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The article provides a review of the mathematical description of the dynamics of 
continuous and discrete linear stationary systems and objects, used at the devel-
opment stage of the classical theory of automatic control in the form of mathe-
matical models of the «input-output» type. The time and frequency 
characteristics of continuous and discrete control systems are described, typical 
links of stationary systems are considered, parametric discrete models of objects 
as part of typical digital control loops are presented. Stochastic discrete 
autoregressive models of stationary time series used to describe the dynamic 
objects in the synthesis of digital control systems are considered. A review of 
standard control laws for the implementation of continuous and discrete 
controllers has been completed. A method for synthesizing discrete controllers 
for multidimensional controlled objects with different, unknown and changing 
delays is considered, through which variable delays are compensated in the 
characteristic equation of a closed-loop control system. A common technique for 
synthesizing one-dimensional and multidimensional controllers for stochastic 
objects with delays based on ARMAX models is considered. An analysis of ap-
proaches to identifying delays in controlled objects is carried out and a method 
for identifying delays when using input-output models is considered, based on 
the calculation and comparison of impulse responses for extended and non-
extended models of the controlled object. An analysis of the advantages and dis-
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advantages of «input-output» type models is given, as well as the possibilities of 
their application for solving various classes of control theory problems. 

Keywords: transfer function, control laws, discrete controllers, identification, 
objects with delay. 

Introduction 

In the first part [1] of this series of articles, the main directions in the development 
of control theory based on the state space method were analyzed. It was noted that one 
of the main limitations of this method when designing automatic control systems is the 
fact that state space method models are very difficult to apply to systems with delay, es-
pecially when delays in control objects change over time. Therefore, the authors consid-
ered it appropriate, to describe as well other available control methods developed over 
several decades for the design of control systems based on input-output process models, 
and to focus attention on methods for control synthesis in the presence of delays in con-
trol objects with various features of the delays influence on the dynamics objects, and 
also analyze the problem of estimating delays in input-output models that describe digi-
tal control systems. 

Mathematical description of continuous linear stationary systems  

In classical control theory, the main mathematical model of the dynamics of linear 
systems and control objects of the «input-output» type is the transfer function 
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which is the ratio of the Laplace transform ( )y s  of the coordinate ( )y t  at the output of 

the system to the Laplace transform ( )u s  of the input signal ( )u t  under zero initial 
conditions. Moreover, m n≤  and the Laplace operator .s j= σ + ω  

For absolutely integrable functions, we can put 0σ =  in the operator ,s  then the 
transfer function (1) can be written for s j= ω  as  
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where ( )W jω  is called the frequency transfer function, which in control theory is used 
in exponential notation and is called the amplitude-phase frequency characteristic 

 ( )( ) ( ) ,jW j A e φ ωω = ω  

where 2 2( ) ( ) ( )A P Qω = ω + ω  is amplitude-frequency characteristic, and 

( )( ) arctg
( )

Q
P
ω

φ ω =
ω

 — phase-frequency characteristic. 

As standard input in control theory, a step signal ( ) 1( )u t t=  and signal in the form 
of a δ -function (delta function) are used. 

The response of the systemʼs output signal ( )y t  to a single step disturbance 

( ) 1( )u t t=  under zero initial conditions is called the systemʼs transient response ( ).h t  
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The systemʼs response to a single impulse input disturbance, that is to ( ),tδ  under 
zero initial conditions, was called the impulse transition or weighting function of the 
system ( ).k t  

In this case, the transfer function of the system is equal to the Laplace image of the 
impulse transition function 

 { ( )} ( )L k t W s= . (3) 

Based on the transfer function model (1), the following typical links of stationary 
systems have been developed and are widely used in control theory, which are shown in 
Table 1. 

Table 1 

Link type 
Transition function 

( )h t  
Weight weighting 

function ( )w t  
Transmission 

function ( )W s  

1 2 3 4 
Inertia-free link ( ) 1( )h t k t= ⋅  ( ) ( )w t k t= ⋅δ  ( )W s k=  

Aperiodic link 
of 1st order ( ) (1 )1( )

t
Th t k e t

−
= ⋅ −  ( ) 1( )

t
Tkw t e t

T
−

= ⋅  ( )
1

kW s
Ts

=
+

 

The ideal 
integrating link 

( ) 1( )h t k t t= ⋅ ⋅  ( ) 1( )w t k t= ⋅  ( ) kW s
s

=  

Integrating link 
with 

deceleration ( ) [ (1 )]1( )
t
Th t k t T e t

−
= ⋅ − −  ( ) (1 )1( )

t
Tw t k e t

−
= ⋅ −  ( )

(1 )
kW s

s Ts
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The ideal 
differentiator 

( ) ( )h t k t= ⋅δ  ( )( ) d tw t k
dt
δ

=  ( )W s ks=  

Differentiating 
link with 
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( ) 1( )
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T
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2

( ) ( )
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t
T

kw t t
T

k e t
T

−
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Oscillatory link 

( ) [1 (cos

sin )] 1( );

th t k e t

t t

−γ= ⋅ − λ +
γ

+ λ ⋅
λ

 

1

2
ln A

A
λ

γ =
π

; 

21 1
T

λ = − ξ  

2

( )

sin 1( )t
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2 2

( )

1 2

W s
k

Ts T s

=

=
+ ξ +

 

Delayed link 1( )t − τ  ( )tδ − τ  ( ) 1 sW s e−τ= ⋅  

The frequency characteristics of the links shown in the table are described in detail 
in [2]. 

2. Mathematical description of discrete linear stationary systems 

Discrete automatic control systems (DACS) are characterized by the fact that at 
least one of the coordinates that determine the state of the system is discretized. De-
pending on the type of quantization (by level, by time, by level and by time), discrete 
systems are divided accordingly into three types: relay, pulse and digital. 

Unlike continuous systems, the dynamics of which are described by differential 
equations, pulsed systems, as was established in the classical work [3], are described by 
difference equations, which have received limited use in the design of control systems 
because of cumbersome calculations. 
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As a result of the search for new approaches, a new mathematical apparatus was 
developed using the discrete Laplace transform 

 0 *
0 0

0
{ ( )} ( ) ( )nsT

n
D x nT x nT e X s

∞ −

=
= =∑ , (4) 

where 0( )x nT  is the lattice function, and 0T  is the sampling period. From (4) it follows 

that *( )X s  is a function of 0 .sTe  This led to the fact that the description of the dynam-
ics of control systems was obtained in the form of transcendental equations for the op-
erator .s . To eliminate this complexity, the operator was used in [4–8]  

 0sTz e= , (5) 

on the basis of which the discrete Laplace transform (4) was presented in the form of  
z-transform 

 0
0

( ) ( ) n

n
X z x nT z

∞
−

=
= ∑ . (6) 

The use of z-transformation for the coordinates of the control system made it pos-
sible to describe the dynamics of systems in the form of algebraic equations with re-
spect to the operator z. 

For a continuous system 0 ( ),W s  the input of which is a pulse signal (Fig. 1), the 
formation of a discrete transfer function is implemented as follows: 

 

Fig. 1 

The signal at the output of the pulse element will be equal to 

 *
0 0( ) ( ) ( )

n
u t u nT t nT

∞

=−∞
= δ −∑  

or in the form of discrete Laplace transform 

 0*
0( ) ( ) nT s

n
u s u nT e

∞ −

=− ∞
= ∑ . 

Then the signal at the output of the continuous system 

 0 0 0( ) ( ) ( ),
k

y t w t kT u kT
∞

=−∞
= −∑  

where 0 ( )w t  is the impulse transition (weighting) function of a continuous system. 

The discrete signals 0( )y nT  at the output of a continuous system, previously at 
rest, will have the form 

 0 0 0( ) [( ) ] ( )
k

y nT n k T u kT
∞

=− ∞
= Γ −∑ , 



Міжнародний науково-технічний журнал 
Проблеми керування та інформатики, 2023, № 6 9 

where 0 0( )nTΓ  is the pulsed lattice-frequent transition function of a continuous system. 
For a lattice function of the output signal, the z-transform will be equal to 
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By performing the replacement m n k= −  we obtain 
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from here the expression for the discrete transfer function of the system is obtaine 

 0 0 0
( )( ) ( )
( )

m

m

y zW z mT z
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∞
−

=− ∞
= = Γ∑ . (7) 

2.1. Parametric discrete models of controlled objects of the «input-output» 
type. To implement control systems based on microprocessor systems, a mathematical 
description of controlled objects was presented in the form of parametric discrete mod-
els that describe the dynamics of a series-connected digital-to-analog converter and a 
controlled object. For the convenience of analysis and synthesis of digital control sys-
tems, the mathematical model of the DACS in the form of a zero-order extrapolator 

E ( )W s  and the model of the controlled object 0 ( )W s  were combined together. Such a 
union was called the reduced continuous part (RCP) of the object, the transfer function 
of which has the form 

 R E 0( ) ( ) ( ).W s W s W s= ⋅  

The discrete transfer function of the RCP is defined as follows: 

 { }
0 0

R E 0 0
( )1 1( ) ( ) ( ) ( )

T s W se zW z Z W s W s Z W s Z
s z s

− − −     = ⋅ = =    
     

. (8) 

For widely used models of typical DACS links, Table 2 shows discrete transfer 
functions of the RCP, developed on the basis of (8). 

When using the reverse shift operator 1
1n nz y y−
−= ; 1

1n nz u u−
−=  it is possible 

to obtain difference equations of the RCP for aperiodic links of the first and second 
order, respectively  
 1 1 1 1n n ny a y b u− −+ = ,  
where  
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Table 2 

Link type  
Transfer function 

0 ( )W s  Discrete transfer function RCP R ( )W z  

Aperiodic link of 1st 
order 11

k
T s+

 

0
1

0
1

1

1

1

1

T
T

T
T

k e z

e z

− −

− −

 
 ⋅ −
 
 
 
 −
 
 

 

Aperiodic 1st order link 
with delay 11

sk e
T s

−τ⋅
+

 

0
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1 1
1 2

1

( ) ;

1

d

T
T

k C C z z

e z

− − −

− −

⋅ +
 
 −
 
 

 
0

d
T
 τ

=  
 

; 
0

1
1 1 ;

T
TC e
µ

−
= −  

0 0

1 1
2 ;

T T
T TC e e
µ

− −
= −  0

0

( )1 dT
T

τ −
µ = −  

Aperiodic link of 2nd 
order ( )( )1 21 1

k
T s T s+ +

 

0 0
1 2

1 1
3 4

1 1

( ) ;

1 1
T T

T T

k C C z z

e z e z

− −

− −− −

⋅ +
      
      − ⋅ −

            

 

0 0

2 1
2 1

3
1 2

1 ;

T T
T TT e T eC
T T

− −
−

= +
−

 

0 0
0 0

1 2
1 2 2 1

4
1 2

;

T T
T T T T
T T T e T eC e e

T T

− −
− − −

= ⋅ +
−

  

2.2. Stochastic discrete models of stationary time series. In [9], stochastic dis-
crete models of stationary time series were proposed to describe the dynamics of eco-
nomic processes. In the theory of automatic control, the ARMAX model (autoregressive 
and moving average with an additional input signal) began to be widely used. 

 1 1 1( ) ( ) ( )t t tA z y B z u C z− − −= + ξ , (9) 

where ty  are discrete samples of the output coordinate of the control object, presented 
in the form of deviations relative to the zero average; tu  — discrete samples of the con-
trol signal in the form of deviations relative to the zero average; tξ  is disturbance in the 
form of discrete white noise. 

Polynomial expressions for the reverse shift operator 1z−  have the form: 

 1 1
1( ) 1 a

a
n

nA z a z a z−− −= + + + ; 

 1 1 2
1 2( ) b

b
n

nB z b z b z b z−− − −= + + + ; 

 1 1
1( ) 1 .c

c
n

nC z c z c z−− −= + + +  

Subsequently, the ARMAX model began to take into account control delay and 
displacement v  as follows: 

 1 1 1( ) ( ) ( ) ,d
t t tA z y z B z u C z v− − − −= + ξ +  

where 
0

d
T
 τ

=  
 

 is an integer dividing the delay time τ  by the quantization period 0T , 

and v  is the offset, which is set if the mathematical expectation is { } 0.tE y ≠  



Міжнародний науково-технічний журнал 
Проблеми керування та інформатики, 2023, № 6 11 

The ARMAX model is also used to describe multidimensional controlled objects in 
a stochastic environment 
 1 1 1( ) ( ) ( )d

t t tA z y z B z u C z v− − − −= + ξ + , (10) 

where ,ty  ,tu  tξ  are the vectors of output coordinates, control actions and disturb-
ances respectively, and the matrix polynomials have the form 

 1 1
1( ) a

a
n

nA z I A z A z−− −= + + + ; 

 1 1 2
1 2( ) b

b
n

nB z B z B z B z−− − −= + + + ; 

 1 1
1( ) .c

c
n

nC z I C z C z−− −= + + +  

3. Methods for design of linear automatic control systems 

3.1. Model control laws. The control law is the function of the control action syn-
thesized in the controller from the control error ( ) { ( )}u t e t= φ . For continuous control-
lers, the typical control law is the proportional-integral-differential (PID) control law 

 d
p

1 ( )( ) ( ) ( )p
de tu t K e t e t dt T

T dt

 
= + + 

  
∫ . (11) 

which is widely implemented to control various technological processes. 
In discrete form, the PID control law is implemented through a positional and high-

speed algorithm [10]. 
The positional algorithm assumes the formation of the full value of the control ac-

tion at each sampling period 

 0
d

1p 0

( ) ( 1) ( ) ( 1)( ) ( )
2

n
p

i

T e i e i e n e nu n K e n T
T T=

 + − + −
= + + 

  
∑ . (12) 

In a unified form, law (12) is implemented in a microprocessor system as follows: 

 0 1 2( ) ( 1) ( ) ( 1) ( 2)u n u n A e n A e n A e n= − + + − + − , (13) 

where  

 0 d
0

p 0
1

2p
T T

A K
T T

 
= + + 

  
, 

 0 d
1

p 0

2
1

2p
T T

A K
T T

 
= − − +  

 
, 

 d
2

0
.p

T
A K

T
=  

In distributed microprocessor PID control systems, the control law is implemented 
in the form of a high-speed algorithm, in which at each sampling period an increment of 
the control action is formed in the discrete controller 

 0 d

p 0

( ) ( ) ( 1)

[ ( ) ( 1)] [ ( ) ( 1)] [ ( ) 2 ( 1) ( 2)] .
2p

u n u n u n

T T
K e n e n e n e n e n e n e n

T T

∆ = − − =

  = − − + + − + − − + − 
  

 (14) 
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The discrete transfer function of the PID controller (13) has the form 

 
1 2

0 1 2
1

( )( )
( ) 1

p
A A z A zu zW z

e z z

− −

−
+ +

= =
−

. (15) 

3.2. A method for designing discrete controllers for multidimensional objects 
with various unknowns and varying delays. The discrete model of these control ob-
jects has the form [11]: 
 1 1( ) ( ) ( ) ( )A z y z B z u z− −= , (16) 

where ( )y z  is the vector of controlled output variables with dimension ( 1)m× ; ( )u z  is 

the vector of control actions ( 1)m× ; 1( )A z− , 1( )B z−  are matrix polynomials of di-
mension ( )m m×  with elements 

 1 1
1( ) ij

ij ij

r
ij ij rA z a z a z−− −= σ − − − ; (17) 

 min1 1 2
1 2( ) ( ) ;ij ij

ij ij ij

dp
ij pB z b z b z b z z

−−− − −= + +  (18) 

 ( 1, , ; 1, , )i m j m= =  , 

where ijσ  is the Kronecker function, and 1z−  is the inverse shift operator by 0T , and 

minij
d  is the known minimum delay in discrete form along the ij control channel. In this 

case, the order ijp  in (18) is selected taking into account the maximum interval of 

change of the discrete delay along the ij channel 

 max min( ).
ij ijij ijp r d d= + −  (19) 

In this method, delays ijd  change at intervals max min( )
ij ij

d d−  and are unknown 

during the operation of the controlled object. 
In [11, 12], a method for designing a discrete controller with compensation of vari-

able delays in the characteristic equation of a multidimensional closed-loop control sys-
tem is implemented, the block diagram of which is shown in Fig. 2. 

 
Fig. 2 

According to model (16), the discrete transfer function of the controlled object will 
be equal to 
 1 1 1

R ( ) ( ) ( )W z A z B z− − −= , (20) 

and the discrete transfer function of the delay compensator is formed as follows: 

–
 

 

–
 

 

R(z) 

 

R(z) 

 

controller 
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 R( ) ( ) ( )k LW z W z W z= − , (21) 

where ( )LW z  is the discrete transfer function of the proposed object without delay, 
which equals 
 1 1( ) [ ( )] ( )LW z A z B z− −= Σ , (22) 

where the matrix ( )B zΣ  elements are defined as follows: 

 1

1
( )

ij

ij

p

k
k

B z b z−
=

 
 Σ =
 
 
∑ . 

Designing of the optimal structure of a multidimensional digital controller with 
variable delays compensation with known dynamics of the controlled object begins with 
the formation of a matrix discrete transfer function of a closed-loop system, which in-
cludes the proposed controlled object without delays (22) 

 1( ) [ ( ) ( )] ( ) ( )L LH z I W z Q z W z Q z−= + , (23) 

where ( )Q z  is the discrete transfer function of the controller designed for the intended 

object without delay ( )LW z . If the desired function ( )H z  is given, then from (23) we 
can determine 

 11
opt ( ) ( ) ( ) ( ) .LQ z W z H z I H z −−  = −   (24) 

In this case, the equation of the closed system will be closed-loop system 

 ( ) ( ) ( )y z H z G z= , 

where ( )y z  is the vector of undelayed controlled variables. 

As the desired discrete transfer function ( ),H z  a diagonal matrix with elements is 
selected 

 

0

0

1

1

1
( )

( ) ,
( )

1

i

i

T
T

i
ij T

i T

e z
y z

H z
G z

e z

− −

− −

 
 −
 
 = =

−



 1, ,i m=  , 

which provides an aperiodic transient process via the « ( ) ( )i iG z y z−  » channel. With the 

selected diagonal matrix ( )H z , there will be no cross connections between the ele-

ments of the vectors ( )G z  and ( ).y z  To regulate the speed of transient processes in 
a closed-loop system, a time constant iT  is used, which is selected when designing 
the control system. 

According to Fig. 2, the discrete transfer function of a multidimensional controller 
with a delay compensator has the form 

 1
R( ) ( )[ ( ) ( )] ( )p LW z I Q z W z W z Q z

−
 = + −  . (25) 

To obtain the optimal value opt ( )pW z , its optimal value (24) is substituted into this 

expression instead of ( )Q z . Then after transformations there is 

 1
opt п( ) ( ) ( ) ( ) ( )p LW z W z H z W z H z−

 = −  . (26) 
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Statement. If for the considered object without delay (22) a controller ( )Q z  is 

used, then the introduction of a multidimensional compensator ( )kW z  according to (21) 
in the feedback circuit with this controller excludes the discrete transfer function 

R ( )W z  with delays from the characteristic equation of the closed-loop system Fig. 2, 
the dynamics of which will be presented in the form 

 1
R( ) ( ) ( ) ( ) ( ) ( )Ly z W z I Q z W z Q z G z

−
 = +  . (27) 

The proof of this statement is given in [13]. 
The stability of the closed-loop system (27) is determined by placing the roots of 

the characteristic equation det[ ( ) ( )] 0LI Q z W z+ = , which contains only the discrete 

transfer function ( )LW z  of the considered object without delays. Thus, the delay varia-
bles have no effect in the system of Fig. 2 for its stability. 

The coefficients of polynomials 1( )A z− , 1( )B z−  model (16) are estimated using 
the recurrent least squares method. 

3.3. Design method of discrete controllers for stochastic objects with delays. 
This method is described in [14] for one-dimensional object with a delay and has found 
wide application for control various technological processes. 

The mathematical model of the control object is presented in the form of the AR-
MAX model 
 1 1 1( ) ( ) ( )d

t t tA z y z B z u C z− − − −= + ξ + η , (28) 
where  
 1 1

1( ) 1 m
mA z a z a z− − −= + + + , (29) 

 1 1 2 ( 1)
0 1 2 1( ) m

mB z b b z b z b z− − − − −
−= + + + + , (30) 

 1 1
1( ) 1 .m

mC z c z c z− − −= + + +  (31) 

The discrete delay time for the control action in model (28) is determined accord-

ing to 
0

1d
T
 τ

= + 
 

. 

The implementation of the optimal digital controller is performed based on the 
minimization of the quadratic optimality criterion 

 2 2
1{( ) ( ) }t d t t tJ E Py RG u u+ −= − + λ − . (32) 

where E  is the mathematical expectation operator, tG  is the setting action of the digital 
controller at 0 0[ ] [( 1) ]nT t n T≤ < + ; P  and R  — weighting coefficients; λ  — coeffi-
cient of amplification, with the help of which the quality of the transient process is regu-
lated. From a mathematical point of view, criterion (32) represents the generalized vari-
ance of the control error and the increment of the control action. 

Criterion (32) uses the predicted value of the output coordinate t dy +  for d  sam-
pling periods ahead. For this purpose, the work [14] developed a forecasting function 

 * 1 1 1 1
/ 1

1 [ ( ) ( ) ( ) ( ) ]
( )

t d t t ty L z B z u F z y L z
C z

− − − −
+ −

= + + η , (33) 

where polynomials 1( )L z− , 1( )F z−  are formed based on the application of Diophan-
tine equations 
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 1 1 1 1( ) ( ) ( ) ( )dC z L z A z z F z− − − − −= + . (34) 

In this case, the future coordinate 

 *
/t d t d t t dy y e+ + += + , (35) 

where t de +  is the prediction error. 
The synthesis of the optimal structure of the digital controller is implemented 

based on criterion (32) and (35) 

 * 2 2
/ 1{( ) ( ) }t d t t d t t tJ E Py Pe RG u u+ + −= + − + λ − . (36) 

The random error t de +  is not correlated with the discrete values of 1tu − , 1ty − , 

1tG −  for 0i ≥ , included in the forecasting function (33). Based on this, criterion (36) is 
divided into deterministic and stochastic components according to 

 * 2 2 2
/ 1( ) ( )t d t t t tJ Py RG u u+ −= − + λ − + σ , (37) 

where 2 2{( ) }t dE Pe +σ = , since the mathematical expectation *
/{2( )t d t tE Py RG+ − ×  

} 0t dPe +× =  due to the lack of correlation. 

Differentiating criterion (37) with respect to the control action tu  and then from 

equation 0
t

J
u
∂

=
∂

, we obtain the equation of the optimal controller 

 * *
/ / 1( ) 0t d t t d t t t tJ Py RG u u+ + −′= ψ = − + λ − = . (38) 

When substituting the prediction function (33), the controller equation (38) takes 
the form 

 1 * 1 1 1
/( ) ( ) ( ) ( ) 0t d t t t tC z F z y D z u H z G− − − −

+ψ = + + + δ = . (39) 
where 

 1

0
( ) d j

j
F z PF−

−
≥

′= ∑ ; 1 1 1 1

0
( ) ( ) (1 )d j

j
D z Pz G C z z− − − −

−
≥

′ ′= + λ −∑ ;  

 1 1( ) ( ).H z RC z− −= −  

A block diagram of control system with synthesized in such a way closed-loop control 
system, including a controlled object (28) and a digital controller (39), is shown in Fig. 3. 

 
Fig. 3 

Controlled object Digital controller 
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In [15, 16], the controller synthesis method (39), performed for a one-dimensional 
object (28), was implemented for a multidimensional controlled object, the model of 
which has the form ARMAX: 
 1 1 1( ) ( ) ( )t t d tA z y B z u C z v− − −

−= + ξ + , (40) 

where y  is the vector of deviations of the output (measured) controlled variables from 
their mathematical expectations with dimension ( 1)m× ; u  is the m -dimensional vec-

tor of deviations of control signals from zero average values; tξ  is the m -dimensional 
vector of sequences of independent, identically distributed random signals with zero 
mean; v  is the m -dimensional vector consisting of constant elements characterizing 
the steady-state values of the output signals y  at a zero value of the input signals u ;  

d  is discrete delay time 
0

1;d
T
 τ

= + 
 

 1z−  is delay operator (reverse shift) 

1
1t tz y y−
−= . Matrix polynomials ,A  ,B  C  of dimensions ( )m m×  are determined by 

the equations 
 1 1

1( ) k
kA z I A z A z− − −= + + + ; 

 1 1
0 1( ) k

kB z B B z B z− − −= + + + ; 

 1 1
1( ) k

kC z I C z C z− − −= + + + , 

where 0B  is a non-singular matrix, where I  is the identity matrix. 
The quality of control is determined by the quadratic optimality criterion 

 
2 21 1 1( ) ( ) ( )t d t tJ E P z y R z G L z u− − −

+
 = − + 
 

. (41) 

where ,P  ,R  L  are matrix polynomials, and G  is a m -dimensional vector of setting 
actions. The most common special cases of this criterion are 

 2 T
1 1 1 2 1{ [ ] diag{ , , , }[ ]}t d t t t m t tJ E y G u u u u+ − −= − + − λ λ λ − . (42) 

To apply optimality criteria (41), (42), a forecasting function has been developed 
[15, 16] 

 
1* 1 1 1 1

/ ( ) ( ) ( ) ( )t d t t ty C z F z y L z B z u
−− − − −

+
   = + + δ  
   , (43) 

which is obtained based on the modified Diophantine equation 

 1 1 1 1( ) ( ) ( ) ( )dC z L z A z z F z− − − − −= +   , (44) 

where matrix polynomials 1( ),C z−  1( ),L z−  1( )F z−  are formed based on the identities 

 1 1 1 1( ) ( ) ( ) ( )L z F z F z L z− − − −=  ; 

 1 1 1 1( ) ( ) ( ) ( )C z L z L z C z− − − −=  ; 

 1 1det ( ) det ( )L z L z− −= ; (0)L I= , 

and the shift vector (1) .L vδ =   
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The error in predicting the future vector of output coordinates t dy +  is equal to 

 *
/ ,t d t d t d te y y+ + += −  (45) 

where 1( ) .t d t de L z−+ += ξ  

When substituting into criterion (42) *
/t d t d t t dy y e+ + += + , it can be divided into 

deterministic and stochastic components 

 2 2T
1 / 1 1 2 1{ ( ) diag{ , , , }( )} { }t d t t t t m t t t dJ E y G u u u u E e+ − − += − + − λ λ λ − + .  (46) 

The optimal vector of control actions is determined based on minimizing criterion (46) 

 T *
0 / 1 2 1( ) [ ] diag{ , , , }( ) 0t d t t m t t

t

J B y G u u
u + −
∂

= − + λ λ λ − =
∂

 . (47) 

where 
T*

T /
0( ) t d t

t

y
B

u
+ ∂

=  
∂  

. 

Based on (43), (47), the equation of the optimal multidimensional controller is pre-
sented in the form 

 1 * 1 1 1
/( ) ( ) ( ) ( ) 0t d t t t tC z F z y R z u H z G− − − −

+ψ = − + + δ =    , (48) 
where  

 1 1 1 1 1 1
0 1( ) ( ) ( ) ( )( ) diag{ , , }(1 )T

mR z L z B z C z B z− − − − − −= + ⋅ λ λ − 

 ; 

 1 1( ) ( )H z C z− −= −  . 

The controller (48) minimizes the generalized dispersion (42) along the direct and 
cross channels of the controlled object (40). 

In [13], the controller (48) was modernized for a multidimensional controlled plant 
with various delays in the control channels 

 1 1 1( ) ( )diag{ } ( )id
t t tA z y B z z u C z v−− − −= + ξ + , 

where 
0

1i
id

T
 τ

= + 
 

 is the known delay at 1, 2, ,i m=  . 

3.4. «Pure» delay identification of the controlled object. The time delay along 
the control channels of technological objects varies depending on the operating modes 
and state of the object and connecting paths. 

Many works have considered the issues of delay estimation for controlled objects 
represented by a discrete transfer function 

 
1

1
( ) ( )( )
( ) ( )

dy z B zW z z
u z A z

−
−

−
= = , (49) 

where the polynomials with respect to the inverse shift operator have the form 

 1 1 2
1 2( ) 1 m

mA z a z a z a z− − − −= + + + + ; 

 1 1 2
1 2( ) .m

mB z b z b z b z− − − −= + + +  

In this case, the discrete delay is equal to 
0

d
T
 τ

=  
 

. 
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To derive the relations necessary to estimate the delay, model (49) was presented 
in an expanded form 

 
1

1
( )( ) ( )
( )

B zy z u z
A z

−

−
′

= , (50) 

where  
 max

max
( )1 1 2

1 2( ) m dm m
m m m dB z b z b z b z b z b z− +− − − − −

+′ ′ ′ ′ ′ ′= + + + + + +  . (51) 

In this case, maxd  is the maximum possible delay, which is considered, to be known for 
each controlled object. 

For the extended polynomial (51), which takes into account the delay, the follow-
ing relations hold: 
 0ib′ =  at 1, 2, ,i d=  ; 

 j j db b −′ =  at (1 ), (2 ), , ( )j d d m d= + + + ; 

 0kb′ =  at max( 1), , ( ).k m d m d= + + +  

The algorithm for estimating the parameters of the object model (50) using the re-
current least squares method (RLSM) was described as follows: 

 1 1 1 1
ˆ ˆ ˆ( )T

n n n n n nK y X− − − −θ = θ + − θ , (52) 

 1 1 1n n n nK P X− − −= µ , 
where 

 
max

T
1 2 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ{ , , , , , , , }m m da a a b b b +′ ′ ′θ =   , (53) 

 
max

T
1 1 1{ , , , , , }n n n m n n m dX y y u u− − − − − −= −   . (54) 

 T 1
1 1 1{ }n n n nX P X −
− − −µ = β+ , 0 1< β ≤ , 

 T
1 1 1 2[ ] /n n n nP I K X P− − − −= − β , 0 0P >> , (55) 

If the condition for obtaining consistent estimates according to the RLSM is met, 
then the parameters îb′  ( ˆ1, ,i d=  ) and k̂b′  at max

ˆ( 1), , ( )k m d m d= + + +  converge 
to zero at n →∞ . For a finite number of steps when estimating using RLSM, the values 
of these parameters will be significantly smaller compared with the parameters ˆ

jb′  for 

ˆ ˆ( 1), , ( )j d d m= + + , where m  is the order of the polynomial 1( )B z−  without delay. 

In this case, the estimate of the delay time d̂  was determined by founding the maxi-
mum number i  of the first parameters îb′  of the polynomial ˆ ( )B z′ , which will be small 
compared with the subsequent parameters of this polynomial. 

However, repeated simulations of such algorithm showed that the resulting delay 
time estimates d̂  very often turned erroneous. 

The error of estimates d̂  ranged from 0÷100 %. 
To obtain reliable estimates d̂ , a method based on calculating the impulse charac-

teristics of the controlled object was developed in [17]. In Fig. 4 it is wown shown a 
block diagram of the algorithm for estimating the delay. According to the algorithm, the 
estimation of delay d̂  and coefficients of the polynomial 1ˆ( )B z− , that is 1 2

ˆ ˆ ˆ, , , mb b b , 
is performed in the following sequence. 
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1. In block 1, to identify the parameters of the high-order model (50), the coeffi-
cients 1 2, , , ma a a , 

max1 2, , , m db b b +  are estimated at each sampling period in ac-

cordance with the measurements of the output and control action included in the vector 

1nX −  according to (54) using the extended RLSM (52)–(55) . 

2. To estimate the true delay time of an object d̂ , a method is used to calculate and 
compare the weighting functions (impulse characteristics) of the object using models 
(49) and (50), in which the polynomials in the denominators are equal. Using the ex-
tended model (50), in block 2 the weighting function ( )H n′  is calculated as an inverse 
transformation from 

 
1

1

ˆ ( )( )
( )

B zW z
A z

−

−
′

′ = . (56) 

As a result of dividing the numerator polynomial of this discrete function by the 
denominator polynomial, we obtain recurrence relations for calculating samples ˆ

kh′  of 
the weighting function ( )H n′  

 

max max max max

1 1

2 2 1 1 2 1 1

1 1

ˆ ˆ ;
ˆ ˆ ˆ ˆ ˆˆ ˆ ;

ˆ ˆ ˆ ˆˆ ˆ .m d m d m d m d

h b

h b a b b a h

h b a h a h+ + + −

′ ′=

′ ′ ′ ′ ′= − = −

′ ′ ′ ′= − − −





 (57) 

In this case, the estimated coefficients ˆia , îb′  of parameters of the object model (56) 
from the output of block (1) are supplied to the inputs of blocks 2, 3, 6. 

3. From the output of block 2 for calculating the weighting function according to 
the high-order model ˆ ( )W z′ , that is, samples (57), go to the second inputs of block 3 to 

calculate the weighting function ( )H n  according to the low-order model ˆ ( )W z , ac-

cording to (49). In this case, estimates of the coefficients ˆia , îb′  from identification 
block 1 are supplied to the first inputs of block 3. 

In block 3, the inverse z-transformation procedure for model (49) is implemented, 
as a result of which the weighting function samples ˆ

kh  for the low-order model are de-

termined. Since the transfer functions ˆ ( )W z′  and ˆ ( )W z  have the same polynomials in 

the denominator, and the numerator ˆ ( )W z  polynomial ˆ ( )B z  affects only those values 

of the weighting function samples ˆ
kh  that have indices ( 1), , ( )k d d m= + + , then the 

assumption ˆ ˆ
k kh h′=  is permissible at ( 1), , ( )k d d m= + + . Given this assumption, 

we can write 

 

max max max

1 2

1 1 1

2 2 2 1 1

1 1

ˆ ˆ ˆ 0;
ˆ ˆ ˆ ;
ˆ ˆ ˆ ˆˆ ;

ˆ ˆ ;

ˆ ˆ ˆˆ ˆ .

d

d d

d d d

d m d m

m d m d m d

h h h

h h b

h h b a h

h h

h a h a h

∆

+ +

+ + +

+ +

+ + −

= = = =

′= =

′ ′= = −

′=

= − − −









 (58) 
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Fig. 4 

The weighting function (58) samples are calculated for the entire values range of 
lag times max0, , 1d − . In this case, samples of the weighting function (57) of the ex-
tended object model, which were calculated in block 2, are used. 

4. Samples of the weighting functions calculated in blocks 2 and 3 are fed into 
block 4 to find the error function *( )S d  defined by the relation 

 

*

*

2

1

* * *

2
* max

1

ˆ( ) ;

( ) 0 a 1, , ;

ˆ ˆ( ) , [0, , 1],

d

k
k

L
k k

k m d

h

S d t k d d m

h h d d

=

= + +


 ′

= = + +

 ′ − ∀ ∈ −



∑

∑





 (59) 

where 95 0/L t T= ; 95t  — time for the transient response to reach 95 % of the steady-
state value; 0T  is the sampling period. 

5. The error function values *( )S d  from block 4 go to block 5, where the mini-
mum value is determined  

 min * * * max
ˆ( ) min{ ( )}; [0, , 1]S d S d d d= ∀ ∈ − . (60) 

After the values ( )iS d  are calculated, according to (60), the minimum value of 

this function is found for all * max
ˆ[0, , 1]d d∈ − . 

The value *d  at min{ ( )}iS d  is the desired estimate of the delay time of the object. 

Thus, from the set of weighting functions (58) of the discrete model (49), one ˆ
kh  

is determined that best agrees with the weighting function ˆ
kh′  of the extended model of 

the object ˆ ( )W z′ . 

ing ing 
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6. The value d  found in block 5 is transferred to the first input of block 6 to calcu-
late estimates of the coefficients ˆ

kh′  of the low-order model, the second input of which 
receives coefficients ˆia  from block 1, and the third input receives weighting function 

samples ˆ
kh′  from block 2. 

Based on the assumption that ˆ ˆ
k kh h′=  for ( 1), , ( )k d d m= + + , in block 6, esti-

mates of the coefficients îb  of model (49) are calculated according to (58) 

 

ˆ1 1

ˆ ˆ2 12 1

ˆ ˆ ˆ1 11 1

ˆ ˆ ;

ˆ ˆ ˆ ;

ˆ ˆ ˆ ˆˆ ,

d

d d

m mm d m d d

b h

b h a h

b h a h a h

+

+ +

−+ + − +

′=

′ ′= +

′ ′ ′= + + +





 (61) 

which, together with the delay time estimate d̂  and coefficients ˆia , will be used in the 
synthesis of optimal digital controllers. 

To identify the parameters ia , ib  and delay time ,d  it is necessary to apply a sig-
nal containing a wide range of harmonic components to the input, for example, a se-
quence of rectangular pulses. 

Conclusion 

The theory of automatic control based on input-output models (transfer functions) 
began to develop in the late 20s of the twentieth century. In the early 1970s, input-
output models received significant development with the advent of stochastic discrete 
time series regression models. These models have become widely used to describe the 
dynamics of economic and financial processes due to their simplicity, since it has be-
come possible to describe the dynamics of complex systems using algebraic equations 
with respect to the inverse shift operator. In this case, it turned out to be very simple to 
take into account the delay of the input signal of the controlled object. This made it pos-
sible to take into account the delay in the control actioned when designing regulators in 
automatic control systems. 

Also, when using input-output models in discrete time, it is easy to use the recur-
rent least squares method to estimate model coefficients, which can change due to 
changes in the dynamics of the control object during operation. 

It is necessary to note the following significant limitations for the use of input-
output models for solving various classes of control theory problems. 

In time series regression models, «white» noise signals are used as input stochastic 
disturbances, the mathematical expectation of which is zero. However, in real control 
processes over limited periods of time, the average value of disturbances, as a rule, does 
not equal zero. 

When describing the dynamics of controlled objects based on transfer functions 
during the design and study of control systems in transient modes, it is necessary to as-
sume the presence of zero initial conditions. 

When designing a multidimensional control system using a matrix discrete transfer 
function or an ARMAX matrix model, it is necessary to satisfy the condition of equality 
of dimensions of the vectors of output controlled coordinates and control actions. This 
sharply narrows the class of controlled objects when using these models. 

When using input-output models, the dynamics of unmeasured internal movements 
in multidimensional controlled objects, which are not taken into account in the vector of 
output measured coordinates, are not taken into account. 
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And finally, when using input-output models, it is almost impossible to automate 
the operation of individual control loops in multidimensional automatic control systems 
in transient modes. 

Due to these limitations, the use of input-output models has found wide application 
in automatic control systems to stabilize the operation of technological processes. 
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У статті виконано огляд математичного опису динаміки неперервних та 
дискретних лінійних стаціонарних систем та обʼєктів, що застосовується на 
етапі розвитку класичної теорії автоматичного керування у формі матема-
тичних моделей типу «вхід–вихід». Описано часові та частотні характерис-
тики неперервних та дискретних систем керування, розглянуто типові лан-
ки стаціонарних систем, наведено параметричні дискретні моделі обʼєктів 
у складі типових контурів цифрового керування. Розглянуто стохастичні 
дискретні авторегресійні моделі стаціонарних часових рядів, які застосо-
вуються для опису динаміки обʼєктів при синтезі цифрових систем керу-
вання. Здійснено огляд типових законів керування для реалізації неперерв-
них та дискретних регуляторів. Розглянуто метод синтезу дискретних ре-
гуляторів для багатовимірних обʼєктів керування з різними запізненнями, 
невідомими та змінними, за допомогою якого здійснюється компенсація 
змінних запізнювань в характеристичному рівнянні замкнутої системи ке-
рування. Розглянуто поширену методику синтезу одно- та багатовимірних 
регуляторів для стохастичних обʼєктів із запізнюваннями на основі моде-
лей ARMAX. Проведено аналіз підходів до ідентифікації запізнювань в 
обʼєктах керування та розглянуто метод ідентифікації запізнення при за-
стосуванні моделей типу «вхід–вихід», заснований на обчисленні та порів-
нянні імпульсних характеристик для розширеної та нерозширеної моделей 
обʼєкта керування. Наведено аналіз переваг та недоліків моделей типу 
«вхід–вихід», а також можливостей їх застосування для вирішення різних 
класів задач теорії керування. 

Ключові слова: передатна функція, закони керування, дискретні регуля-
тори, ідентифікація, об’єкти із запізненням. 
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