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The problems of estimation and optimization of an object pursuing several goals
are considered. In the estimation problem, the evaluation function is calculated
with known parameters that determine the state of the object. In the optimization
problem, there are optimization arguments that deliver the extremum of the ob-
jective function. Both the evaluation and objective functions are built on the ba-
sis of the concept of a nonlinear trade-off scheme, for which the principle «away
from restrictions» is fulfilled. Both tasks are solved in a formalized manner,
without the direct participation of the decision maker (DM). Model examples are
given. The object O is considered, the state of which is determined by the

set of values x, X,,..., X,, that make up the vector x ={x;}i.; € X. The object
pursues several goals, the degree of achievement of each of them is expressed
by the corresponding criterion y, (x), k €[4, ... s]. The criteria form a vector
y ={yx (\)}—1 € M. Restrictions are imposed on the criteria y, i, (X) <
<Y (X) £ Yiemax (X). The problem of estimating the quality of the functio-
ning of an object O is to determine the value of a certain function Y[y(x)] with
known parameters xg, Xo,..., X,. The function Y[y(x)] in this case is called the
evaluation function. The optimization problem is to determine the values
X4, Xo,..., Xp DY extremizing the function Y[y(x)]. In this case, the function
Y[y(x)] is the objective, and the parameters are called optimization arguments.
Both tasks require the function Y[y(x)]. In fact, this function is a scalar convo-
lution of the criteria vector y(x), which reflects the utility function of the deci-
sion maker (DM) in solving a specific estimation or optimization problem. Sca-
lar convolution is an act of composing criteria. The criterion y, (x) is a measure

of the quality of the object O functioning in relation to the achievement of the
k-th goal. If «more» means «better», then such a criterion should be maximized
to improve the quality. Otherwise, the criterion is minimized. For definiteness,
we consider the optimization problem under minimized performance criteria.
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Optimization problem

The objective function Y[y(X)] links the quality criteria vector with the optimiza-

tion arguments. This function is a model of the decision maker’s utility function [1]
when solving a specific synthesis problem. With some reservations, the optimization
problem is formulated as finding such a combination of arguments from the domain of
their definition, in which the objective function acquires an extreme value. If, without
loss of generality, we assume that «better» means «less», then

x*=arg minY[y(x)].
xeX

In the concept of optimality, in addition to criteria, restrictions play an equally im-
portant role, both in terms of optimization arguments x € X and in terms of decision
efficiency criteria y € M. Even small changes can significantly affect the solution [2].

Moreover, the very concept of a decision-making situation is evaluated by a measure of
the dangerous approximation of individual criteria to their extremely permissible values
(restrictions). It is logical to consider the difference between the current value of the cri-
terion and its extremely allowable value as a measure of the intensity of the situation:

Pk () = Yicmax — Yk (X), Pk €10, Yemax ], kK €[L, .. 5],

where Ymax ={Yk max k1 s the vector of maximum admissible minimized criteria.
If some criterion y,(x), pe[L...s], dangerously approaches its limit y,may, that

is pp(X) — 0, then we call such a situation tense. In a tense situation, the DM pays

primary attention only to this, the most «unfavorabley criterion, trying to remove it from
the dangerous border. In this case, under criteria of one dimension, the optimization
problem is solved using the minimax (Chebyshev) model
x*=argminY [y(x)l; =argmin max Yy (X).
xeX xeX ke[l,...s]

In less tense situations, it is necessary to return to the simultaneous satisfaction of
other criteria, considering the contradictory unity of all the interests and goals of the
system. At the same time, the decision maker varies his assessment of gain according to
one criteria and loss according to others, depending on the situation.

At p(X) >L kell,...s], the situation is so calm that the criteria are small and

there is no threat of violation of the constraints. In a calm situation, the DM believes
that a unit of deterioration in any of the criteria is fully compensated by an equivalent
unit of improvement in any of the others. Here, the optimization problem is solved by
applying the integral optimality model

S
x*=arg minY[y(x)], =argmin >’ y, (X).
xeX xeX k=1

So, as a rule, the DM varies his choice from the integral optimality model in calm
situations to the minimax model in stressful situations. In intermediate cases, the DM
chooses compromise schemes that give different degrees of satisfaction of individual
criteria, in accordance with the given situation.

From the standpoint of a systematic approach, it is expedient to replace the prob-
lem of choosing a compromise scheme with an equivalent problem of synthesizing a
certain unified scalar convolution of criteria, which in various situations would automat-
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ically express adequate principles of optimality. Separate models of trade-off schemes
are combined into a single integral model, the structure of which is adapted to the situa-
tion of making a multicriteria decision.

Requirements for the synthesized function Y *[y(x)]:

— it must be smooth and differentiable;

— in tense situations, it should express the minimax principle Y[y(X)k;

— in calm conditions — the principle of integral optimality Y[y(x)]:;

— in intermediate cases should lead to Pareto-optimal solutions, giving different
measures of partial satisfaction of the criteria.

In order to express the desire «away from restrictions» in any situation, it is neces-
sary to explicitly include in the expression for the desired scalar convolution the charac-
teristic of the tension of the situation py (X) = Yicmax — Yk (X), k €[4,... s].

Several functions can be considered that satisfy the above requirements. The sim-
plest of them in the case of minimized criteria is the scalar convolution

Y *Ty(x)] = kz YicmaxLYikmax — Yic O™
=1

Thus, a nonlinear trade-off scheme (NTS) is proposed, which corresponds to the
vector optimization model, which explicitly depends on the characteristics of the inten-
sity of the situation:

s
X*=argmin " Yy max [ Yk max — Yk (X)]_l-
xeX k=1

It can be seen from this expression that if any of the criteria, for example y;(x),
starts to come close to its limit ;.. i-€. the situation becomes tense, then the corre-
Yimax
Yimax — Yi (X)
that the problem of minimizing the entire sum will be reduced to minimizing only the
given worst term, i.e., ultimately, the criterion y;(x). This is equivalent to the action of

sponding term Y; = in the sum being minimized will increase so much

the minimax model Y[y(x);.

If all the criteria are far from their limits, i.e. the situation is calm, then the model
Y *[y(x)] acts equivalent to the model of integral optimality Y[y(x)],. In intermediate
situations, various degrees of partial alignment of the criteria are obtained.

Note that the scalar convolution construction Y *[y(x)] allows solving the optimiza-
tion problem even in the case when the criteria have different dimensions. The solution of
a multicriteria optimization problem according to a nonlinear trade-off scheme is carried
out in a formalized manner, without the direct participation of the decision maker.

If «better» means «morex, then for the maximizing criteria, the scalar convolution
according to the nonlinear trade-off scheme has the form

Y *Ty(0)] = ki_l Yicmin LYk 00~ Vierin]

where Yy min are the minimum allowable values of the criteria to be maximized.
In this case, the optimization problem is solved as

s
x*=argmin >’ Yic min [Yic (X) = Yic min ]_1-
xeX k=1

Midcnapoonuil HayKoeo-mexHiuHull HcypHal
Ipobnemu xepysanns ma ingpopmamuxu, 2023, Ne 5 25



The analytical solution of the optimization problem is represented as a solution to
the system of equations

YN g kepn,...s]
%, , seeer S

If the analytical solution turns out to be difficult, then numerical methods or a
computer program for multicriteria optimization are used [3].

Example 1. Let us consider the problem of optimizing the distribution of a limited
volume P of water for irrigation of n fields. There are known lower limits for allocated
water resources for each of the fields: p; > pjpin. i €[ n]. It is pointless to allocate

less water, the plants will simply dry out. We assume that the upper constraints in our
problem are satisfied, so they are not considered here.

Considering the given set of restrictions, it is required to distribute the global water
resource between the fields in such a way that the most efficient operation of the entire
irrigation system as a whole is ensured.

We will solve this problem within the framework of the concept of a nonlinear
trade-off scheme. We represent the objective function in the form

Y *Iy(p)] =zl Biin (P — Pimin) -

where p={p;}L; is the vector of partial water resources allocated to individual fields,

n
peXp =[0,..., P]. Itis clear that > p; = P, where P is the global resource to be dis-
i=1
tributed.
The presented objective function is nothing more than an expression of the scalar

convolution of the vector of maximized criteria p ={pi}i”:1 according to the nonlinear
trade-off scheme (NTS) in the multi-objective optimization problem [3]. Indeed, in this
problem the resources pj,i€l[l,..., n], have a dual nature.

On the one hand, they can be considered as independent variables, optimization ar-
guments of objective function Y *[y(p)]. On the other hand, it is logical for each of the
fields to «strive» to maximize its partial water resource for irrigation, to move as far as
possible from a dangerous limitation p;., in order to increase the efficiency of its
functioning.

This gives grounds to consider resources p;,i<[l..., n], as criteria for the quality
of the functioning of the corresponding fields. These criteria are subject to maximiza-
tion, they are limited from below, nonnegative and contradictory (an increase in one re-
source is possible only at the expense of a decrease in others).

Based on the above, the problem of vector optimization of the distribution of lim-
ited resources, taking into account the isoperimetric constraint for the arguments

n
> p; =P, takes the form
i=1

n n
p*=arg min Y *[y(p)l=arg min ¥ pimin (P = Pimin) > 2 Pj = P.
peXp peXpi=1 i=1

This problem can be solved both analytically, using the method of indefinite Lagrange
multipliers, and numerically, if the analytical solution turns out to be difficult.
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The analytical solution provides for the construction of the Lagrange function in
the form

L(p. ) = f(p)+x(§ b —Pj,

i=
where L is the indefinite Lagrange multiplier, and the solution of the system of equations

L®A) e, n,

op;
oL(p,n) &
=3 pi-P=0.
oL gi Pi

Let’s go back to our example. For irrigation of two (n=2) fields, the farm has a wa-
ter reserve with a total volume of P =12 tons (conditional figures). The minimum irriga-
tion requirement for the first field (sunflower) is p; > py,in =2 tons, the second field
(cabbage) — p, = pomin =5 tons. These are the lower bounds for partial resources.

The task is set: to obtain a solution for a compromise-optimal distribution of water
between fields.

We solve the problem of vector optimization of the distribution of limited re-
sources analytically, using the NTS and the Lagrange method of indefinite multipliers.

Building the Lagrange function

L(p, A) = P1min (P1 — plmin)_1 + P2min (P2 — pZmin)_1 +A(py+ P2 —P).

We get a system of equations

oL(p, A _

%z_plmin(pl_plmin) 24‘7\:0:

oL(p, A _

%:_pzmin(pZ_pZmin) 210=0,.
P2

p+p,-P=0.
Substituting numeric data
~2(p-2) 2 +1=0,

~5(p, —5) 2 +1 =0,
p+p,-12=0
and solving this system by the Gauss method (successive elimination of variables), we obtain

pf = 3,94 tons, p; =8,06 tons.

In more complex cases, numerical methods or a computer program for multi-
objective optimization are used [3].

Assessment problem
Unlike optimization problems, multicriteria estimation belongs to the class of anal-
ysis problems. Here, the convolution Y[y(x)] is not an objective, but an evaluation

function, and its value quantitatively expresses a measure of the quality of a multicrite-
ria object for given values of the x arguments.
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In the multicriteria evaluation of objects, it often becomes necessary to obtain not
only an analytical, but also a qualitative assessment. To do this, the scalar convolution
expression Y[y(x)] should be normalized and the resulting value Y, correlated with the

qualitative gradations of some normalized scale.
To determine Y, we use the expression for the normalized scalar convolution of

the minimized criteria, obtained in [3], which in the case of the same weight coefficients
(or their absence) has the form:

Yo=1-—>
Y[y(x)]
where s is the number of criteria.

Table
Quality category Intervals of the reversed normalized rating scale Y,
Unacceptable 1,0-0,7
Low 0,7-05
Satisfactory 05-04
Good 04-0,2
High 0,2-0,0

Harrington’s verbal-numerical scale [4, 5] for minimized criteria is presented in
Table. It shows the relationship between the qualitative gradations of the properties of
objects and the corresponding normalized quantitative estimates Y.

A qualitative (linguistic) assessment of an object is obtained by comparing the ana-
Iytical assessment Y, with Harrington’s verbal-numerical scale. This scale is a charac-

teristic of the severity of the criterion property and has a universal character. The nu-
merical values of the gradations are obtained on the basis of the analysis and processing
of a large array of statistical data.

It can be said that in terms of the theory of fuzzy sets, the verbal-numerical scale
acts as a universal membership function for the transition from a number to the corre-
sponding qualitative gradation and vice versa. A transition is made from a linguistic
variable (average, high score, etc.) to the corresponding quantitative scores on a scale of
points, i.e. transition from fuzzy qualitative gradations to numbers and vice versa.

Evaluation of objects according to a unified verbal-numeric Harrington scale
makes it possible to solve multicriteria tasks, in addition to traditional formulations, and
in the case when it is required to choose an alternative from a variety of heterogeneous
alternatives for which it is impossible to formulate a single set of quantitative evaluation
criteria, as well as for evaluating a single (unique) alternative.

Example 2. Let us consider the problem of assessing the quality of the glide path
process by several criteria when landing an aircraft. During the time t <[0,...,T], the

aircraft descends along the glide path. At time t=T, the aircraft touches the runway
(RW) at a point located at a distance AIT from the calculated point.
To assess the quality of the landing of the aircraft, we will use two terminal (at

t=T) quality criteria, namely y1 and y2, as well as one integral criterion y3:
y1 = |Akr| < lipin — module of deviation from the calculated point of contact in the

longitudinal plane;
Yo =V <Vyin — Vvertical speed at the terminal point;

T
Y3 =%j’|Ah|(t)dt <Ahyi, — the average deviation from the glide path in the

0

vertical plane.
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The following values of restrictions by criteria are set (conditional numbers):
Iin = 15 M; Vigin = 1 M/seC; Ahpi, =30 m.

Next, using the nonlinear trade-off scheme, we will evaluate the quality of the
aircraft landing with the numerical values of the criteria obtained during a specific
landing:

y1=6m;y2=0,2 m/sec; y3=10 m.

We calculate the scalar convolution of the criteria according to the nonlinear trade-
off scheme

Y(y) _ Imin Vmin + Ahmin )
Imin -¥1 Vmin -Y2 Ahmin - Y3

Substituting numerical data, we get

15 1 30

Y(y)= + + =
W) 15-6 1-0.2 30-10

We calculate the normalized scalar convolution by the formula

S 4.8 _
Y(y) 4,42

Yo =1 ,3.

Comparison of this value with the qualitative gradations of the inverted nor-
malized scale (Table) allows us to conclude that this landing can be assessed as
good.

The described procedure for multicriteria evaluation is applicable, in particu-
lar, to the education and training of pilots and in similar cases in other subject
areas.

The solution of multicriteria problems according to the nonlinear scheme of
compromises is carried out in a formalized manner, without the direct participation
of the DM. This solution is basic and intended for general use. If such a task is
solved in the interests of a particular person, then the basic solution can only be ad-
justed by introducing weight coefficients in accordance with the informal prefer-
ences of the DM.
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Posrnsinaerecst 06°exT O, CTaH SKOTO BU3HAYAETHCS CYKYIHICTIO BEIHYHH
X{, X0,y Xy, LIO CKIATAIOTH BEKTOP X ={X; }in:1 e X. OO’ekT mepeciiaye Kijb-
Ka IJIeH, CTyHiHb JAOCSITHEHHS KOXXHOI BHPAaKa€ThCS BIAMOBIAHUM KpPHUTEPiEM
Yk (X), ke[d...s]. Kpurepii yreoprotots BekTop Yy ={y) (X)}ﬁzl e M. Ha xpu-
Tepii HAKIANAITECA OOMEKEHHS Yy min (X) < Vi (X) < Yy max (X). 3anaua oui-
HIOBAaHHS SIKOCTi ()YHKIIOHYBaHHS 00’e€kTa O MONATrae y BU3HAUCHHI BEJMYHHU
nesxoi ¢ynkuii Y[y(x)] 3a BiIOMAMH mapaMeTpamu X, Xo, ..., X,. DPYHKIsS
Y[y(x)] y usomy pasi Ha3MBaeThCsA OLiIHHOI. 3ajaua oNTHMIi3aLii MosIrae

y BU3HAYEHHI BENMYUH Xy, Xo,..., X, 38 HOMOMOTOK eKcTpemizauii GpyHKmii

n
Y[Iy(x)]. Tyr dynkuis Y[y(x)] € 1inboBoio, a MapaMeTpu X, Xo,..., X, Ha3u-
BaIOThCS apryMeHTamu onTumizamii. OOHIBiI 3amaui mepen0davyarOTh HasB-
Hicts Qynkmii Y[y(x)]. Tlo cyTi, ug ¢pyHKIis € cKangpHOIO 3TOPTKOI0 BEK-

Topa KpuTepiiB y(X), fka BimoOpaxkae (yHKIiII0O KOPHUCHOCTI 0coOHM, 11O
npuiiMae pimenHs (OIIP) mpu BupimeHHI KOHKpPETHOI 3a/1adi OIiHIOBaHHS
abo ontumizanii. CkansipHa 3ropTKa € akTOM KoMmosumii kpurtepiiB. Kpure-
pift yy (X) — ue Mipa sxocti GpyHKIiOHYBaHHs 06’ €kTa O M0N0 MOCATHEH-

HA K- MeTH. SIKmo «Oinplne» o3Hayae «Kpame», TO ISl MiJBUIICHHS SKOCTI
TaKuil KpuTepiil miansarae MmakcuMiszamii. B iHmomy pasi kpurepiit MiHIMizy-
eThes. J{s BU3HAYEHOCTI pO3TisAaeThes 3aada ONTHMI3allii 3a MiHiMi30Ba-
HUMH KPHUTEPISIMH SKOCTI.

KurouoBi cioBa: GaraToxpurepiaidbHICTh, (QYHKIIS KOPHUCHOCTI, CKajsApHA
3ropTKa, (hopMainizaiis, CHTyauis, HeJiHiiHa cxeMa KOMIIPOMIciB, IKana Xap-
piHTTOHA.
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