Each individual system evolved like in (54), (55) for 16 steps, had the
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same matrices and normally distributed transition noises ξ. For instance, eigenvalues of
their matrix Awas roughly 3.057,−0.374±1.130i,−0.600, 1.095 and singular values are
roughly 3.735, 3.166, 1.828, 0.636, 0.206; i. e. systems were unstable.

Fig. 4 depicts precisions of the final state estimation made with the modified estima-
tor from the Subsection 4.2 (left half-violins) and the LLS estimator (right half-violins).
Again, the ordinate has logarithmic scale. Minimum, maximum and mean precisions are
marked on violins. Also, mean final state norm of the whole ensemble is depicted as a
dash-dotted horizontal line.
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Fig. 4

There are two observations we can make from these results. The first one is that there
are indeed such systems with noised state transition for which the modified estimator gives
better performance. At the same time we must acknowledge that there are cases when the
two estimators have comparable precisions. We associate this with the fact that a system
in form (54), (55) can be represented as a system in form (7), (8) and vice versa, but noises
transformed this way will obviously have different statistical distribution. In particular, if
the system is unstable, like in experiments on Fig. 4, it would amplify past transition noises.
In addition, these noises in transformed form will no longer be independent. In some cases
it does not affect operation of the LLS estimator, in other ones it does significantly.

Another observation we can make is that the inconsistency between the presupposition
about system’s design used in the estimator and the system’s actual design affects the es-
timation precision for smaller historical horizon lengths and starts to affect it significantly
for longer horizons. It hints us about the source of the frequent rule of thumb to prefer
using shorter horizons in time series processing: inconsistencies between presuppositions
and reality are (often) less apparent on smaller amounts of data.

Conclusion

The classical GLLS estimator is convenient for estimating state of linear systems with
noised indirect measurements. We know how to calculate its absolute condition number
for different amounts of considered historic state measurements. Thus we can determine
if it is possible to get an estimation with meaningful precision for a particular system and
we can choose horizon length which will allow us to get the best results.

Even if it is impossible to get an estimation of the whole system’s state with required
precision, the regularized variant of the GLLS estimator allows us at least to estimate a
state’s projection on a subspace, which would have a better precision.

At the same time, it (once again) became apparent that each estimator’s design is
deeply tied to some hypothesis about target system’s construction. In particular, the GLLS
estimator’s design supposes that state measurement is the only point at which the target
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linear system is affected by noises. If, for example, the system’s state itself is affected at
each step, like in (54), (55), the precision of the GLLS estimator may be worse than of one
specifically tied to this kind of system. Such precision loss becomes more apparent with
horizon length growth. That is why we suggest the following rule of thumb: if estimator’s
precision worsens too dramatically with increasing amount of source data, it is worth to
check other hypotheses about system’s design.

Changing considered system design would require development of a new estimator
specific to it. Representing the classic GLLS estimator as a quadratic cone programming
problem gives us various opportunities to tweak it for this purpose. We developed an esti-
mator tied to system’s design represented as (54), (55) as an example of such modification.
In practice, a particular considered linear system design should originate from a certain
real-world problem, and the purpose of this example is to propose a method of developing
specific estimators for non-standard cases. Of course, every new estimator created this
way would need a separate research regarding its precision and condition number.
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Керування системою, стан якої не є спостережним безпосередньо, є розпо-
всюдженою задачею. Натомість наявні непрямі, неповні і зашумлені вимі-
рювання стану. У таких випадках фільтр Калмана є загальноприйнятим і кла-
сичним підходом до оцінки стану лінійних систем по непрямим вимірюван-
ням. Він рекурсивний і тому опосередковано приймає до уваги усю історію
вимірювань. Ми досліджуємо альтернативний підхід: оцінку, виходячи з ви-
мірювань на обмеженому історичному горизонті. У статті спершу обгово-
рюється використання узагальненого методу найменших квадратів (УМНК)
щодо цієї задачі, а також умови, при яких доцільно використовувати цей ме-
тод. Для випадків, коли він не підходить, пропонуємо спосіб представлення
оцінювача за УМНК як задачі квадратичного програмування на конусі, що
дає можливість створювати його модифікації, підлаштовані під різноманітні
нестандартні конструкції лінійних систем. У статті також досліджено різні
властивості і поведінку оцінювача, побудованого за УМНК та модифікаціями
цього методу. Зокрема, цілком очікуваним є те, що оцінювачі демонструють
різну точність при різній кількості використаних вимірювань. Тому було до-
сліджено застосування абсолютного числа обумовленості оцінювача на базі
УМНК до вибору оптимальної довжини горизонту. Було продемонстровано,
як абсолютне число обумовленості, будучи жорстким обмеженням точності
оцінювання, також обмежує і математичне сподівання норми помилки. Вибір
найкращої довжини горизонту було описано з обох цих точок зору. Для ситу-
ацій, коли найкраща можлива точність оцінювання все ще не є достатньою,
запропоновано метод регуляризації. Досліджено його переваги та недоліки,
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а також те, як робити поінформований вибір стосовно ступеня регуляризації.
Теоретичні результати перевірено шляхом обчислювальних експериментів.

Ключові слова: лінійна система, оцінка стану, обмежений історичний гори-
зонт вимірювань, метод найменших квадратів, квадратичне програмування
на конусі.
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