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This article opens a series of publications dedicated to the scientific and 

technical achievements of the century-long development of control theory 

and methods. Problems that could not be fully resolved based on one ap-

proach or another are also noted. The first of these articles is devoted to the 

state space method, which began to actively develop somewhere in the 70-80s 

of the last century within the framework of systems theory and general sys-

tems theory. A description of the method is given in relation to linear au-

tomatic control systems. A generally accepted description of controlled and 

observable dynamic processes in such systems is given. The problems of 

synthesis of stabilizing control in closed loop systems with feedback based 

on the theory of stability formulated by Lyapunov are mainly considered. 

In addition to stability, within the framework of the state space method, 

such important qualitative properties as controllability and observability 

are formulated. The most developed method is the synthesis of state-based 

linear controllers. Among them, a special pole placement by method of 

modal control synthesis occupies a special place which is considered within 

the framework of the Jordan implementation and various modifications of 

the method depending on the dimension of the control vector. The synthesis 

of an optimal controller with a quadratic criterion of a fairly general form 

is considered. In case of incomplete measurements, when the dimension of 

the output is less than the dimension of the state vector, in order to imple-

ment synthesized control laws based on the state, it becomes necessary to in-

clude a state estimator in the control system. In the deterministic case, you 

can use the Luenberger estimator described in the article, and in the presence 

of measurement errors in the form of zero-mean white noise, the widely used 

Kalman filter, also presented in the article. The output control method  
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was not left unattended in the work. The conclusions give the advantages 

and disadvantages of control methods based on state-space descriptions. 

Keywords: state-space method, control, feedback, stability, controllability, ob-

servability, pole placement, Kalman filter. 

Introduction 

The authors joined forces in writing a series of articles in which they attempted to 

analyze the century-long development of automatic control theory (ACT). 

Over the 100 years, time interval ACT has gone through several stages of devel-

opment which in generalization form can be presented in the following sequence: 

1. State space methods in the theory of linear automatic control systems. 

2. Methods for identifying the structure and parameters of mathematical models of 

controlled objects. 

3. Methods for designing linear control systems based on mathematical models of 

«input-output» type processes. 

4. Robust control methods. 

5. Filtering and control methods with separable different tempo movements. 

6. Prediction control systems. 

7. Control of different nature complex systems based on cognitive maps models 

with impulse processes. 

8. Trajectory control methods. 

Control methods at these stages of ACT development differ in the formulation of 

problems, various initial conditions, mathematical models of controlled objects, opti-

mality criteria for the synthesis of optimal controllers, description of internal and exter-

nal disturbances, etc. 

The authors considered it is worthwhile appropriate to analyze the main problems 

that were solved and are being solved at each stage of ACT development, to characterize 

new approaches to the design of control systems at the present stage, which were im-

possible or imperfect at the previous stages and appeared at subsequent stages, to gene-

ralize the classes controlled objects for which ones are developed control systems at 

every stage. 

In this series of articles, only linear control systems are considered, assuming that 

possible nonlinearities of controlled objects were previously linearized befor when de-

veloping mathematical models of these objects. 

1. State space methods 

The state space method consists in using systems of differential equations of the 

first order as a mathematical model which describes dynamics of controlled objects. The 

system of differential equations has the form [1] 
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Such system is called a normal system. When entering designations  
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the system is written in vector-matrix form 

 ( ) ( ) ( ) ( ) ( )X t A t X t B t U t= + , (2) 
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which was called the state equation. If the matrices ( ),A t  ( )B t  in model (2) depend on 

time ,t  then the system is multidimensional and non-stationary. When ( ) const,A t =  

( ) constB t =  the system is called stationary. The vector ( )X t  was named the vector of 

state variables 1 2, , , nx x x . A set of vectors ( )X t  is called a state space. The object is 

controlled using a vector ( )U t . The movement of the system is determined by the phase 

trajectory, which fully characterizes the state of the system in space nR  and time. 

The relationship between the measured output coordinates ( )y t  and the vector of 

state variables is described using the algebraic measurement equation 

 ( ) ( ) ( )Y t C t X t= . (3) 

Based on (2), (3), the structural diagram of the dynamic controlled object will look 

like this 

 
 

If a one-dimensional system is described by a scalar differential equation  

 
1

1 1 01

( ) ( ) ( )
( ) ( ),

n n

nn n

dx t dx t dx t
a a a x t u t

dtdt dt

−

− −
+ + + + =  

then the system in matrix form (2) by the method of phase variables will have the form 
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where is the matrix 
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proposed by Frobenius and is called the Frobenius matrix. This form was widely used. 

With the selected discretization period 0 ,T  system (2) can be presented in discrete form 

 ( 1) ( ) ( )X k FX k GU k+ = + , (4) 

where 0 ,
AT

F e=  01( ) ,
AT

G A e I B−= −  and the measurement equation (3) will have 

the form 

 ( ) ( )Y k CX k= . (5) 
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( )B t  
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2. Problems of analysis of linear systems in state space 

During the development of methods of the modern theory of analytical design of 

control systems, there was a need for a preliminary study of the dynamic properties of 

controlled objects. 

2.1. Stability analysis of systems in state space. The definition of the stability 

concept for motion of a dynamic system was first formulated by A.M. Lyapunov in 

1982 as follows [2]. 

Definition. Systems solutions ( ),X t  0t t    

 ( ) ( ) ( ) ( )X t A t X t f t= +  (6) 

is called Lyapunov stable if for any 0   one can specify a number 0   such that for 

any 1 0( ),X t  which satisfies the condition  

 1 0 0( ) ( )X t X t−    

inequality holds 

 1( ) ( )X t X t−    at all 0[ , ).t t   

For linear stationary systems, the idea of stability is to ensure the trajectory of the 

state vector 1( )X t  to zero without external disturbances. For the non-stationary sys-

tem (2), (3), the concept of stability with bounded input and bounded output (BIBO) 

was introduced, in which the system will be stable if: 

a) all its solutions exist for 0t t  or for all 0,1, 2,k = ; 

b) every bounded input vector ( )U t  at 0t t  generates a bounded output vector 

( )Y t  or any bounded sequence ( )U k  at 0,1, 2,k = generates a bounded sequence 

( )Y k  at 0,1, 2,k = . 

The following theorems on BIBO stability were formulated and proved [3]: 

Theorem 1. Stationary continuous time system 

 
( ) ( ) ( ),

( ) ( ) ( )

X t AX t BU t

Y t CX t DU t

= +

= +

 (7) 

is Lyapunov stable if all eigenvalues of the matrix A  have negative real parts. 

Theorem 2. Stationary discrete time system  

 
( 1) ( ) ( ),

( ) ( ) ( )

X k FX k GU k

Y k CX k DU k

+ = +

= +

 (8) 

is BIBO stable if all eigenvalues of the matrix F  are inside a circle of unit radius.  

Stability conditions of dynamic systems in the state space based on Lyapunov 

functions were formulated [4]. For a linear system, the Lyapunov function is chosen in 

the of a quadratic form 

 
T( ) , 0V X X QX Q=  . (9) 

Consider the definition of stability for the discrete system (8). Due to the positive 

definiteness of the matrix ,Q  the second property of the Lyapunov function ( ) 0V X   
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holds for all 0.X   To satisfy the third property, we calculate ( ( 1))V X k + =  

T ( 1) ( 1)X k QX k= + +  using the equation of state ( 1) ( )X k FX k+ =  in free motion 

 T T( ( 1)) ( ) ( )V X k X k F QFX k+ = . 

Then the first difference 

 T T T( ( )) ( ( 1)) ( ( )) ( ) ( ) ( ) ( )V X k V X k V X k X k F QFX k X k QX k = + − = − =  

 T( )[ ] ( ) ( ) ( ).T TX k F QF Q X k X k PX k= − = −  

Therefore, for the increment ( ( ))V X k  to be negative definite, it is necessary and 

sufficient to have a positive definite matrix Q  satisfying the equation  

 TF QF Q P− = − ,  (10) 

where P  is a positive definite matrix. This equation is called the discrete Lyapunov 

equation with respect to the matrix .Q  It always has a solution if the linear discrete 

system (8) is stable. Indeed, if the matrix P  is enough positive definite, then 

( ( )) ( ) ( ) 0,V X k X k PX k = −   when ( ( 1)) 0.V X k +   That is, the function ( ( ))V X k  

decreases and the trajectory of the system move towards the origin. 

2.2. Controllability analysis of linear systems. A linear dynamic system, which is 

described by the state equation (2), is called controlled if there is a control vector ( ),U t  

which makes it possible to transfer the system from an arbitrary initial state 0 0( )X t  

to a final state 1 1 0 0( ) ( )X t X t  in time 1 0.t t−  

Theorem 3. For the linear nonstationary system (2) if and only if there exists  

a control vector ( )U t  that transfers the system from state 0 0( )X t  to state 1 1( )X t  when 

the vector 0 0 0 1 1 1[ ( ) ( , ) ( )]X t t t X t−  belongs to the range of values of the linear trans-

formation 
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T T
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t

t

W t t t t B t B t t t dt=    

where 0 1( , )t t  is the transition matrix which in stationary case has the form 

1 0( )
0 1( , )

A t t
t t e

−
 = . 

The proof of the theorem is given in [2]. 

Consider the controllability analysis of a discrete stationary system with a scalar 

input 

 ( 1) ( ) ( ).X k FX k Gu k+ = +  (11) 

Let us assume that an arbitrary initial state for it is given as (0).X  Then the state 

of this system ( )X N  on a finite bounded time interval, equal to N  the discretization 

periods, is determined based on the recurrent procedure to the equation when 

0,1, 2, , 1k N= −  as  

 
1 2( ) (0) (0) (1) ( 1) (0)N N N NX N F X F Gu F Gu Gu N F X− −= + + + + − = +  

 
2 1 T[ ] [ ( 1) ( 2) ( 3) (0)] .NG FG F G F G u N u N u N u−+  − − −  (12) 
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The composite matrix 

 2 1[ ]N
cR G FG F G F G−=  (13) 

is called the controllability matrix. When the matrix cR  has the rank ,crank R n=  

where n  is the dimension of the state vector ,X  then based on (12) it is possible to 

determine the composite vector of control actions T[ ( 1) ( 2) (0)]nU u n u n u= − −  

as follows 

 1[ ( ) (0)].n
n cU R X n F X−= −  (14) 

When rank ,cR n=  then from (14) we obtain the n  equations for determining the 

sequence of control actions that transfers the system from the initial state (0)X  to the 

final state ( ).X n  If ,k n  then the solution of equation (14) does not exist. Also, when 

rank ,cR n  then its inversion is impossible and system (11) will be noncontrollable [5]. 

2.3. Analysis of observability of linear systems. The task of observability con-

sists in estimating the state of the system at the instant of time 0t  with known control 

vectors ( )U t  and vectors of initial measurements ( )Y t  at 0.t t  For a linear non-

stationary system ( ) ( ) ( ),X t A t X t=  ( ) ( ) ( )Y t C t X t=  if the matrices ( ),A t  ( )C t  are 

given on the interval 0 1,t t t   then the initial state 0( )X t  can be determined with 

accuracy up to the constant vector that is in the kernel of the operator [2] 

 
1

0

T T
0 1 0 0( , ) ( , ) ( ) ( ) ( , ) .

t

t

M t t t t C t C t t t dt=    

At the same time, the matrix 0 1( , )M t t  is symmetric and non-negatively defined 

for 1 0.t t  

For a linear stationary system in discrete time (4), (5) with known measurements 

(0), (1), , ( 1)Y Y Y n− , the system will be observable if the observability matrix 

2 1 T[ ]nW C CF CF CF −=  will have full rank n  where dim .n X=  Then the initial 

state vector can be determined based on the system of equations (0) ,n nY WX NU= +  

according to 

 
1(0) [ ].n nX W Y NU−= −  (15) 

3. Problems of linear control systems synthesis  

3.1. Synthesis of modal state regulators. The method of modal control began 

to develop rapidly in the 70s and 80s of the 20th century [6–8]. At the same time,  

a mathematical model of the controlled object in the state space in a deterministic envi-

ronment was used. It is also known as a pole placement control. 

Consider a linear stationary plant with several inputs and outputs in discrete time 

(4), (5), bearing in mind that the eigenvalues of the state matrix F  are different. 

The control law was used to synthesize the regulator 

 ( ) ( )pU k K X k= −  (16) 

provided that the state vector ( )X k  is fully measurable. Equations of closed-loop con-

trol system  

 ( 1) [ ] ( )pX k F GK X k+ = −  (17) 
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in the general case is multiconnected, that is, the state matrix [ ]pF GK−  is not diagonal. 

This led to the interdependence of the control loops of the multidimensional system (17), 

that is, the closed-loop control system was not autonomous. In [8] the method of diago-

nalization of the matrix F  by 

 ( ) ( ),tX k TX k=  (18) 

which leads to the transformation of model (4), (5) to this form 

 
( 1) ( ) ( ),

( ) ( ).

t t t t

t t

X k F X k G U k

Y k C X k

+ = +

=

 (19) 

Now the system state matrix  
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t

n

F TFT −

 
 


 = = = 
 
 
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 (20) 

is presented in a diagonal form, where the diagonal elements i  of the matrix tF  are 

equal to the eigenvalues of the state matrix F  of the model (4), and the matrix ,tG  tC  

are equal to  

 ,tG TG=  (21) 

 
1.tC CT −=  (22) 

When the model (4), (5) is transformed, its characteristic equation det[ ] 0zI F− =  

will be equal to the characteristic equation det[ ] 0tzI F− =  of the transformed model (19). 

The control vector of the modal controller in model (19) can be denoted as 

( )t tU GU k=  formed on the basis of the new control law 

 ( ) ( )
tt p tU k K X k= − , (23) 

as a result of which the closed-loop control system equation will be 

 ( 1) ( ] ( )
tt p tX k K X k+ =  − , (24) 

where the matrix 
tpK  is diagonal, i.e. individual eigenvalues (modes) of the state 

matrix of the closed system (24) can be changed independently by choosing the coef-

ficients of the matrix .
tpK  

Thus, the closed control system (24) consists of independent control loops, and its 

characteristic equation has the form 

 
1

2

1

2

det[ ( )] [ ( )]

[ ( )] [ ( )] 0.

t t

t tn

p p

p n p

zI K z K

z K z K

−  − = −  − 

 −  −   −  − =
 (25) 

The design of the coefficients 
ti

pK  of the modal regulator can be performed by the 

method of the desired pole placement of the characteristic equation of the closed system 

,
ti

i i pz K=  −  from which we determine .
ti

p i iK z=  −  At the same time, the desired 

roots of the characteristic equation are chosen in the middle of a circle of unit radius 1.iz   



38 ISSN 2786-6491 

The disadvantage of this method of designing a modal controller is the formation 

of a real control vector 1 1 1( ) ( ) ( )t t tU t G U k G T U k− − −= − = , which is determined on the 

basis of (21), (23) and applied to the controlled object (4), (5). For its implementation, it 

is necessary that the dimensions of the control vector ( )U k  and the state vector ( )X k  

coincide. This introduces a significant limitation of the above design methodology, be-

cause in most real control systems dim dimU X . 

If the dimension of the control vector dim 1U m=   is ,m n  then several algo-

rithms were developed for matrix pK  synthesis [7]. 

The most successful algorithm, which has found wide application in practice, is the 

canonical transformation of closed systems [7, 9]. At the same time, it is assumed that 

system (4) is fully controlled. According to the algorithm, the design sequence pK  will 

be as follows: 

a) desired eigenvalues * * *
1 2, , , n    of the closed control system (17) at * 1i   

are chosen. At the same time, the condition is fulfilled, under which *
i  there will be 

different, 1, 2, , ;i n=  

b) right eigenvectors of the closed system 1 2, , , nR R R  are introduced for con-

sideration, for which the equality holds 

 *( )p i i iF GK R R− =   (26) 

or  

 *( ) , 1, ,j j p j jF I R GK R GP j n− = = =  (27) 

where 

 j p jP K R=   (28) 

dimensional column 1m ; 

c) a dimensional ( )m n  matrix 1[ , , ]nP P P=  is formed, where 0jP   are non-

zero columns, so that the matrix P  has full rank ( rankP m= ); 

d) under the condition that ,rank G m=  the eigenvectors are determined based on 

expression (27). 

 * 1( ) , 1, .j j jR F I GP j n−= − =  (29) 

Moreover, the desired eigenvalues *
j  should not coincide with the eigenvalues of 

the matrix ,F  that is *det[ ] 0;jF I−   

e) the complete set of eigenvectors 1 2[ , , , ]nR R R R=  is determined on the basis 

of (29) and with the selected matrix 1[ , , ]nP P P=  according to (28) the matrix of the 

modal controller is calculated by 

 1
pK PR−= . (30) 

The choice of the matrix P  affects the nature of the control actions, but the spectrum 

* * *
1 2, , , n    of the closed system will be invariant with respect to the choice of .P  

3.2. Synthesis of linear-quadratic state regulators. This problem in the Soviet 

scientific literature was called analytical design of regulators. 
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We consider the model of the controll object in the state space (4), where the state 

vector has the dimension dim ,X n=  and the control vector dimU m=  satisfy .m n  

The initial value is (0) 0.X   It is assumed that the state variables ( )X k  can be meas-

ured accurately. The task is to design a state controller (16), which forms a control vec-

tor ( )U k  to transfer the control object from the initial state (0) 0X   to the final state 

( ) 0X n =  based on the minimization of the quadratic optimality criterion 

 
1

T T T
1 2 3

0

( ) ( ) ( ) ( ) ( ) ( ) ,
N

k

J X N Q X N X k Q X k U k Q U k
−

=

 
 = + +  

 
   

 0,1, 2, , 1,k N= −  (31)  

where are the weight matrices 1 0,Q   2 0,Q   3 0.Q   

The following theorem was formulated and proved for the synthesis of the linear 

quadratic regulator according to criterion (31). 

Theorem 4. Let ( )U k  be a function of state vectors ( ) ,X k  ( 1) ,X k −  …. If the 

model of the controll object in the state space (4), (5) is controllable and observable, 

then there is a unique admissible vector ( )U k  that minimizes the criterion (31) provid-

ed that the controller matrix (16) is determined by a recurrent procedure 

 T 1 T
3( ) [ ( 1) ] ( 1)pK k Q G L k G G L k F−= + + + , (32) 

where is the matrix 

 T T T
2 3( ) ( 1) ( )[ ( 1) ] ( )p pL k F L k F Q K k Q G L k G K k= + + − + + =  

 
T T T 1 T

2 3( 1) ( 1) [ ( 1) ] ( 1) ,F L k F Q F L k G Q G L k G G L k F−= + + − + + +  +  (33) 

when 1( ) .L N Q=  

This problem belongs to optimal control problems and is solved using the dynamic 

programming method or the Pontryagin maximum principle. 

3.3. State observers (identifiers). For most linear system controlled objects, not 

all variables of vector state X  can be directly measured. 

Therefore, to implement the state regulators (16), it is necessary to estimate (identi-

fy) the state vector ( )X t  based on known input ( )U t  and output ( )Y t  coordinates. The 

task of estimating (identifying) the state vector is to implement the estimate ( )X t  at a 

given moment in time 0t  with known input and output signals measured at 0.t t  

Consider the controlled plant model (4), (5) in the state space for discrete time. We 

assume that all state variables of the vector ( )X k  are observed according to (15), and 

the vectors ( )U t  and ( )Y k are precisely measured. Then the estimation of the state vec-

tor 
ˆ
( )X k  is implemented according to the following recursive procedure 

 
ˆ ˆ ˆ
( 1 ) ( 1) ( ) [ ( ) ( 1)],X k k FX k k GU k L Y k CX k k+ = − + + − −  (34) 

where the matrix L  should be chosen in such a way that the state matrix of the closed 

system ( )F LC−  in terms of the estimation error 
ˆ

( 1) ( 1) ( 1)X k X k X k+ = + − +  has 

eigenvalues inside a circle of unit radius. Then lim ( ) 0.
k

X k
→

=  
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The recurrent procedure (34) is called the Lewinberger observer. 

3.4. The problem of linear-quadratic Gaussian optimal control. A linear dis-

crete model of the controll object in the state space under the action of random disturb-

ances is considered 

 1( 1) ( ) ( ) ( )X k FX k GU k v k+ = + + , (35) 

 2( ) ( ) ( )Y k СX k v k= + , (36) 

where F  is matrix ( ),n n  G  — matrix ( ),n m  ( )X k  — state vector ( 1),n  

( )U k  — control vector ( 1);m  ( )Y k  is the vector of initial measurements ( 1).p  

Signals 1 2{ ( ), ( )}v k v k  are sequences of «white noise» with zero mathematical expecta-

tions 1{ ( )} 0E v k = ; 2{ ( )} 0E v k =  and covariance matrices 

 
1 T T

1 2
2

( )
( ) ( ) , 0, 0.

( )
knT

V Rv k
E v k v k V N

v k R N

      =               
 (37) 

It is also assumed that 

 
T

1{ (0) ( )} 0,E X v k =  T
2{ (0) ( )} 0E X v k = . 

Moreover, all state variables of the vector X  in model (35) are not measured. 

Thus, to implement the state regulator (16), the state vector in the model (35), (36) must 

be evaluated. Minimization of the mean squared error is used as an evaluation criterion 

 
Tˆ ˆ

{[ ( ) ( )] [ ( ) ( )]} ( )E X k X k X k X k Sp P− − = , 

where P  is the covariance matrix of the estimation error 

 
Tˆ ˆ

( ) {[ ( ) ( )][ ( ) ( )] ( 1), ( 2), , (0)}.P k E X k X k X k X k Y k Y k Y= − − − −  (38) 

The problem of estimating a non-measurable state vector in a stochastic environ-

ment is called a filtering problem, which can be formulated in the form of the following 

theorem. 

Theorem 5. If for the control plant model of (35), (36) with covariance matrices (37) 

we assume that the initial state vectors (0)X  and disturbance vectors 1( ),v k  2( )v k  

will be Gaussian, and also denote by 
ˆ
( 1)X k +  the conditional mathematical expecta-

tion of the state vector ( 1)X k +  in the presence of previous measurements 

0{ ( ), ( 1), , ( )}Y k Y k Y k−  of the vector ,Y  then the definition procedure of the condi-

tional mathematical expectation 
ˆ
( 1)X k +  (state estimation) is implemented in the form 

of the following recurrent relations (Kalman filter): 

 0
ˆ ˆ ˆ ˆ
( 1) ( ) ( ) ( )[ ( ) ( )], ( ) (0)X k FX k GU k K k Y k CX k X k X+ = + + − = ; (39) 

 
T T 1( ) [ ( ) ][ ( ) ]K k FP k C R CP k C N −

 = + + ; (40) 

 
T T T( 1) ( ) ( )[ ( ) ] ( )P k FP k F V K k CP k C N K k + = + − + ; (41) 

 0( ) (0).P k P=  

The proof of the theorem is given in the monograph [10]. 
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The main properties of the Kalman filter are formulated as follows:  

a) in the presence of Gaussian noise, the estimate 
ˆ
( )X k  is a conditional mathemat-

ical expectation of the state vector ( ),X k  i.e. 

 ˆ
( ) { ( ) ( 1)},X k E X k Y k= −  (42) 

where ( 1) [ ( 1), ( 2), , (0)].Y k Y k Y k Y− = − −  

b) it follows from the previous property that 

 
T

ˆ
{ ( ) ( ) ( 1)} 0,

ˆ ˆ
( ) {[ ( ) ( )] [ ( ) ( )] ( 1)} min,

E X k X k Y k

P k E X k X k X k X k Y k

− − =

= − − − =

 (43) 

that is, the recurrent procedure (39)–(41) ensures the minimization of the covariance 

matrix of the estimation error ( ).P k  

For the first time, the Kalman filter was published in works [11–13]. 

Based on the Kalman filter, the implementation of the state controller is performed 

according to the control law 

 
ˆ

( ) ( ) ( )pU k K k X k= − . (44) 

The synthesis of the control vector (44) is performed by on the minimization of the 

optimality criterion 

 
1

T T T
1 2 3

0

( ) ( ) [ ( ) ( ) ( ) ( )] ,
n

k

J E X n Q X n X k Q X k U k Q U k
−

=

 
= + + 

 
  (45) 

where the weight matrices satisfy 1 0,Q   2 0,Q   3 0.Q   

The solution to the controller synthesis problem (44) is based on the separation 

theorem, the idea of which is that the problem of linear-quadratic Gaussian control is 

divided into two parts: 

a) implementation of the state vector estimation procedure based on the filter (39)–(41); 

b) synthesis of the linear optimal control law (44) based on the minimization of the 

criterion (45). 

Theorem 6. If the control vector ( )U k  is a cascade function 

  1 ( 1), ( 2), , (0), ( 1), ( 2), , (0)t Y k Y k Y U k U k U
− = − − − −  

then the estimation of the state variables 
ˆ
( )X k  is performed independently on the basis 

of the Kalman filter (39)–(41), and the synthesis of the linear optimal control law (44) is 

implemented according to the recurrent procedure 

 T 1 T
3( ) [ ( 1) ] ( 1) ,pK k G S k G Q G S k F−= + + +  (46) 

where 

 T T
3 2( ) ( ) ( ) [ ( )] ( 1)[ ( )]p p p pS k K k Q K k Q F GK k S k F GK k= + + − + −  (47) 

 1( ) .S n Q=  

The proof of the separation theorem is given in [14]. 
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The application of the Kalman filter in real control systems was associated with 

significant difficulties, which mainly consist in the fact that the optimal filtering (39)–(43) is 

possible under the condition that the disturbances 1( ),v k  2( )v k  in the model (35), (36) 

represent « white» noise. This condition, as a rule, is fulfilled on an infinite segment of 

time, and on short time intervals 1{ ( )} 0,E v k   2{ ( )} 0.E v k   Therefore, in further 

modifications of the Kalman filter, algorithms were developed for the simultaneous es-

timation of the state vector 
ˆ
( )X k  and the vector 1

ˆ ( )v k  with further consideration of the 

estimation 1
ˆ ( )v k  in the control law. 

The second difficulty in applying the Kalman filter is the requirement to have 

complete information about the covariance matrices of disturbances ,V  ,R  N  in (37), 

(40), (41). The variances of individual component vectors 1( )v k  and 2( )v k , as a rule, 

are unknown and change over time during operation of the controlled object. Therefore, 

many modifications of the Kalman filter have been developed, in which the covariance 

matrices in the expanded state vector are evaluated and specified. The main problem in 

the implementation of the extended Kalman filter is to ensure the stability of the recur-

rent evaluation procedure. These extended evaluation algorithms are fully reflected in 

the work [15]. A significant part of works on Kalman filtering is devoted to the devel-

opment of filtering algorithms for controlling processes with distributed parameters, as, 

for example, in the monograph [16]. 

In total, more than 10,000 scientific works were published on Kalman filtering 

methods in international scientific publications during 1960–2000. 

3.5. Feedback systems stabilization on the output variable. The dynamics of the 

controlled object is described by an equation in the discrete-time state space in a sto-

chastic environment 

 ( 1) ( ) ( ) ( ),X k FX k GU k v k+ = + +  (48) 

 ( ) ( ).Y k CX k=  (49) 

A random sequence ( )v k  is characterized as follows:  

 
T{ ( )} 0; { ( ) ( )} .E v k E v k v k V= =  (50) 

The task is to synthesize the controller 

 ( ) ( ),pU t K Y t=  (51) 

that implements feedback on the output variable. All options for solving this problem 

are considered in articles [17, 18]. The most common option consists in the design of 

the controller matrix pK  (51), which ensures the stability of the close-loop system 

( ( ) 1pF GK C +  ) based on the minimization of the optimality criterion 

 
1

T T

0

1
lim [ ( ) ( ) ( ) ( )]

N

N k

J E X k QX k U k RU k
N

−

→ =

 
= + 

 
 , (52) 

which can be submitted in the form 

 ( ) ( ),X UJ tr QP tr RP= +  (53) 

where the matrices XP  and UP  are defined as follows: 

 
T ;X XP FP F V= +  ;pF F GK C= +  T T.U p X pP K CP C K=  (54) 
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To minimize criterion (53) by the controller matrix pK  based on (53), (54), the 

gradient of the objective function is determined 

 

T T

T T T

2 2 ,

; (1 ) .

T
X p X

p

p p p

J
G LFP C RK CP C

K

L F LF Q C K RK C F F GK C


= +



= + + = − +

 (55) 

To solve this problem, it is necessary to have an initial approximation for the 

matrix ,pK  that is, such a value of this matrix that ensures finding the spectrum of the mat-

rix F  inside of a circle of unit radius. 

To select the initial approximation of the matrix ,pK  the matrix F  in (48) and the 

optimality criterion in (52) are modified. In this case, the matrix F  is replaced by the 

matrix (1 ) ,F F = −  where the parameter   is chosen in such a way that the spectrum 

of the matrix F  is inside a circle of unit radius, i.e. ( ( ) 1F  ). Criterion (52) is sup-

plemented by the term 
2 .r  Then the modified variant of problem (48)–(52) will take 

the form 

 2

,
min ; ( ) ( )

p

X U
K

J J tr QP tr RP r


= + +  ; (56) 

 ( 1) ( ) ( ) ( );X k F X k GU k v k+ = + +  { ( )} 0;E v k =  
T{ ( ) ( )} ;E v k v k V=   

 ( ) ( );Y k CX k=  ( ) ( ).pU k K Y k=  

If we enter the matrices , , , ,M N Y U  which depend on the parameter   

 ,M F=  ,N V=  
T T ,p pY Q K C RK C= +  U L=  

and enter the scalar  

 ( ),tr XY  (57) 

where ,XX P=  then according to [19] the derivative of the scalar (57) by   is deter-

mined as follows: 

 
( ) T( )

2
tr XY Y N M

tr X U U XM
    

= + + 
    

, (58) 

where the matrices ,X  U  are determined based on the solution of discrete Lyapunov 

equations 

 

T

T

,

.

X MXM N

U M UM Y

= +

= +

 (59) 

The first two components in (56) can be written down 

 T T( ) ( ) [( ) ]X U p p Xtr QP tr RP tr Q K C RK C P+ = + . 

Using relation (58), we get the gradient 

 
T2[ ( )]X

J
r tr F LFP


= −


. (60) 
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Thus, the objective function in this problem is determined by criterion (56), and its 

gradients are determined by expressions (55), (60). The initial conditions for the mini-

mization procedure (52) are chosen as follows: 0;
inipK =  (1 ) 1.F −   

Conclusion 

Of course, in one article it is impossible to generalize all scientific directions and 

methods of modern control theory based on the state space method. This is done most 

comprehensively in the handbook [20]. But our task is to analyze the possibilities of the 

entire theory for the design of control systems with many complexities of the function-

ing of controlled object, to show its positive aspects and to emphasize those difficult 

tasks where the modern theory has found limited application. 

It should be noted that the beginning of the creation of modern control theory coin-

cides with the beginning of the wide using digital computers for the design of multidi-

mensional control systems. At the same time, it turned out that the programming of 

digital machines in the complex plane is very difficult and sometimes led to ambiguous 

results when using models of controlled plants in the form of frequency transfer func-

tions. The state space method made it possible to describe and study the dynamics of 

complex systems under non-zero initial conditions and always provided unambiguous 

results when applied. The second important feature of the state space method is the ability 

to take into account all state variables of the system over time, which most fully reflect 

its important coordinates, but are not completely measured as initial measured variables. 

A very valuable property of system models in state space is the possibility of their 

application to describe controlled plants with different dimensions of state, control, and 

measurement vectors, which was impossible when using multidimensional transfer 

functions in classical control theory. 

At the same time, state-space method models are very difficult to apply to systems 

with delays, especially when the delays vary with time. 

The main limitations in the application of models in the state space are the descrip-

tion of the dynamics of controlled plants in a stochastic environment, because in mo-

dern control theory it is assumed that disturbances have the character of «white noise», 

the mathematical expectation of which is zero. At the same time, most problems require 

information about the covariance matrices of the indicated disturbances. This leads to 

the solution of additional problems of estimating covariance matrices of disturbances 

and fluctuations of their average values. These problems are solved in practice for sys-

tems with constant covariance matrices when Kalman filtering is implemented. But 

when the variances of individual disturbances change all the time, their estimation be-

comes practically impossible. 

The state space method, on the one hand, makes it possible to solve control prob-

lems for complex systems of large dimensions, and on the other hand, it leads in many 

cases to certain problems that still remain unsolved. Control feedback synthesis on the 

base of pole placement approach requires knowledge of the current value of the state 

vector. Therefore, for incomplete measurements, when the dimension of the output vec-

tor is less than the dimension of the state vector, its estimator is used. Since measure-

ments almost always contain errors, its construction is fraught with certain problems. 

How to represent the existing uncertainty when constructing an estimator so that the es-

timation error is acceptable. Existing methods of estimation in conditions of inaccurate 

data based on the Kalman filter, methods of guaranteed ellipsoidal estimation and a 

number of others often turn out to be ineffective. This is due to a number of reasons, 

among which we highlight the following: error distributions differ from «white noise» 

or other acceptable conditions of the methods; the presence of poor observability or 

controllability, which can lead to incorrectly set tasks. In addition, the poles placement 
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method for feedback synthesis, with the above features, does not allow design highly-

precision control systems and, what is especially important, ensuring the robustness of 

the solutions to be obtained. 

Existing methods are effective in synthesizing state-based control, including the 

use of estimators when the need arises. However, they become significantly more com-

plicated when it is necessary to construct an output control system. In this case, matrix 

inequality methods are used, which in certain cases give acceptable results. However, 

there is no deep study of how to effectively solve such synthesis problems using state 

space methods. 
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Ця стаття відкриває серію публікацій, присвячених науково-технічним 

досягненням сторічного періоду розвитку теорії та методів керування. 

Описано проблеми, які вдалося повністю вирішити з урахуванням того 

чи іншого підходу. Перша з цих статей присвячена методу простору ста-

нів, який почав активно розвиватися десь із 70–80-х років минулого 

століття у рамках теорії систем та загальної теорії систем. Дається опис 

методу щодо лінійних систем автоматичного керування та загально-

прийнятий опис керованих та спостережуваних динамічних процесів у 

таких системах. Розглядаються задачі синтезу стабілізуючого керуван-

ня в замкнутих системах із зворотним звʼязком на основі теорії стійкості, 

сформульованої Ляпуновим. Крім стійкості, у рамках методу простору 

станів формулюються такі важливі якісні властивості, як керованість і спо-

стережуваність. Найбільш розроблений метод синтезу лінійних регуля-

торів за станом. Серед них особливе місце займає метод синтезу мода-

льних регуляторів, який розглянуто у рамках жорданової реалізації та 

різних модифікацій методу залежно від розмірності вектора керування. 

Розглянуто синтез оптимального регулятора з квадратичним критерієм 

досить загального виду. При неповних вимірах, коли розмірність вихо-

ду менша за розмірність вектора стану, для реалізації синтезованих за-

конів керування за станом виникає необхідність включати в систему 

керування оцінювач стану. У детермінованому випадку можна викорис-

товувати описаний у статті оцінювач Люенбергера, а за наявності по-

хибок вимірювань у вигляді білого шуму з нульовим середнім широко 

використовується фільтр Калмана, також представлений у статті. Не за-
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лишений у роботі поза увагою спосіб керування за виходом. У висновках 

даються переваги та недоліки методів керування на основі опису у просторі 

станів. 

Ключові слова: метод простору станів, керування, зворотний звʼязок, 

стійкість, керованість, спостережуваність, стабілізація, модальне керуван-

ня, фільтр Калмана. 
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