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The article provides a review of the mathematical description of the dynamics of
continuous and discrete linear stationary systems and objects, used at the devel-
opment stage of the classical theory of automatic control in the form of mathe-
matical models of the «input-output» type. The time and frequency
characteristics of continuous and discrete control systems are described, typical
links of stationary systems are considered, parametric discrete models of objects
as part of typical digital control loops are presented. Stochastic discrete
autoregressive models of stationary time series used to describe the dynamic
objects in the synthesis of digital control systems are considered. A review of
standard control laws for the implementation of continuous and discrete
controllers has been completed. A method for synthesizing discrete controllers
for multidimensional controlled objects with different, unknown and changing
delays is considered, through which variable delays are compensated in the
characteristic equation of a closed-loop control system. A common technique for
synthesizing one-dimensional and multidimensional controllers for stochastic
objects with delays based on ARMAX models is considered. An analysis of ap-
proaches to identifying delays in controlled objects is carried out and a method
for identifying delays when using input-output models is considered, based on
the calculation and comparison of impulse responses for extended and non-
extended models of the controlled object. An analysis of the advantages and dis-

© V. ROMANENKO, V. GUBAREYV, 2023
MiscHapoOoHutl HayKo8o-mexHiuHUIL HCYPHAT
IIpobremu xepysanns ma ingpopmamuxu, 2023, Ne 6 5



advantages of «input-output» type models is given, as well as the possibilities of
their application for solving various classes of control theory problems.

Keywords: transfer function, control laws, discrete controllers, identification,
objects with delay.

Introduction

In the first part [1] of this series of articles, the main directions in the development
of control theory based on the state space method were analyzed. It was noted that one
of the main limitations of this method when designing automatic control systems is the
fact that state space method models are very difficult to apply to systems with delay, es-
pecially when delays in control objects change over time. Therefore, the authors consid-
ered it appropriate, to describe as well other available control methods developed over
several decades for the design of control systems based on input-output process models,
and to focus attention on methods for control synthesis in the presence of delays in con-
trol objects with various features of the delays influence on the dynamics objects, and
also analyze the problem of estimating delays in input-output models that describe digi-
tal control systems.

Mathematical description of continuous linear stationary systems

In classical control theory, the main mathematical model of the dynamics of linear
systems and control objects of the «input-output» type is the transfer function

y(s)  bys™ +bpgs™ ...+ by

1

W(s)= - n n-
u@s)  a,s"+a, 48" +...+ag

)
which is the ratio of the Laplace transform y(s) of the coordinate y(t) at the output of
the system to the Laplace transform u(s) of the input signal u(t) under zero initial
conditions. Moreover, m <n and the Laplace operator s =c+ jo.

For absolutely integrable functions, we can put ¢ =0 in the operator s, then the
transfer function (1) can be written for s = jo as

W(je) = YU _ b ()" +bn1(jo)" "+ +by
u(jo)  a,(jo)" +a,_1(jo)" +...+ 8

=P(0)+jQ(w), )

where W (jw) is called the frequency transfer function, which in control theory is used
in exponential notation and is called the amplitude-phase frequency characteristic

W (jo) = A(w)e ),

where A(oa):\le(o))+Q2(o)) is amplitude-frequency  characteristic, and

Q(w)
P(w)

As standard input in control theory, a step signal u(t) =1(t) and signal in the form

¢(w) = arctg — phase-frequency characteristic.

of a & -function (delta function) are used.
The response of the system’s output signal y(t) to a single step disturbance

u(t) =1(t) under zero initial conditions is called the system’s transient response h(t).
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The system’s response to a single impulse input disturbance, that is to 8(t), under
zero initial conditions, was called the impulse transition or weighting function of the

system k(t).

In this case, the transfer function of the system is equal to the Laplace image of the
impulse transition function

L{k(®)}=W(s).

Based on the transfer function model (1), the following typical links of stationary
systems have been developed and are widely used in control theory, which are shown in

3)

Table 1.
Table 1
. Transition function Weight weighting Transmission
Link type h(t) function w(t) function W (s)
1 2 3 4
Inertia-free link h(t) =k-1(t) w(t) =k -3(t) W(s)=k
Aperiodic link _t K -+ _k
of 1st order h(t)=k-@L—e T)I(t) Wt =e T 1) W) =1
The ideal Tkt L. _k
integrating link h(t) =k-t-1(1) w(t) =k-1(t) W (s) = 3
Integrating link ¢ t K
with )=k t-Ta-e DEO | wo=k-a-—e g | O 5@
deceleration (1+7Ts)
The ideal e _ . 43 -
differentiator h(t) =k-3(t) w(t) =k dt W(s)=ks
w(t) = K S(t) —
Differentiating K -t ( )_? © ks
link with hit)=—e T -1(t) t W(s)=
deceleration T LS T 1+Ts
2
T
h(t) =k -[L—e ™" (cosAt +
Y o .
+--sinAt)]-1(t);
A w(t) = W (s) =
) ) - c
Oscillatory link st A =L2~e”‘ sinAt-1() - —
T A AT 1+26Ts+T2%s
A= Tl«/l— g2
Delayed link t-1) 3(t—1) W(s)=1-e"®

The frequency characteristics of the links shown in the table are described in detail

in [2].

2. Mathematical description of discrete linear stationary systems

Discrete automatic control systems (DACS) are characterized by the fact that at
least one of the coordinates that determine the state of the system is discretized. De-
pending on the type of quantization (by level, by time, by level and by time), discrete
systems are divided accordingly into three types: relay, pulse and digital.

Unlike continuous systems, the dynamics of which are described by differential
equations, pulsed systems, as was established in the classical work [3], are described by
difference equations, which have received limited use in the design of control systems
because of cumbersome calculations.
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As a result of the search for new approaches, a new mathematical apparatus was
developed using the discrete Laplace transform

D{x(nTg)}= 3. x(nTp)e ™™ = X" (), (4)

n=0
where x(nTy) is the lattice function, and T is the sampling period. From (4) it follows
that X*(s) is a function of €™, This led to the fact that the description of the dynam-

ics of control systems was obtained in the form of transcendental equations for the op-
erator s.. To eliminate this complexity, the operator was used in [4-8]

z=¢%T0, (5)
on the basis of which the discrete Laplace transform (4) was presented in the form of

z-transform

X(2) = io x(NTy)z ™" . (6)

The use of z-transformation for the coordinates of the control system made it pos-
sible to describe the dynamics of systems in the form of algebraic equations with re-
spect to the operator z.

For a continuous system W(s), the input of which is a pulse signal (Fig. 1), the

formation of a discrete transfer function is implemented as follows:

pulse element

u(?) W (f) Continuous W7
N system -
Wy(s)

Fig. 1

The signal at the output of the pulse element will be equal to

CM)= 3 u(To)(t-nTy)

N=—o0
or in the form of discrete Laplace transform

u'(s) = f u(nTy)e oS .

N=—o0o0
Then the signal at the output of the continuous system

[ee]

y(t) = k_z Wo (t —KTg)u(KTo),

where wg (t) is the impulse transition (weighting) function of a continuous system.
The discrete signals y(nTy) at the output of a continuous system, previously at
rest, will have the form

YT = 3 TI(n—k)ToJu(KTo)

k= oo
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where I'g(nTy) is the pulsed lattice-frequent transition function of a continuous system.
For a lattice function of the output signal, the z-transform will be equal to

A=Y@ = 3 y(T)z"= 3 | 3 To[(-KTo]ukTp)z™ |=

N=— o n=—oo| k=—

= i u(kTy) i To[(n-K)Tp]z™".

k=—00 N=-—c
By performing the replacement m=n-k we obtain

oo}

Y@= 3 UKz T To(mTo)z™ =u(z)Wo(s).

k=—o0 m=-

from here the expression for the discrete transfer function of the system is obtaine

Wy (2) =%= f To(mTe)z ™. 7)

2.1. Parametric discrete models of controlled objects of the «input-output»
type. To implement control systems based on microprocessor systems, a mathematical
description of controlled objects was presented in the form of parametric discrete mod-
els that describe the dynamics of a series-connected digital-to-analog converter and a
controlled object. For the convenience of analysis and synthesis of digital control sys-
tems, the mathematical model of the DACS in the form of a zero-order extrapolator
WE(s) and the model of the controlled object Wy (s) were combined together. Such a

union was called the reduced continuous part (RCP) of the object, the transfer function
of which has the form

W (5) =We (5) W 5).

The discrete transfer function of the RCP is defined as follows:

—Tos _
We (2) = Z {We () Wy (9)} = Z {1“1 Wo (s)} - (271)2 {W‘J—‘s)} e

S

For widely used models of typical DACS links, Table 2 shows discrete transfer
functions of the RCP, developed on the basis of (8).

When using the reverse shift operator z‘lyn =Yn_1; z‘lun =Up,_ it is possible

to obtain difference equations of the RCP for aperiodic links of the first and second
order, respectively

Yn + & Yn-1 =bln_q,

where
Ty _To
a =-€ %1; b =k(l-e A),
and also
Yn +@1Yn1+32Yn_2 =bjup_g +boup_o,
where

_To _y _To _-IV
a]_:—e Tl"re T2 ,a2:e TlX X e Tz,b_l_:kC3, b2:kC4.
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Table 2

Transfer function

Link type Wo(s) Discrete transfer function RCP Wy (z)
,TD
k-{l—e Tl]zl
Aperiodic link of 1st k
order 1+Tgs _To
1[e Tl]zl
1Ty
k.(Cl+CTzz‘1)z‘d‘1; g :[i} Cielie T
_ | To
Aperiodic 1st order link k-e™™ 1[9 ]Z
with delay 1+T;s
uTy To
Co=e " —e " p 1 (=0T
TO

k-(Cs +C42’1)z’l

Aperiodic link of 2nd k _I,D _;o
order (1+T;8)(1+T,5) Cooq 8 2-Te *.
’ T-T
A

2.2. Stochastic discrete models of stationary time series. In [9], stochastic dis-
crete models of stationary time series were proposed to describe the dynamics of eco-
nomic processes. In the theory of automatic control, the ARMAX model (autoregressive
and moving average with an additional input signal) began to be widely used.

Az Yy, =Bz Hu +C(z g, 9)

where 'y, are discrete samples of the output coordinate of the control object, presented
in the form of deviations relative to the zero average; u, — discrete samples of the con-
trol signal in the form of deviations relative to the zero average; &; is disturbance in the
form of discrete white noise.

Polynomial expressions for the reverse shift operator 271 have the form:

Az =l+az  + . +ay 2

Bzl =biz t+byz 2 +...+ by, 2™
nC

C(zh=1+ (‘,lz‘1 +...4Cy 7

Subsequently, the ARMAX model began to take into account control delay and
displacement v as follows:

A(z‘l)yt -z B(z‘l)ut + C(z‘l)ét +V,

where d = {Ti} is an integer dividing the delay time t by the quantization period T,
0

and v is the offset, which is set if the mathematical expectation is E{y;} = 0.
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The ARMAX model is also used to describe multidimensional controlled objects in
a stochastic environment

Az =2 B o +CZ g +V, (10)

where V;, T, & are the vectors of output coordinates, control actions and disturb-
ances respectively, and the matrix polynomials have the form

Az Y =1+Az 4+ Az
B(z 1) =Bz t+Byz % +...+ B2 ™
CizhH=1 +(flz‘1+...+(fncz’”°.

3. Methods for design of linear automatic control systems

3.1. Model control laws. The control law is the function of the control action syn-
thesized in the controller from the control error u(t) = ¢{e(t)}. For continuous control-

lers, the typical control law is the proportional-integral-differential (P1D) control law
u) = K {e(t)+— [e(t)dt +T, dz(tt)} (11)

which is widely implemented to control various technological processes.

In discrete form, the PID control law is implemented through a positional and high-
speed algorithm [10].

The positional algorithm assumes the formation of the full value of the control ac-
tion at each sampling period

e(i)+e(i—-1 e(n)+e(n-1
u(n):K{e(n) T $e)re-) 7 o) )} w2
p i=1 0
In a unified form, law (12) is implemented in a microprocessor system as follows:
u(n) =u(n-1)+ Age(n)+ Ae(n-1) + Ae(n-2), (13)
where
A =Kp 1+T—O+T—d ,
2T, Ty
A=, [1-T0 Ta |
2T, T
A = KpT—d.
To

In distributed microprocessor PID control systems, the control law is implemented
in the form of a high-speed algorithm, in which at each sampling period an increment of
the control action is formed in the discrete controller

Au(n) =u(n)—u(n-1) =
{ } (14)
[e(n)—e(n-1)] +2—[e(n) +e(n— 1)]+ [e(n) 2e(n-1)+e(n-2)]
Tp
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The discrete transfer function of the PID controller (13) has the form

-1 -2
Wp(z):u(z)_AO+Alz + Az _ (15)

e(z) 1-77t

3.2. A method for designing discrete controllers for multidimensional objects
with various unknowns and varying delays. The discrete model of these control ob-
jects has the form [11]:

A MY(2)=B(E (). (16)
where y(z) is the vector of controlled output variables with dimension (mx1); U(z) is
the vector of control actions (mx1); K(z‘l), §(z‘1) are matrix polynomials of di-

mension (mxm) with elements

1 7

N e B
Aj(z7) =0j 8,7 .2 I, (17)

B [
Bj(z ") =(by, 2 +by 2% kbp 2 M)z (18)
(i=1...,m;j=1..m),

where oj; is the Kronecker function, and 271 is the inverse shift operator by To, and

dminij is the known minimum delay in discrete form along the ij control channel. In this

case, the order pj; in (18) is selected taking into account the maximum interval of

change of the discrete delay along the ij channel
Pij = Gij + (Amax; —dmin;;)- (19)
In this method, delays d;; change at intervals (dmaxij —dminij) and are unknown

during the operation of the controlled object.

In [11, 12], a method for designing a discrete controller with compensation of vari-
able delays in the characteristic equation of a multidimensional closed-loop control sys-
tem is implemented, the block diagram of which is shown in Fig. 2.

controller 17 ,(z)

u(z) ¥(2)

2] ) | >

124 m— ¢ )

Ti0)-@ K

Fig. 2

According to model (16), the discrete transfer function of the controlled object will
be equal to

Wr(2)=A(zhHBE™), (20)

and the discrete transfer function of the delay compensator is formed as follows:
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Wy (2) =W (2) -Wg (2). (21)

where W, (z) is the discrete transfer function of the proposed object without delay,
which equals
Wi (2) =[AGz )] '2B(2) (22)

where the matrix XB(z) elements are defined as follows:

IB(z)=| bkij .
k=1

Designing of the optimal structure of a multidimensional digital controller with
variable delays compensation with known dynamics of the controlled object begins with
the formation of a matrix discrete transfer function of a closed-loop system, which in-
cludes the proposed controlled object without delays (22)

H(z) = [1 +W_ (2)Q(2)] "W (2)Q(2), (23)
where Q(z) is the discrete transfer function of the controller designed for the intended

object without delay W, (z) . If the desired function H(z) is given, then from (23) we
can determine

Qopt () =W @A@[1-A@) ] (24)
In this case, the equation of the closed system will be closed-loop system
¥(2)=H(@)G(2).,
where y(z) is the vector of undelayed controlled variables.

As the desired discrete transfer function H(z), a diagonal matrix with elements is
selected

1-e /Tiz 1

which provides an aperiodic transient process via the « G; (z) — ¥; (z) » channel. With the
selected diagonal matrix H(z), there will be no cross connections between the ele-
ments of the vectors G(z) and y(z). To regulate the speed of transient processes in

a closed-loop system, a time constant T; is used, which is selected when designing
the control system.

According to Fig. 2, the discrete transfer function of a multidimensional controller
with a delay compensator has the form
_ — _ _ -1 —
W, (2) =[ 1 +Q(2)W (2)-Wr (2)]] " Q(2). (25)
To obtain the optimal value Wy (2) , its optimal value (24) is substituted into this
expression instead of Q(z) . Then after transformations there is
_ — _ — -1 —
Wopt (2) =[ WL (2) - H(2)W,, ()] " H(2). (26)

MidcHapoOHUIl HAYKOBO-MEXHIUHUT HCYPHAT
Ilpo6remu kepysannss ma ingpopmamuxu, 2023, Ne 6 13



Statement. If for the considered object without delay (22) a controller Q(z) is

used, then the introduction of a multidimensional compensator W, (z) according to (21)
in the feedback circuit with this controller excludes the discrete transfer function
Wg (z) with delays from the characteristic equation of the closed-loop system Fig. 2,
the dynamics of which will be presented in the form

¥(2) =We ()] 1+ QW ()| " Q(2)G(2) . 27)

The proof of this statement is given in [13].
The stability of the closed-loop system (27) is determined by placing the roots of

the characteristic equation det[l +Q(z)W, (z)]=0, which contains only the discrete
transfer function W (z) of the considered object without delays. Thus, the delay varia-
bles have no effect in the system of Fig. 2 for its stability.

The coefficients of polynomials K(z’l), I§(z_l) model (16) are estimated using

the recurrent least squares method.

3.3. Design method of discrete controllers for stochastic objects with delays.
This method is described in [14] for one-dimensional object with a delay and has found
wide application for control various technological processes.

The mathematical model of the control object is presented in the form of the AR-
MAX model

Az Yy =2 BE U +CE e+, (28)
where
Az Y =1+azt+. . +a,z ™, (29)
B(z Y =by+byz t+byz 2 +...+by 4z (MY (30)
Cz Y =1+cz i+ +cpz ™. (31)

The discrete delay time for the control action in model (28) is determined accord-

. T
ingto d =| — |+1.
’ {To}r

The implementation of the optimal digital controller is performed based on the
minimization of the quadratic optimality criterion

J = E{(PYgsq —RG) + MU — 1)’} (32)
where E is the mathematical expectation operator, G; is the setting action of the digital

controller at [nTo]<t<[(n+1Ty]; P and R — weighting coefficients; A — coeffi-

cient of amplification, with the help of which the quality of the transient process is regu-
lated. From a mathematical point of view, criterion (32) represents the generalized vari-
ance of the control error and the increment of the control action.

Criterion (32) uses the predicted value of the output coordinate y,,4 for d sam-

pling periods ahead. For this purpose, the work [14] developed a forecasting function

Voo = 2 (211) [LEYBE Yy + FE Yy +LE D, (33)

where polynomials L(z’l), F(z’l) are formed based on the application of Diophan-
tine equations
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czhH=LzHAazH+z7F@@ . (34)

In this case, the future coordinate

Yird = Verdst +Cad - (35)

where e 4 is the prediction error.

The synthesis of the optimal structure of the digital controller is implemented
based on criterion (32) and (35)

3 = E{(PY,ast + Perrg —RGr)? +A(uy —Up_1)?}. (36)

The random error &4 is not correlated with the discrete values of Uiy, g,
G¢_ for i 20, included in the forecasting function (33). Based on this, criterion (36) is
divided into deterministic and stochastic components according to

3 = (Pyeds —RG)? + MUy —Up_1)* +07, 37)
where o2 = E{(PeHd)z}, since the mathematical expectation E{2(Pyt*+d,t —-RG;) x
xPe; 4} =0 due to the lack of correlation.

Differentiating criterion (37) with respect to the control action u; and then from

equation aa—‘] =0, we obtain the equation of the optimal controller
Ut

J = Vrdn = PYras — RG +A/(Ug ~Ug4) = 0. (38)
When substituting the prediction function (33), the controller equation (38) takes
the form
CZ Hrsan = F(@ )Y +D(@ Huy +H(Z )G +5=0. (39)
where

F(zY= X PR_j; DE Y= Y Priey j+Czhva-zY);
j=0 j=0

H(zY)=-Rc(z)).

A block diagram of control system with synthesized in such a way closed-loop control
system, including a controlled object (28) and a digital controller (39), is shown in Fig. 3.

&— c(z™h

u, |z9B(iz"H Vi
A= +

HED ¥ D)

Tr
F(z™h

Digital controller

Controlled object

Fig. 3
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In [15, 16], the controller synthesis method (39), performed for a one-dimensional
object (28), was implemented for a multidimensional controlled object, the model of
which has the form ARMAX:

AV =B g +C(z G +V, (40)
where Y is the vector of deviations of the output (measured) controlled variables from
their mathematical expectations with dimension (mx1); U is the m-dimensional vec-

tor of deviations of control signals from zero average values; & is the m-dimensional

vector of sequences of independent, identically distributed random signals with zero
mean; V is the m-dimensional vector consisting of constant elements characterizing

the steady-state values of the output signals y at a zero value of the input signals U ;

T

d is discrete delay time d={ }1; 71 is delay operator (reverse shift)

0
27y, = y,_4. Matrix polynomials A, B, C of dimensions (mxm) are determined by
the equations
Az Y =1+Az 4+ A
B(zh)=By+Bizt+...+B.z7¥;
CzhH=1+Cz 1 +.. . +Cz¥,

where By is a non-singular matrix, where | is the identity matrix.
The quality of control is determined by the quadratic optimality criterion

I=E { P9 -RE G| +HE<z1)ﬁtH2} - (41)

where P, R, L are matrix polynomials, and G is a m-dimensional vector of setting
actions. The most common special cases of this criterion are

— =112 - . _
3 = E{|[Vera Gy +[0 ~Uq]" diagliy, 2z, ..., A T ~ T} (42)

To apply optimality criteria (41), (42), a forecasting function has been developed
[15, 16]

* = _ 71 = _ _ = _ _ —_
Voan =| @D | [Fehm+LaBE u+5], 43)
which is obtained based on the modified Diophantine equation
Ca Y=L hHagh+F @Y, (44)

where matrix polynomials C;:(z‘l), f(z‘l), E(z‘l) are formed based on the identities

h

@HF@EYH=FEHLE™);
CE Lz Y=L HeE™h:
detL(z V) =detL(zY); LO)=1,
and the shift vector 5 = L()V.
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The error in predicting the future vector of output coordinates y; 4 is equal to
€+d = Yird ~ Yerd/ts (45)

_ = _l p—
where &4 =L(z )&q-
When substituting into criterion (42) Vi,.q = Vt*+d/t +8.,4, it can be divided into
deterministic and stochastic components

3y = EQVeean -G + @ ~ G o) diagfhg, A, oo, A} @ ~ G )} + R a3 (46)

The optimal vector of control actions is determined based on minimizing criterion (46)

0oJ — _x — ; o
- (Bo) [Vexdst — Gil+diag{iy, Ay, .o A} (T —Ti_1) = 0. 47)
t
* T
where (EO)T:[Ml )
Ol

Based on (43), (47), the equation of the optimal multidimensional controller is pre-
sented in the form

CMtan = FEH% -RE Yy +H(ZzHG +5=0, (48)
where

Rz Y=L HBE Y +C B )t -diag{hy, ..., hy}A-271);

Az Y =-Ci™Y).

The controller (48) minimizes the generalized dispersion (42) along the direct and
cross channels of the controlled object (40).
In [13], the controller (48) was modernized for a multidimensional controlled plant
with various delays in the control channels
Az Yy, =B(z Y diag{z %3, + C(z H)E +7,
where d; = 4
To
3.4. «Pure» delay identification of the controlled object. The time delay along
the control channels of technological objects varies depending on the operating modes
and state of the object and connecting paths.
Many works have considered the issues of delay estimation for controlled objects
represented by a discrete transfer function

_y@) _ 4 BEH
W(z) = o z =y (49)

}1 is the known delay at i =1,2,..., m.

where the polynomials with respect to the inverse shift operator have the form
Az =1+az t+az %+ ranz ™;

B(z )=tz t+byz 2+ . +byz ™

In this case, the discrete delay is equal to d = {Tl} .
0
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To derive the relations necessary to estimate the delay, model (49) was presented
in an expanded form

B'(z !
v =2y, (50)
A(z7)
where
B'(z 1) =bjz sz 2+ bz ™ bz M by 2 (M) (51

In this case, dy,a is the maximum possible delay, which is considered, to be known for

each controlled object.
For the extended polynomial (51), which takes into account the delay, the follow-
ing relations hold:
bi=0ati=12..,d;

b} =bj_q at j=(+d),(2+d),...,(m+d);
by =0 at k=(m+d+1),..., (M+d )

The algorithm for estimating the parameters of the object model (50) using the re-
current least squares method (RLSM) was described as follows:

én = 6nfl +Kna(Yn - )zgflénfl) ) (52)
K h1=Hn F)n—l)zn—l*
where
0={a,4,.... 4,5 D5,.... Bfpq 3, (53)
)er— ={-Yn-1:--» Yn-m Un-1, -, un—m—dmax}' (54)

ny =B+ X1 4P X, 43t 0<p<1,
Pr1 =01 - Ky Xy 1Ph_o /B, Py >>0, (55)

If the condition for obtaining consistent estimates according to the RLSM is met,
then the parameters Bi’ (i=1..., &) and 5‘; at k = (m+&+1), .., (M+dppax) converge
to zero at n — oo . For a finite number of steps when estimating using RLSM, the values
of these parameters will be significantly smaller compared with the parameters 6} for

j= 1+1), ..., (d +m), where m is the order o the polynomial B(z™") without delay.
j=(d d h he order of the pol | 1y without del

In this case, the estimate of the delay time d was determined by founding the maxi-
mum number i of the first parameters 6{ of the polynomial é’(z) , which will be small

compared with the subsequent parameters of this polynomial.
However, repeated simulations of such algorithm showed that the resulting delay

time estimates d very often turned erroneous.
The error of estimates d ranged from 0+100 %.

To obtain reliable estimates d , a method based on calculating the impulse charac-
teristics of the controlled object was developed in [17]. In Fig. 4 it is wown shown a
block diagram of the algorithm for estimating the delay. According to the algorithm, the

estimation of delay d and coefficients of the polynomial é(z‘l) , that is 61 62, Bm ,
is performed in the following sequence.
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1. In block 1, to identify the parameters of the high-order model (50), the coeffi-
cients aj,8y,...,8m, by, 0y, ..., by, q  are estimated at each sampling period in ac-

cordance with the measurements of the output and control action included in the vector

X1 according to (54) using the extended RLSM (52)—(55) .

2. To estimate the true delay time of an object d , amethod is used to calculate and
compare the weighting functions (impulse characteristics) of the object using models
(49) and (50), in which the polynomials in the denominators are equal. Using the ex-
tended model (50), in block 2 the weighting function H'(n) is calculated as an inverse
transformation from
B'(z)
AzY

W'(z) = (56)

As a result of dividing the numerator polynomial of this discrete function by the
denominator polynomial, we obtain recurrence relations for calculating samples ﬁﬁ of
the weighting function H'(n)

>
>

N

~ab] =by —&h;

.. N
N~

(57)

|1n+dmax = br'n+dmaX _alhr’n+dmax—1 _-'-_amhc'imax-

In this case, the estimated coefficients &;, 6{ of parameters of the object model (56)

from the output of block (1) are supplied to the inputs of blocks 2, 3, 6.
3. From the output of block 2 for calculating the weighting function according to

the high-order model V\7’(z), that is, samples (57), go to the second inputs of block 3 to
calculate the weighting function H(n) according to the low-order model V\7(z), ac-

cording to (49). In this case, estimates of the coefficients &, 6{ from identification

block 1 are supplied to the first inputs of block 3.
In block 3, the inverse z-transformation procedure for model (49) is implemented,

as a result of which the weighting function samples ﬁk for the low-order model are de-
termined. Since the transfer functions V\7’(z) and V\7(z) have the same polynomials in
the denominator, and the numerator V\7(z) polynomial é(z) affects only those values
of the weighting function samples ﬁk that have indices k = (d +1), ..., (d + m), then the

assumption ﬁk = ﬁ,; is permissible at k =(d +1),..., (d +m). Given this assumption,
we can write

>

by =hy =...=hy 20;
hgi1 =Nge1 =by;

ha+2 =hgi2 =0 —a1hg.q;

> I

(58)
hgm =Ngsm:

hm+dmax = _alhm+dmax 17+~ 8n hdmax :
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S(d.)

(@ Calculation of /5> . .
- . . ~ Det, tl
coefficient estimates b; for elermining the wimmum

value of the error function
a low-order model

b;

Fig. 4

The weighting function (58) samples are calculated for the entire values range of
lag times O, ..., da —1. In this case, samples of the weighting function (57) of the ex-
tended object model, which were calculated in block 2, are used.

4. Samples of the weighting functions calculated in blocks 2 and 3 are fed into
block 4 to find the error function S(d«) defined by the relation

d* ~
> ()%
k=1
S(d*)= O at k=d*+1,...,d*+m; (59)
L ..
> (h —h)?, Vs €[0, ..., dpay — 11,
k=m+d.+1

where L =tgg /Ty ; tgs — time for the transient response to reach 95 % of the steady-
state value; Ty is the sampling period.

5. The error function values S(d«) from block 4 go to block 5, where the mini-
mum value is determined

Spmin (d+) = Min{S(d«)}; Vs« €[0, ..., dyay —11. (60)
After the values S(d;) are calculated, according to (60), the minimum value of

this function is found for all d« [0, ..., dy. —1].
The value dx» at min{S(d;)} is the desired estimate of the delay time of the object.

Thus, from the set of weighting functions (58) of the discrete model (49), one ﬁk
is determined that best agrees with the weighting function ﬁ|§ of the extended model of

the object V\7’(z) .
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6. The value d found in block 5 is transferred to the first input of block 6 to calcu-
late estimates of the coefficients ﬁ|§ of the low-order model, the second input of which
receives coefficients & from block 1, and the third input receives weighting function

samples ﬁ‘Q from block 2.
Based on the assumption that ﬁk = ﬁ‘; for k=(d +1),..., (d +m), in block 6, esti-

mates of the coefficients Bi of model (49) are calculated according to (58)

b =hy g:
by =hy, g +ah, 4 (61)
bm = hr,nH‘] + alhr’nerAfl +...+ ém_lhi+(§ ,

which, together with the delay time estimate d and coefficients &;, will be used in the

synthesis of optimal digital controllers.
To identify the parameters a;, b; and delay time d, it is necessary to apply a sig-

nal containing a wide range of harmonic components to the input, for example, a se-
quence of rectangular pulses.

Conclusion

The theory of automatic control based on input-output models (transfer functions)
began to develop in the late 20s of the twentieth century. In the early 1970s, input-
output models received significant development with the advent of stochastic discrete
time series regression models. These models have become widely used to describe the
dynamics of economic and financial processes due to their simplicity, since it has be-
come possible to describe the dynamics of complex systems using algebraic equations
with respect to the inverse shift operator. In this case, it turned out to be very simple to
take into account the delay of the input signal of the controlled object. This made it pos-
sible to take into account the delay in the control actioned when designing regulators in
automatic control systems.

Also, when using input-output models in discrete time, it is easy to use the recur-
rent least squares method to estimate model coefficients, which can change due to
changes in the dynamics of the control object during operation.

It is necessary to note the following significant limitations for the use of input-
output models for solving various classes of control theory problems.

In time series regression models, «white» noise signals are used as input stochastic
disturbances, the mathematical expectation of which is zero. However, in real control
processes over limited periods of time, the average value of disturbances, as a rule, does
not equal zero.

When describing the dynamics of controlled objects based on transfer functions
during the design and study of control systems in transient modes, it is necessary to as-
sume the presence of zero initial conditions.

When designing a multidimensional control system using a matrix discrete transfer
function or an ARMAX matrix model, it is necessary to satisfy the condition of equality
of dimensions of the vectors of output controlled coordinates and control actions. This
sharply narrows the class of controlled objects when using these models.

When using input-output models, the dynamics of unmeasured internal movements
in multidimensional controlled objects, which are not taken into account in the vector of
output measured coordinates, are not taken into account.
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And finally, when using input-output models, it is almost impossible to automate

the operation of individual control loops in multidimensional automatic control systems
in transient modes.

Due to these limitations, the use of input-output models has found wide application

in automatic control systems to stabilize the operation of technological processes.
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22

VY cTarTi BUKOHAHO OIVIAA MaTEMaTUYHOrO ONKCY JAMHAMIKM HENEPepBHHUX Ta
JIICKPETHUX JIIHIHHKUX CTAIliOHApPHHUX CHCTEM Ta 00’ €KTIB, 1[0 3aCTOCOBYETHCS Ha
eTali pO3BUTKY KJIACHYHOI TEOopii aBTOMAaTHYHOIO KepyBaHHs y dopmi MaTema-
THYHHUX MOJENeil THITY «BXig—Buximy». OMUcaHO YacoBi Ta 4aCTOTHI XapaKTepuc-
THKU HEMEPEPBHHUX Ta JUCKPETHUX CUCTEM KepPyBaHHS, PO3IIISIHYTO THIIOBI JIaH-
KU CTalliOHAPHUX CHUCTEM, HAaBEJCHO IapaMeTPUYHI AUCKPETHI Mozeni 06’eKTiB
y CKJIaji THIIOBHX KOHTYDIB LM(POBOro KepyBaHHs. PO3IJISHYTO cTOXacTH4Hi
IUCKPETHI aBTOPErpeciiiHi Mozeni CTalioOHapHUX YaCOBHX PSIB, SKi 3aCTOCO-
BYIOTBCSL JUIsl OIKUCY AWHAMIKH 00’€KTIiB IMPU CHHTE31 HU(PPOBUX CHUCTEM Kepy-
BaHHs. 3/iflCHEHO OIJIs/ THIIOBUX 3aKOHIB KepyBaHHs JUIs peasii3alii Herepeps-
HHUX Ta AUCKPETHHUX PEryjsaTopiB. PO3risiHyTO METOJ] CHHTE3y AMCKPETHHX pe-
TYJISTOPIB Ul 6araTOBUMIpHHUX 00’ €KTIB KEpYBaHHS 3 PI3HHMH 3alli3HECHHSIMH,
HEBIZIOMMMM Ta 3MIHHMMH, 34 JOIIOMOIOIO SIKOTO 3IIMCHIOETHCS KOMIIEHCALlis
3MIHHUX 3aIi3HIOBaHb B XapaKTEPUCTHYHOMY DPIBHSHHI 3aMKHYTOI CHCTEMH Ke-
pyBaHHs. PO3IIISHYTO NOIIMPEHY METOJMKY CHHTE3Y OJHO- Ta 6araTOBUMIpHHX
PEryJATOpIB AJIsS CTOXAaCTHYHUX 00 €KTIB i3 3ami3HIOBAaHHSMH Ha OCHOBI MOjie-
neit ARMAX. IlpoBeneno anami3 migxoXiB A0 imeHTH(IKAIil 3ami3HIOBaHb B
00’€eKTax KepyBaHHs Ta PO3IJISIHYTO METOJ iAeHTHU(iKaiil 3ami3HeHHs MpH 3a-
CTOCYBaHHI MOJieJIel THITy «BXiJ—BHXi[», 3aCHOBaHUH HA OOYHCIICHH] Ta MOPiB-
HSHHI IMITyJIbCHUX XapaKTePUCTHK ISl PO3IIMPEHO] Ta HEpO3IIUPEHOT Moene
00’exTa KepyBaHHs. HaBeneHo aHani3 mepeBar Ta HENOJIKiB MOJENeH THIY
«BXiJI—BHXi/l», a TAaKOK MOXKJIHBOCTEHl iX 3aCTOCYBaHHS JUIsl BUPILICHHS Pi3HHX
KJIACiB 3a71a4 Teopil KepyBaHHI.

Kawuosi ciioBa: nepenatHa (yHKIisl, 3aKOHA KEPYBaHHs, AUCKPETHI peryis-
TOpH, iMeHTH]IKALlis, 00’ €KTH 13 3aMi3HEHHSM.
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