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The subject of this paper is peculiarities of model predictive control (MPC) appli-
cation in linear discrete-time system stablization. While stabilization in linear sys-
tems is already a well-studied problem in control theory, the MPC approach gives
opportunity to produce faster stabilization trajectories at cost of higher amount
of computations required. Significant progress in capabilities of computers since
emergence of the control theory makes the MPC approach feasible in modern
times. The MPC approach gives an opportunity to achieve significantly better
results, but its application requires great care. It is due to many unobvious and
undesirable effects it leads to if used incorrectly. These effects are discussed, ex-
plained and demonstrated one by one on examples in this paper. Analysis of their
causes reveals requirements for MPC-based stabilizing control algorithm which
allow resulting controller to operate reliably. It also appears that in most cases an
optimal stabilization trajectory is not unique, i.e. it is possible to choose between
optimal trajectories to improve some kind of secondary objective. In addition, as
an example which is valuable by itself, stabilization in linear cognitive maps is
discussed separately. Being an example of discrete-time linear system, linear cog-
nitive maps are susceptible of application of the same control strategies and algo-
rithms to their impulses. But if nature of linear cognitive map is disregarded, their
state starts to wander under pressure of external random perturbation (i.e. noise)
even though stabilizing controller mitigates their influence on cognitive map’s im-
pulses. Ability of the MPC approach to consider secondary objectives allowed to
mitigate this effect at least partially. In particular, it is achieved here by seeking
a particular objective cognitive map state as a secondary objective in search for a
stabilization trajectory. It is also demonstrated here, that only a certain hyperplane
in cognitive map’s state-space is reachable under assumption, that its impulse is
zero at the end of trajectory.

Keywords: model predictive control (MPC), linear system, cognitive map, linear
cognitive map, stabilization, aimed stabilization, optimization, quadratic cone pro-
gramming.

Introduction

Linear discrete-time systems are ubiquitous in modern engineering. This general math-
ematical model appeared to be an adequate formal representation for wide range of systems
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appearing (or being constructed) in real world. At the same time, this model is useful for
integration with various digital controllers. In fact, it first appeared as a discretization of
continuous-time linear systems, which became necessary when analog-to-digital conver-
ters (ADC) started being used for their integration with digital controllers [[I], p. 479-480].

Consequentially, methods and approaches of the control theory used in designing con-
trollers for classic linear continuous-time systems were adapted for discrete-time sys-
tems. Even the core mathematical technique for continuous-time linear systems — the
s-transform — was adapted, which gave birth to the z-transform intended for discrete-time
linear systems.

For that time it was an adequate solution. Back then CPUs (central processor units,
i.e. processors) used in digital controllers had extremely low computing speed, amount of
memory and so on from today’s point of view. The linear quadratic regulator and similar
algorithms originating from the control theory were easy to implement with that day’s
scarce computational resources.

Today, when even commodity CPUs have exorbitant computation power, there is much
more room for improvement. Modern controllers can run significantly more sophisticated
algorithms in order to not only stabilize a system, but to do it in the shortest possible time.

The MPC approach, which is widely discussed in [2], gives an opportunity to design a
better stabilization algorithm befitting powerfulness of modern computers. The core idea
of MPC is that if system’s behaviour is known and predictable, then it is possible to rank
all achievable outcomes with some kind of objective function. Therefore, it is possible to
synthesize control sequence corresponding to the best outcome by solving some kind of
optimization problem.

This article brings altogether previous research made in [3—(] regarding linear discrete-
time system stabilization with MPC approach. Family of control synthesis algorithms pre-
viously developed in these articles have promising properties, but they also show some
peculiar quirks when applied in practice. The goal of this article is to demonstrate these
quirks and to suggest how to construct an effective controller operating in a feedback loop
using these algorithms.

In addition, an application of the proposed controller design to stabilization in impulse
cognitive maps was explored. This example is valuable on its own. Cognitive maps in gen-
eral (i.e. in various different formalizations) are widely used as a formalization for various
convoluted and complex systems. This particular variant of cognitive maps considered in
section P was first proposed in [7]. It combines concepts of cognitive maps and linear
systems, brining together versatility of the former and well-known control algorithms de-
veloped for the latter. Thus, since then, impulse cognitive maps became a separate field
of research.

State vector of a cognitive map represents state of a system modelled in this way. It
would be natural to define bringing it to a desired value as an objective of its control. But
this objective partially contradicts another one, which is mandatory to keep the system
operational: extinguishing state impulses. Because of this contradiction aimed stabiliza-
tion was not even considered. The MPC approach allows to combine multiple partially
contradicting objectives in order of their importance in a single controller. It allowed to
develop an effective and safe way of aimed stabilization as a by-product of this research.

1. Stabilizing a linear system
1.1. Problem statement. Let there be a discrete-time linear system
Xi+1 = Ax; + Buy, k€ Z (1)

and constraints on its controls
Umin < U < Umax, kK € Z, 2
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were xg, x;+1 € R are consecutive system’s states, u; € R" is an applied control signal
and vy, Umax € R’ are vectors of minimum and maximum values for scalar components
of control signal. For such systems it is a common task to stabilize them, i.e. to bring their
state vector x eventually to zero (and keep it there in case of external disturbance). This
section is dedicated to solving this rather old problem with MPC approach.

1.2. Common notes about computational experiments. There are some common
things throughout the article which should be made clear beforehand in order to avoid
repetition. The material below is explained with results of computational experiments
performed with two system models a and b. They both have 5-dimensional states x and
2-dimensional controls u. Their matrices and initial states are the following:

1.1

1.1-sin(1.07) —1.1 - cos(1.07)
A, = 1.1-cos(1.07) 1.1-sin(1.07)

0.8 - sin(0.57) —0.8 - cos(0.57)
0.8 - cos(0.57) 0.8 -sin(0.57)

2.06 0.69 —-0.87 —-237 —0.12
—-1.05 —0.58 1.24 2.76 1.02
Ap = 6.05 377 —4.15 —-8.03 -3.75 |,
—-141 -0.51 1.1 2.04 0.93
-3.86 —1.76 2.98 6.27 1.91

086 0.3l 0.09
—0.56 —031 —0.4
Ba=B,=| 08 016 |, xou=x05=| 069 |,
0.04  0.79 —0.83
—~0.57 047 —0.89

1.20 0.34
Umax a = —Umin a = 1.20) Umax b = “Umin b = 034 )

Eigenvalues of 4j, are roughly —0.139 + 1.102i, —0.454, 1.005 + 0.024i. Both these sys-
tems are unstable, i.e. those with max;|A;(4)| > 1, where A;j(4),i € {1,...,n} are eigen-
values of 4 in ([l}), are used here as examples in computational experiments. This choice
was made due to the fact that stable systems are asymptotically stabilizing by themselves
even without any controls (or, in other words, even when Vk € Z u;, = 0).

All figures display how system’s state 2-norms (on the ordinate) change with time (on
the abscissa). For the sake of simplicity most experiments in this article will not include
such common complications as state estimation from indirect measurements, effects orig-
inating from possible noises in state measurements and inside system’s feedback loop. In
cases where they are it will be told explicitly.

1.3. Basic trajectory choosing problem. The MPC approach suggests that informa-
tion about a model of a system and its current state implicitly describes a set of possible
future states for every future point of time, as well as corresponding control sequences.
Thus, it is possible to just choose a desired future state from this set and get its control
sequence as a by-product.

If the objective is linear system’s stabilization, intuition suggests that the most desired
future state is the closest one to 0. Together with constraints on control signal, it naturally
defines an optimization problem

minimize [Py Oops g, - - Uprs—1))]2 G)

considering  upin <X Upy; < Umax, I € {0,...,5 — 1},
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where x4 (X, U, - - ., Upys—1) 18 a future state predicted from known current state x; and
variable future controls uy, . . ., uj4 ;1. Therefore, its solution gives (one of) the best pos-
sible control sequences.

While controls generated this way are the best ones from the formal point of view,
their application in practice in feedback loop requires carefulness and being backed up
by a somewhat sophisticated decision-making algorithm because of properties discussed
further.

This optimization problem is an example of a quadratic cone program, which can be
solved, for example, using the CVXOPT solver [§]. It was used in all computational ex-
periments depicted in figures of this paper.

1.4. When prediction horizon is too long. If it is possible to stabilize the system
in s steps, then it is also possible to stabilize it in s + 1 steps. This obvious statement
has some consequences which should be made explicit. The only thing solutions of (B))
guarantee is that norm of state at the end of chosen future horizon will be minimal. This
strategy does not set any requirements on intermediate states. Thus, for example, if it is
possible to stabilize a system in 5 steps and we choose a horizon length 10, a solution
returned by a solver will almost certainly stabilize the system exactly in 10 steps, but not
in 5. Fig. [l @, b demonstrates this effect. It displays state 2-norms (on the ordinate) along
stabilization trajectories produced by (B) for different prediction horizon lengths and two
example systems a and b.

5 ] —

|

C

Fig. 1

1.5. Receding objective effect. The common system control workflow in algorithms
based on the mathematical apparatus of the control theory (e.g. in the well-known discrete-
time linear quadratic regulator) is to generate a single control signal and to apply it im-
mediately at each step. This is convenient because in real life state measurements are not
precise (and often are calculated from several previous indirect measurements), the state
transition equation ([ll) is also not precise by itself, and the process it describes is affected
by random noises. If control algorithm generates each next control signal value u con-
sidering current the most up-to-date information about system’s state, it is a significant
advantage.

At the same time, if we employ this straightforward approach while using the control
synthesis problem (), results would be less then perfect. If at each step only the first
control from the sequence generated by (B) is used and the prediction horizon s remains
the same, then the future point of time at which the control synthesis algorithm is asked
to stabilize the system will recede. Considering the previously discussed effect caused by
too-long prediction horizons, in this situation system stabilization would have asymptotic
nature even though it is possible to finish it in a finite time.

This effect can be seen in Fig. B, a, b. Like in the previous figure, the ordinate measures
state’s 2-norm. The bold line corresponds to system state’s trajectory when it is controlled

8 ISSN 2786-6491



as described above. Here and in all following figures dashed lines correspond to trajecto-
ries assumed by the control synthesis algorithm at each step.

<

15 20 25 30 35 40

Fig.2

1.6. Short horizon greediness. Reader may have noticed that demonstrations in Fig.
start with certain horizon length and asymptotic stabilization algorithm on Fig. Bl employs
the same minimal horizon lengths. This is intentional. For system a and its initial state xq ,
it is required at least 5 steps to stabilize it completely, while system b with initial state xg
require 11 steps. When prediction horizon is too short, stabilization performance degrade
in completely different way, which requires separate discussion.

Let us see what may happen on an example. Fig. [, a, b shows the same stabilization
strategy as on Fig. B: at each step optimization problem (f) is solved for a fixed prediction
horizon and the first control from generated sequence is applied to the system. But this time
the chosen prediction horizon is too short: available control capacity is not enough to make
it possible to reach zero state within its duration. In particular, here prediction horizon
length for systems a and b are 3 and 4 correspondingly. In this situation the algorithm (B))
becomes greedy. The system starts to wander in the wrong direction until it reaches a state
at which the predefined horizon length becomes large enough for stabilization, as we can
see in examples on Fig. fl. After this point system stabilization is asymptotic in the same
way as discussed in section [[.§ and demonstrated in Fig. .

2
0
15 20
a
10
0 oo
0 5 10 15 20 25 30
b
Fig. 3

It is also not guaranteed that the system will reach this point of asymptotic conver-
gence. Under such greedy control the system’s state may wander indefinitely without
eventual stabilization (like on Fig. Hl, @) or even may grow infinitely (like on Fig. H, b),
even though stabilization was apriori possible. Fig. i, « and Fig. [, b show the same con-
trol strategy, like the previous one, but for prediction horizons 2 and 1 correspondingly.
Fig. [, b has logarithmic ordinate for clarity.
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Fig. 4

1.7. In search for an optimal prediction horizon. Considering findings from above,
it becomes apparent that this control strategy is not prefect when applied in feedback con-
trol loop and thus requires modification. A long prediction horizon gives more chances to
eventually stabilize the system. A short one sometimes makes it stabilizing faster, but gives
it more chances to not stabilize at all (even if it was apriori possible). Thus, to achieve the
best results it is required to chose the right horizon length which is not too big and not too
short for a particular considered initial state. But the whole point is that minimum number
of steps required for stabilization is not known beforehand.

If there is enough computing power, the best strategy is to try every horizon length
starting from 1 until there is a 0-state predicted at the end of the horizon. If it is expected
that real system’s trajectory for some reason diverges from the predicted one, we need
to repeat this search at each discrete point of time to generate next best trajectory and
corresponding next control signal.

An example of results obtained from this process can be seen in Fig. [, @, b. In or-
der to demonstrate trajectory adaptation a uniformly distributed noise was additively ap-
plied to system’s state at each step. In particular, it was random vectors Z/{[i%m 0.03] and
Z/{[X_"O.l, 0.1] for systems a and b correspondingly. These two examples on Fig. J demon-
strate fast stabilization at the beginning of experiments. Rest of their duration demonstrate
capability of this approach to keep the system stable despite random perturbations affect-
ing the system.

2 1
0 e b Ty oy gy
T
15 20 25 30
a
10
0 ] > 0—0—8—4=8=0=9 L S o
0 5 10 15 20 25 30
b
Fig. 5

Faster search strategies. Of course, the search process described above will not stop
if it is not possible to stabilize the system at all, thus there should be a maximum length
at which the algorithm will give up. It should be noted that computational complexity of
solving (B) increases with horizon length, so in practice this maximum prediction horizon
length is limited by capabilities of involved hardware. Also, this primitive search process
can potentially be further enhanced with some clever search strategy to make it faster and
thus to allow considering longer prediction horizons on the same hardware.
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When the trajectory synthesis is performed for the first time, it is reasonable to use
some modification of the binary search algorithm [9, section 6.2.1] instead of just trying
each length starting from one. Considering different computation time of solving (§) for
different prediction horizon lengths, it may be beneficial to have a custom specifically
tuned strategy for choosing next horizon length to check instead of just checking the mid-
dle one like in the classic binary search algorithm. This strategy may be based on some
game-theoretic representation of the search process and/or on some heuristic based on the
current state.

At the subsequent points of time it is reasonable to consider that current state did not
diverge too much from the last optimal trajectory computed due to some unknown noise
impact. Thus, current optimal horizon length is probably equal to the previous one reduced
by 1 or close to this value.

Precision tuning. Considering approximative nature of results returned by iterative
solvers and floating point computations in general, it becomes apparent that calculated
best end-state prediction for a given horizon will almost certainly be imprecise. In parti-
cular, computational results will almost certainly give a non-zero end-state even when the
solution of (B) is actually 0. Thus, we are forced to chose some constant ¢ and to consider
all such states x that ||x|| < € to be zero-states when searching for an optimal prediction
horizon length with one of the procedures described above.

This well-known fact turns into an important implementation detail, because if this €
is too small (in reference to precision of the iterative solver being used), the algorithm will
almost certainly miss the right horizon length and return a larger one. Thus, it is important
to tune the solver’s precision and ¢ used in the horizon search procedure.

Reusing previous optimization results. Another note should be taken about reusing
trajectories generated by solving (B)) at previous (discrete) points of time. In ideal situation
with precise model and absence of noises it is the right choice to generate the best trajectory
once and apply corresponding controls one after another. But, as it was already discussed,
it is a common situation that real trajectory diverges from predicted one for various reasons
and thus previously computed controls are no longer useful. At the same time recalculating
optimal trajectory (with corresponding optimal controls) at each step from scratch even
though real trajectory diverged not so much seems to be wasteful.

Nevertheless, previous optimization results can be used to speed-up subsequent com-
putations. The remaining part of previously computed control sequence can be used as
an initial point for an iterative solver (such as the interior-point one implemented in the
CVXOPT library [8]), as well as some other its internal variables.

Similarly, optimization results for one horizon length can be reused as a first approxi-
mation when solving (B)) for another, which can boost computation speed.

1.8. Fixed state-space. Algorithm’s behaviour when optimization horizon is too short
demonstrated in section [I.§ suggests, that state’s norm is not a completely valid represen-
tation of work amount yet to be done in order to stabilize the system. Due to this the opti-
mization problem (B) choses wrong intermediate objective states at the end of prediction
horizon in this case.

As it was mentioned above, available computation resources may be extremely limited
in some situations, which can prevent us from simply increasing the prediction horizon
due to growing computation complexity of solving (B). In this case we are forced to use
another approach: to alter the objective function of problem (B) in some way while keeping
prediction horizon short.

One possible way to do it is to transform system’s state-space in a way that would
represent amount of stabilization work required for a state more explicitly. It is discussed
in detail in [6]. In short, it suggests to use state-space transformation '’ = P~ lx and
minimize a weighted norm of predicted transformed future state. P is proposed to be such
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that A = PJP~! where J is a real Jordan decomposition of A. Without loss of generality
(and for more comprehensible weight choices), let us assume that 2-norm of each column
of P is equal to 1.

The optimization problem (f) thus transforms into

minimize HTP_lxk-‘rs(xka Uy -+ ”k+s—l))‘|2 )
considering  upin <X Uy < Umax, I € {0,...,5 — 1},
where T is a diagonal matrix of (possibly hyperreal) weight coefficients.

This linear state-space transformation allows to decompose the system into multiple
subsystems corresponding to different real Jordan blocks in J and thus having feedback
loop independent from each other. It allows to explicitly assign weight coefficients accord-
ing to optimization priority of each of these subsystems. While this approach can help, it
always requires some experimentation regarding coefficients of Y.

Fig. i, a, b demonstrates examples of short-horizon stabilization with fixed state-space
(black line). Trajectories from Fig. f are duplicated here for comparison (grey line). Predic-
tion horizon limits are the same as on Fig. f|: 2 and 1 for systems @ and b correspondingly.

5 1 S W i L a0a000R00000000044,,,, ,00$0000000000000000,009
4 < '\ .\...,‘
] .l"w ™ ARRRAARRRRIANE A
O AAAAAA
0 10 20 30 40 50 60 70
a
RNy
0 | [ $9-9-9090-90-00-00-5-0-000-0
0 10 20 30 40 50
b
Fig. 6

Take note, that A4, is already in real Jordan normal form. Thus, on Fig. E, a we also
see a comparison of resulting trajectories obtained with different coefficients of Y: when
it is an identity matrix and when Y = diag[2.49,2.49,2.49,0.32,0.32] (considering that
P, is an identity matrix). As we can see, this choice of custom T helped to stabilize the
system a event with this short horizon length.

Fig. [, b demonstrates, that fixed state-space with right weight coefficients allows to
stabilize the system even if the controller was originally not capable of this. Here T is an
identity matrix.

This approach is also useful in less dramatic cases. Fixed state-space with good weights
can also improve stabilization speed with short prediction horizon in cases, when con-
troller is capable to stabilize the system even without this trick.

For some specific suggestions about how to choose coefficients see [0, Section 5]. In
particular, it is advisable to choose the same coefficients of T corresponding to the same
rotation real Jordan block in the decomposition. Exotic cases with 4 having generalized
eigenvectors require usage of hyperreal-valued coefficients in T for best results. More
specifically, it is required that if there is a sequence of generalized eigenvectors vy, .. ., vy
such that (4 — )vi = 0and (4 — I)v;;1 = v; fori = {1,...,p — 1}, then corresponding
weight coefficients vy, ..., v, should be such that U"UJZT L would be positive infinitesimal
hyperreal numbers, i.e. such that Va > 0,a € R 0 < U’U—f' < a. For instance, it can
be done like this: v; = r;d"~!. Here and further d is a positive infinitesimal hyperreal,
i.e. such hyperreal number that Va > 0,a € R 0 < d < a. For complex generalized
eigenvectors a combination of these two advises should be used.
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1.9. Hyperreal-valued optimization problem decomposition. The section ca-
sually suggested to formulate a convex optimization problem with hyperreal-valued ob-
jective function in some cases. Now it is important to describe how can it be solved in
practice.

More detailed description of the hyperreal line can be found in [[10—13]. Proof of so-
lution existence can be found in [0, section 6]. General way of decomposition in such
problems is described and proven in [, section 7].

For our purposes here what is important is that an optimization problem with hyperreal-
valued objective function and real-valued parameters

—1
minimize d'fi(x)
; )

considering x € C C R,

where d is an infinitesimal and f; are convex real-valued functions, can be decomposed
into a sequence of real-valued optimization problems as follows.
Let there be a convex optimization problem JF( defined as

minimize  fy(x)
considering x € C C R,

whose solution is x( and a recursive sequence of problems JF; defined for / € {I,...
..p—1}as
minimize  f;(x)

considering x € C C R,

filx) = fi(x;) fori € {0,.... ] — 1},
whose solution is x;. Then the solution X, of problem F,,_ is the solution of ®).

1.10. Secondary objectives and cascade optimization. There is a fact about solu-
tions of problems (B) and () which was ignored until this point: their solutions are almost
certainly not unique if dim(u) - s > dim(x). This gives us an opportunity to improve some
additional objectives of secondary importance.

For example, if the system experiences some kind of increased deterioration when
scalar elements of applied control vectors u reach their corresponding limits in uy,;, or
Umax, We can choose minimization of control signals as our second objective. This way
(B) transforms into

k+s—1
minimize s G s - tps— )2 +d > Juill2
i=k
considering  upmin < Upy; < Umax, 1 € {1,...,5 —1}.

Alternatively, if there is a high probability of some kind of crash when state’s norm in
the original state-space at some point of time is large, we can choose a more mild trajec-
tory with

C .. -1
minimize || YPT Xy g (¥, Uy -+ s s ))|l2 +d -

considering  umin < Upy;i < Umax, ie{l,...,s—1}, (6)

Xt p Ok e - - s p— )2 S v, p €L, s — 1},
where « is an auxiliary optimization parameter.
This pattern of composite optimization problem construction can be used to implement
a broad variety of additional rankings among already applicable stabilization trajectories.
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But it should be taken with care: an ill-chosen secondary objective in combination with
the same prediction horizon used at each step (like in experiment on Fig. P) can produce a
situation when controller prevents the system from blowing up, but never actually stabilize
it. Nevertheless, it is not possible when the horizon search strategy discussed in section
is employed.
2. Controlling a cognitive map

Let us assume a more sophisticated example of linear system: an impulse cognitive

map which consists of n vertices. Current state of the impulse cognitive map is represented

by a real-valued n-dimensional vector x which evolves in discrete time according to the
following equations:

Axpy1 = AAx; + Buy, ke Z, (7)
Axy = xp — X1, keZ, ®)
Umin =< U < Umax, keZ, 9)

where Axy, Axy, are n-dimensional consecutive impulses of the cognitive map at con-
secutive points of time, x;_; and x; are n-dimensional consecutive states, i, is an external
control vector, 4 and B are n X n and n X r matrices. The task is the same as with ordi-
nary linear system discussed above: to stabilize the cognitive map, i.e. to bring Ax to (the
neighbourhood of) zero in finite time.

2.1. Wandering stability. If the only objective is to prevent the system from blow-
ing up, it is enough to stabilize impulses Ax in the same way as it was previously done
with (D), ().

On Fig. [1, a, b we can see how ||x||» changes in time when Ax is additively affected by
a uniformly distributed noise (U[X_’6_037 0.03] and Z/I[X_’})_] 0.1] for systems a and b correspon-
dingly) and stabilized employing the horizon searching algorithm described in section [[.7.
By the way, Fig. [ displays || Ax]||, at the beginning of the same pair of experiments.

5 : i Lot N e
4 J - N —A
0 4
0 20 40 60 80 100 120 140
a
0
0 20 40 60 80 100 120 140
b
Fig. 7

As we can see, after initial stabilization behaviour of controlled cognitive map resem-
bles the Wiener process a lot. It thus arises a question of whether it is possible to prevent
such state wandering and to what degree.

2.2. Reachable stable states of a cognitive map. If the objective is to stabilize both
the impulse Ax and the state x, it is natural to consider compound state (AxT, (x —X,im) )T,
where x,;, is the objective state. Without loss of generality, x,;,;, will be further considered
to be equal to 0.

From this point of view, equations (), (8) can be rewritten as

Axpyg (A 0 Axy, B
( Xk+1><1 1)( w) " \B) (1
Acogn, BCOgn.
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This representation brings hope that maybe it is possible to stabilize a cognitive map while
bringing it to a predefined state. Let us explore when and to what degree is it possible.
Lemma 1. Forall k € NIm (A’HB |-+ | B) = Im (4"=1B |-~ | B).
Proof. Letpy(\) = N'+3 7" 0,7\’ be the characteristic polynomial of 4. Then, from
the Cayley—Hamilton theorem, p4(4) = 0 or 4" = — Zl 0 I ¢4 With this fact we can
write that forall £ > 0

(Ak-‘rnB‘Ak-‘rn—lB‘...‘B):(_ 1L AR | AR1g || ):
_Cn.—llri‘»
_ (qktn—1g] ... —col,
= (4=1g || B) % ’
0 s
and this way Im (4" !B |-+ | B) = --- = Im (4¥*"~'B | --- | B). O
Lemma 2. ForallkENIm(Zf.;oA"B‘-~-‘B)zlm(AkB‘--.‘B)
Proof.
I
1|1,
(Z{(:()AIB“B) Z(AkB“B
L
1 |1,

O

Theorem 1 (Necessary conditions for cognitive map controllability). Iflinear system

(L0) is controllable (considering controls u to be unbounded), then linear system () is
also controllable and rank B = n.

Proof. 1t is a well-known fact that a discrete-time linear system with unconstrained

controls is controllable iff its controllability matrix has full rank. For system ([L0)) it can be

decomposed as follows:
48| - | B
: ‘Bcogn) = ZZn ]A’B‘ ‘ B =
(L 0\ Alp | |aB B
B (_In In) Y4B || B0 )
5 0\, S4B || 4o B
B (_In In> ( 0 In> Zzn 2AlB ‘ ........ ‘ B ‘ 0 -

L O\ =L, AN (L, L\ B|---|B|o|B
<_In In) (0 In> <0 In> Z2n 2A’B‘ ....... ‘B‘O :

where 7, is n X n identity matrix. It shows explicitly, that

2n—1
(Acggn Bcogn.

Thus, it becomes obvious that

rank( cognchogn ‘ . ‘ Bcogn) < rank B + rank (22” 2 4B ‘ ‘ B).
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From previous lemmas we can see that

rank (ZZ” 24'B ‘ ‘ B) =rank (4*" 2B |-+ | B
and
rank (42""2B | -+ | B) =rank (4""'B |-+ | B).

Finally, rank( cogn. BCogn ‘ ‘ Bcogn,) < rank B+ rank (A”_IB ‘ ‘ B)and if
linear system ([L0) is controllable, then rank (A%gg_rchogn, ‘ e ‘ Bcogn,) = 2n, while
rank B < n and rank (A”_lB ‘ e ‘ B) < n. From all of this we make a conclusion that
rank B = rank (A”_lB ‘ e ‘ B) =n. O

From this theorem we can see that in general case a cognitive map’s state and impulse
together are not necessarily controllable. And even worse, having rank B = n is a ne-
cessary condition for this joint controllability. It implies that it is required for the control
vector u to be at least n-dimensional, which is hard to achieve in practice.

Knowing that not all stable states are reachable normally, it becomes important to
know, which stable states still can be reached.

Theorem 2 (Reachable stable states of cognitive map with fully controllable impulses).
Ifthe impulse linear system (1) (disregarding control constraints) is fully controllable, then
the set of reachable stable states of the cognitive map (@), ) with unconstrained controls
is a hyperplane described with predicate Roo(x) = Jv € R" : (I, — A)x = AAx; + (I, —
— A)x; + Bv.

Proof. From ([1), (8) the formula for future state x;_; can be derived as follows:

Axpyi = A D+ (4B || B)f, . ul )T,
Xprs = X+ Z AxXpy; = X + ZA Axy + (ZS Y4B ‘ E ‘ B)(MIL - u,,Lrsil)T.
i=1

Thus, set of states reachable stable in s steps can be described with following predicate:

Rs(Xpqs) = Fugy -+ s thgys—1 €R™:

() = (e ) ()
Xiws)  \imi A In) | x

A7'B| ... | B
+ ( STas o Ts )(uz,--wuzﬂm)- an
=

Repeating matrix transformations from proof of the Necessary conditions for cognitive
Imap controllability] theorem, the equation in (L)) can be equivalently transformed by left-
multiplying it with invertible matrix

Ly L\(~lh A\{ I, 0\ (A4 I,—4 0
o n,)\o 5n)\-1, 1,) " \-1, 1, ) (12)

which gives as a result

Rs(ops) = | Futs -+ thys—1 €R™:

I, — A B A D — A (A |
L )T A\ssla o, X

Upys—1
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= (Eluk, coUprgn € R

, A
(1= (it ) (35

F (S8 || B)G )
Ax
/\<E|Mk+sl ER": (I — Axpys = (4 ‘ Iy — 4) ( x/;)+
s—3
—|—B<Z Ut + uk+sl)>>'
i=0

With substitution v = Zf;g Ujtj + Upys—1 it transforms into

Ro(Xpq5) = <3uk7 s Uprg—2 € R

1 Axy
Xf4s = (Z?:llAl ‘ [n)( xk>+
+ (S as || B)a. ”’1“2)T> '

A <3v ER Iy — Apys = (4 | In — A4) (%’;) +Bv>. (13)

If the impulse linear system ({7) is fully controllable, then (AS_ZB ‘ e ‘ B) has full

rank at least foralls > n+1. From lemma Q, (Z;;g A'B ‘ - ‘ B’) thus also has full rank
for the same values of s. This makes the first clause of ([L3) always true for all sufficiently
big s. Because of this, set of all eventually-reachable stable states can be described with
predicate
r Axy
Roox)=aveR :(In—A)x:(AIn—A)( x>+Bv. (14)
¢ O
Corollary. Ifthe impulse linear system (@) (disregarding control constraints) is fully
controllable, then the set of reachable stable states of the cognitive map (), (&) with un-
constrained controls is (rank B)-dimensional hyperplane.
Proof. If matrix (I, — A) is invertible (i.e. 4 does not have eigenvalues equal to 1),
then the set of reachable stable states is

Roo = (x4 Iy — A 'AAx + (I, — )" 'Bv|v e R}, (15)

which is obviously a (rank B)-dimensional hyperplane. The other case when 4 has / > 0
eigenvalues equal to 1 will be discussed further.

If matrix (I, — 4) is not invertible, then its image Im(/,, — A) is a linear subspace of R”
with dimensionality less than n. Let there be a singular value decomposition (I, — 4) =
= UDVT. Matrix (I,—A) is not invertible, so the diagonal matrix D from the decomposition
has less dimensions than . Then (I, — A)™ := VD~ UT is the Moore—Penrose inverse of
(I, — A).

Let there also be a matrix Up such that (U ‘ Ug) is an orthonormal n x n matrix. It
makes Ug an orthonormal basis of linear subspace (Im(/, —A)* orthogonal to Im(Z,, — A4).
Then, UE(I,, —A)=0and UEA = UE(I,, — Iy —A) = UE.
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This way ([[4) can be rewritten in the following way:
Ut ur
Roo(@) = (3\1 eR": (UT) Iy — A)x = <UT> ((In — Ayxy — ADxy, +Bv)> =
C C
=W eR": (U — A)x = UT (I — A)xy — ADx + Bv)) A
A (0 = UlAg + UEBV) -

—WeR: (VD—lUT Iy — A)yx = YD~ UT (I, — A)e—

IL—A)t IL—A)t
(=) (=) — AAx; + Bv) ) A
A (UEBV - —UEAxk) . (16)
The impulse linear system () is considered to be controllable. Thus, (A"’IB ‘ e ‘ B)
has full rank and because of that ((4"~! — 4" )B | ... | (4 — I,)B | B) has also full
rank. This means that
VX Juy, up 1 — Uy fA)(A”_zB ‘ ‘ B)ul + Buy = x*
from which follows
Vx*Juy, uy : (= ULy — A) (A"2B |-+ | B)uy + UiBuy = Ulx*) =
0

= Vx*3u, : (UEBuz = UEx*) = Vx**3Ju (UEBu =x*).

In other words, matrix UTB has rank equal to number of columns in Ug (i.e. to 1). This

means, that there are such matrices Py, P, (which can be straightforwardly calculated from

matrix UEB) that statement (U[T:Bv = —UEAxk) is equivalent to (3w € R~/ :v = Pyw+

+ P, UEAxk). Another subtle consequence of this fact is that rank B is required to be

higher than number of 1-eigenvalues of A for impulse linear system (f7) to be controllable.
This way, ([Ld) transforms into

Roo(x) = Iw e R (VVT X = VT~

Prime,—4)

— Iy — A" (4 + BPyUD Ay + (I — A)+BP1W) .

Let there also be such matrix /7 that (V ‘ VC) is an orthonormal n X n matrix. Then,
finally,

Reo(®) = Iwe R g c R (x = VWi — (I — A) (4 + BPUD Axi+

Uy = AYFBPyw o+ Vgg) (1)
or, if written in more common form,
Roo = {VVTx; — (I, — A)" (4 + BP, UDAx + (In — A)TBPyw + Vg
lweR L geRYy,  (18)

and it is obviously a -dimensional hyperplane. O
2.3. Aimed stabilization control synthesis in feedback loop. In total, cognitive map
control has two objectives: to suppress impulses Ax and to bring system’s state x as close
as possible to some arbitrary state xu;p, .
While it is not possible to actually reach an arbitrary stable state in general case, ability
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to reach projection of this arbitrary state is better than nothing. When the cognitive map is
affected by external noise it allows to reduce state wandering at least partially. Conside-
ring that external random noises normally have more degrees of freedom than the control
signal, they would change the closest reachable state at each step, so in this case it should
be recalculated at each time step before synthesizing controls.

Pursuing both of the aforementioned objectives at the same time by stabilizing linear
system ([[() may introduce an undesirable effect: it would make a controller chose inter-
mediate states x closer to x,;;, at cost of corresponding Ax being further from 0. When
Xaim € Roo it would make vector (AxT, xT)T indefinitely wander around (67 x;m)T with-
out actually stabilizing impulses (in the best case). It would also make prediction horizon
choosing algorithm discussed in section always choose the longest allowed one, be-
cause the objective can never be reached.

Even if objective is replaced with (6, (Prgr., X2im)T)T the controller would require to
consider larger prediction horizon than when stabilizing only Ax. The lack of prediction
horizon length may produce unacceptable results like in Fig. f.

Thus, in order to still produce adequate results on relatively limited prediction horizon,
moving cognitive map’s state to a predefined value should be made a secondary objective,
like discussed in section [[.10. This approach is better for limited prediction horizon and
will produce the same results when its length is enough for reaching both objectives at the
same time.

Also, for best results the prediction horizon search discussed in section should
be applied with following slight modification: is should search for the smallest predic-
tion horizon satisfying both primary objective ||Ax|| — 0 and the secondary objective
|lx — Prr__ Xaim|| — 0. It would produce longer prediction horizons than required just to
stabilize impulse subsystem (ff) in order to prevent a deadlock when impulse Ax is already
equal to 0 while the state x did not reach Prp__ x,in yet.

Having the set R represented in trivial form as a hyperplane like in (13) or (18)
allows to calculate trivially the closest reachable stable state as a projection Prp__ X,im by
solving a linear least square problem. In fact, knowledge of Prg__ Xain, is only required for
a stop-condition in the prediction horizon choosing algorithm. The problem || Axy |2 +
+ d||x+s — Prro, Xaim|l2 — 0 is equivalent to just | Axgysl2 + dlxgys — Xaimll2 — 0
under the same constraints on controls.

Fig. B, @, b demonstrate aimed stabilization strategy discussed above in case when
prediction horizon limit is enough for stabilization and impulses Ax are affected by uni-
formly distributed random noise at each step. Particular distributions are the same as used
for experiments depicted in Fig. f and fi: Z/{[X_’f)m’ 0.03] and Z/{[X_’f). 1,0.1] for systems a and
b correspondingly. Objective state x,j,, in both cases is chosen to be equal to 0.

5.0

2.5

=
M N

0.0

Fig. 8
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Continuation of fig. 8

A thick gray line depicts norm of Prp__ x,im. It can be seen that it changes slightly
at each step because of random perturbations. If compared with trajectories of state x in
Fig. [], with aimed stabilization they demonstrate much less wandering while being af-
fected by noises of the same magnitude. It is achieved at cost of less stability in impulse
domain: Ax in Fig. B demonstrate larger distances from 0 on average than in Fig. f. Also,
as expected, initial stabilization considering both objectives required longer prediction
horizon than in Fig. f, where only impulses Ax are stabilized.

Fig. fl, a, b demonstrates the situation when prediction horizon limit (5 and 11 for
systems a and b correspondingly) is enough for impulse stabilization, but is not enough
to reach Prp__ X,im. It can be seen that under such constraints controller requires only
slightly more time to reach it.

Fig. 9
Conclusion

Solutions of problem () produce best possible trajectories for corresponding predic-
tion horizon length s, but adequate results can only be obtained with right horizon length:
not too long and not too short. With too long prediction horizon controller becomes ”lazy”
and underperforms. When it is too short, it appears that state’s 2-norm in general is not
fully adequate representation for amount of “’stabilization work” yet to be done, and thus
generated trajectory may lead the system in wrong direction. That is why, in order to gen-
erate a good trajectory the controller must find the shortest horizon length which is enough
to be able to reach zero state at its end. This may be computationally hard, but there are a
few programming tricks which can significantly increase search speed if compared with
bruteforce search.

If the system is affected by random perturbations, it becomes important to update ge-
nerated trajectory at each step according to next measured state. A new optimal trajectory
may differ not only in corresponding values of generated control sequence, but also in its
length. It may appear that after perturbation it is required slightly more or slightly less
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steps for stabilization. Thus, horizon length search should also be repeated. The fact that
optimal horizon length normally changes only slightly is a significant help.

Cases when required prediction horizon length appears to be so big that there is not
enough computational power to solve corresponding optimization problem are hard ones.
If unattended, minimization of future state’s 2-norm would most certainly not choose an
appropriate intermediate state. For adequate results, it is required to transform the state-
space in a way what would make state’s 2-norm better represent amount of stabilization
efforts required. While Jordan decomposition of the system matrix 4 in ([l}) gives a valuable
hint for an engineer, it still requires their experience and intuition for choosing appropriate
weight coefficients.

The control approach described above can be used as-is for impulse stabilization in
cognitive maps if it is the only objective. If it is also important to reach certain cogni-
tive map’s state x,j,, and remain there indefinitely, things become complicated. It appears
that, counterintuitively, not all states can be reached with fully extinguished impulses at
the same time if vector of control signals has less dimensions than the system’s state.
Nevertheless, if cognitive map’s impulses are controllable, there exists a whole hyper-
plane of reachable stable states, which is defined by current state and impulse. Stabi-
lization around a projection of x,;,, onto this hyperplane can significantly decrease state
wandering, which is a notorious effect appearing when only impulses are stabilized for a
noised cognitive map.

M. J[. Miwenxo

IMPAKTUYHI ACITEKTU KEPYBAHHA

3A IIPOTHO3HOKO MOJIEJUTIO V JITHITHUX
CUCTEMAX TA KOT'HITUBHUX KAPTAX

Mimenko Muxaiijio IMmutpoBuy

HamionaneHuil TexHiYHUN yHiBepcHTeT YKpaiHu «KWIBCHKUI MONITEXHIYHUI 1HCTUTYT
imeHi Irops Cixopcbpkoro», HaBuanbHO-HayKOBUHM 1HCTHTYT MPHUKIAIHOTO CHCTEMHOTO
aHaJizy,

mdmisch@firemail.cc, mdmisch@protonmail.com

Y po6oTi po3nIsIHYTO 0COOINBOCTI 3aCTOCYBAHHS IiIXOy KEpPyBaHHS 3a IPOTHO-
3HO10 MomeTio (model predictive control — MPC) ayist cTabimizarii miHifHUX cH-
CTeM Yy JAUCKpETHOMY 4aci. Xoua cTabimizamis y JiHIHHIX CHCTeMax yxe Io0pe
JOCIiDKEHa B paMKax Teopii kepyBaHHs, OLTBII HOBUH IiJX1J KepyBaHHS 3a IIPoO-
THO3HOIO MOJISJUTIO JJO3BOJISIE OTPHMYBATH IIBHUIIII TpaeKTopii cTadimizawii, ane
mpu OUTBLIIHA KiTBKOCTI HEOOXiTHMX OOYHCIEHB. 3aBISKH CYTTEBOMY IPOTPECO-
Bi B O0YHCITIOBAJIBHIH OTYKHOCTI KOMIT IOTEpIiB 3 YaciB MOSBH TeOpii KepyBaHHS,
3’sIBUJIACS MPaKTHYHA MOKJIMBICTh peaisallii KepyBaHHs 3a IPOTHO3HOK MOJIEI-
mo. Llelt miaxin qo3BoMsSE TOCATTH 3HAYHO KPAIINX Pe3yibTaTiB, IPOTe HOro 3a-
CTOCYBaHHS HOTpeOye 3HAYHOI yBary, aJpke HOro HEKOPEKTHE BUKOPUCTaHHS IIPH-
3BOIUTH 10 O€371iui HEOUEeBUAHUX 1 HeOakaHUX e(eKTiB. Y maHiif CTaTTi moYepro-
BO OOTOBOPEHO, MOSCHEHO 1 Ha MPUKIJIAAAX IMPOAEMOHCTPOBAHO Il eeKTu. AHa-
J1i3 IXHIX IPUYMH T03BOJIMB BUSBUTH BUMOTH JI0 TAKOTO aJlTOPUTMY KepyBaHHS 3a
IPOTHO3HOIO MOZICIUIIO, BUKOHAHHS SIKMX 3a0e3MeunTh HaJiiiHe (QyHKIIOHYBaHHS
KoHTpojepa. Takox 3’scyBanocs, Mo 34eOUTBIIOT0 ONTHMaNbHA cTadlmi3zariifHa
TPAEKTOPIsl HE € YHIKAIBHOI, TOOTO MOXIIBO OOMPATH MiXK ONTHMAaIEHUMH Tpa-
€KTOPISIMH 3apajiy OKPAICHHS SKOTOCh IPyTOPsITHOTO Moka3HuKa. Ha nomauy, sik
MIPUKJIAJ, SKUH € HiIHHUM caM 110 co0i, OKpeMO pO3IIHYTO CTabimizalito y JiHik-
HHUX KOTHITMBHHX Kaprax. byayum mpuxiiazaMu mTiHIHUX CHCTEM Yy JUCKPETHO-
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MY 4aci, JIiHI{HI KOTHITUBHI KapTH JAOITYCKAIOTh 3aCTOCYBAaHHS LIONO IX IMITYJIBCIB
THX CaMHX CTpATeTill i aTOpUTMIB KepyBaHHs. AJle SKIIO OIMYCTUTH MPUPOLTY KO-
THITUBHHX KapT, iX CTaH NOYMHAE MIOCTYNOBO 3MIiHIOBATUCS B HelepenoauyBaHo-
My HaIrpsMKy MiJl THCKOM 30BHIIITHIX BUNAIKOBUX 30ypeHb (IIyMy) IOIPH Te, IO
CTaOLIi3yr0unii KOHTPOJIEp MPUAYNIYE X BIUIMB Ha IMITYIECH KOTHITUBHOI KapTH.
31aTHICTh MiAXOLY KepyBaHHS 3a IPOHO3HOK MOJICIUIIO BPAXOBYBATH JIPYTOPSIHI
LTI O3BOJIMJIA YCYHYTH 1IeH eeKT MpHHANMHI 9YacTKOBO. Y JaHil CTaTTi TaKoo
JIPYTOPSIHOIO LIIJLTIO IIPH TIOLIYKY CTabimi3aiiHo1 TpaekTopii Oyino oopaHo qocs-
THEHHS KOTHITHBHOIO KapTOIO JIESKOT0 LIJIbOBOTO CTaHy. TakoX NPOJeMOHCTPOBa-
HO, 1110 3 YCHOT'O IIPOCTOPY CTaHIB KOTHITHMBHOI KapTH JIMILE esiKa TiHepIuIoNnHa
Y Hilf € JOCSHKHOIO, SKIIIO BUXOAUTH 3 IPUITYIIEHHSI, IO i1 iIMITYJIbC pIBHATHMETHCS
HYJIIO y KiHIIi TPAEKTOPIi.

KuiouoBi ciioBa: xepyBaHHS 3a POTHO3HOIO MOJIEIUTIO, JIiHiIfHA CHCTEMa, KOTHi-
THBHA KapTa, JIiHilfHa KOTHITUBHA KapTa, CTabLmi3alis, IijJecnpsiMoBaHa cTadii-
3allis, ONTHMIi3allisl, KBaIpaTHYHE NPOrpaMyBaHHs Ha KOHYCI.
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