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The use of near-Earth space is currently complicated by the presence of space 
debris objects in Earthʼs orbit, which include spent stages of launch vehicles, in-
operative spacecraft, and other large and small objects associated with human 
activity in space. One of the elements of solving the problem of space debris is 
the docking and capture of an uncontrolled non-cooperative space object or 
spacecraft by a so-called on-orbit servicing spacecraft to carry out further ac-
tions to repair it, refuel or change its orbit. The situation is complicated by the 
fact that, under the influence of various factors, uncontrolled space objects are in 
a state of rotation. The parameters of the orbital motion of such objects are 
known quite accurately from measurements from the Earth. To carry out safe 
approach and docking, knowledge of the parameters of rotational motion, as 
well as the parameters of relative motion, is also required. The most general case 
of motion of a non-cooperative tumbling spacecraft located in an elliptical orbit 
is considered. It is assumed that the three-dimensional graphic model of such 
spacecraft is known. The servicing spacecraft (SSC) is equipped with a mono 
camera that takes pictures of the non-cooperative spacecraft (NSC). Based on a 
comparison of the characteristic features of photographs and images obtained us-
ing the graphical model, the computer vision system (CVS) determines the dis-
tance vector to the so-called graphical coordinate system, rigidly fixed on the 
NSC and the quaternion of its relative attitude. The specific type of CVS is not 
considered. It is assumed that the SSC carries out some maneuvers near the sat-
ellite. All parameters of the SSC angular motion are assumed to be known. This 
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work considers the most general case of the relative motion of SSC and NSC. 
Using quaternion calculus, all basic kinematic and dynamic equations are ob-
tained. The measured parameters are not enough to ensure safe rendezvous and 
docking with the NSC. The stochastic characteristics of errors of the CVS meas-
urement are not assumed to be known and, accordingly, are not used. Only their 
maximum values are specified for them. We consider the use of new dynamic 
set-membership filter using ellipsoids to solve the problem of determining the 
parameters of the relative motion of the NSC which is in free uncontrolled mo-
tion. The filter can be implemented under conditions of the limited computation-
al capability available on onboard processors. The relative motion parameters 
include the distance vector between the centers of mass (c.m.) of the NSC and 
the SSC, the relative velocity vector, the quaternion of the orientation of the 
main axes of inertia of the satellite relative to the inertial coordinate system, the 
ratio of the moments of inertia of the satellite, the vector of the position of the 
NSC c.m. in the graphical coordinate system. The properties of the proposed al-
gorithm are demonstrated using numerical simulation. The results obtained are 
expected to be used in the development, creation and testing of a navigation sys-
tem for the rendezvous and docking of the SSC, developed by a group of 
Ukrainian space industry enterprises under the leadership of the LLC «Kurs-
orbital» (https://kursorbital.com/). 

Keywords: relative motion parameters, spacecraft, estimation, video image. 

Introduction 

The presence of space objects related to space debris in near-Earth space poses a 
serious threat during the launch of spacecraft (SC), as well as for those spacecraft that 
are already in orbit. Some of these objects are inoperative spacecraft, which, with minor 
repairs or after refueling, can continue to operate. Therefore, work is currently under-
way all over the world to create so-called servicing spacecraft (SSC) or on-orbit servic-
ing spacecraft capable of docking with a non-cooperating spacecraft (NSC) or object 
and performing maintenance or removing the object from orbit. The development and 
current state of this problem can be found in the reviews [1–4]. 

Success in docking significantly depends on the accuracy of determining the rela-
tive navigation of the NSC and SSC [5–7]. It is assumed that the navigation and attitude 
control systems of the NSC does not work for some reason. In this case, radar and opti-
cal systems are used to determine the relative position and attitude of the NSC. The lat-
ter include laser [8–12] and optical systems [13–30], which use cameras operating in the 
optical range. Optical systems are capable of providing more accurate measurements of 
the parameters of the relative position and attitude of the NSC at close distances (no 
more than 100 m) and are used at the final stage of docking. These devices allow to ob-
tain values of the distance vector and the attitude of a certain reference frame rigidly 
fixed to the NSC. This information is not enough for trajectory planning and docking 
with the NSC. It was established [31] that the NSC eventually begins to rotate around 
the center of mass. This occurs due to the action of the gravitational moment, cosmic 
radiation and the flow of solar wind particles [32, 33]. For docking, it is necessary to 
know the position time evolution of the docking surface, which requires knowledge of 
the angular velocity of rotation of the NSC, the speed of approach, as well as the posi-
tion of the main axes of inertia, the position of the center of mass. Currently, there are a 
large number of works devoted to solving the problem of estimating these parameters 
[8–17, 20–29, 34–36]. These works rely on the use of various versions of the Kalman 
filter [37–39] to estimate these parameters. 

The Kalman filter and its many modifications use the assumption that the uncertain 
quantities are normally distributed random quantities. The distribution parameters are 
assumed to be known. However, determining these parameters is a separate, rather la-
bor-intensive task. For more than half a century, a different approach [40–46] has been 
developing to the problem of estimating unknown quantities, in particular, estimating 
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the state vector of dynamic systems, which is based on the use of minimal information 
about uncertain quantities, namely, only the sets of their possible values are assumed to 
be known. As a result, the estimation process is reduced to procedures for calculating 
the evolution of sets and set-theoretic operations on them, i.e. to the construction of re-
fined sets or, as they are commonly called, information sets that are guaranteed to con-
tain the estimated values. This approach is accordingly called guaranteed or set-
theoretic. In most cases, the construction of information sets is associated with serious 
computational difficulties, which is an obstacle to their practical implementation, in par-
ticular, with the help of on-board computer systems. The use of the ellipsoidal estima-
tion method [40, 42–46] seems to be quite effective in terms of functionality and mini-
mization of computational costs, including state estimation of nonlinear dynamic sys-
tems [47–51]. In accordance with this method, information sets are approximated by 
multidimensional ellipsoids. The ellipsoidal estimation method is sensitive to violations 
of a priori assumptions about the values of uncertain quantities. To overcome this dis-
advantage, i.e. to ensure the robustness property, several modifications of this method 
have been proposed [52–55].  

The purpose of the work is to study and develop an algorithm for solving the esti-
mation problem of parameters of the angular motion of the NSC (attitude quaternion, 
angular velocity vector, ratio of moments of inertia, position of the main axes of inertia, 
position of the center of mass), vectors of the relative distance and speed between the 
SSC and the NSC based on a modification of the ellipsoidal estimation method [54, 55]. 
Any of the optical relative navigation devices mentioned above can be considered as an 
CVS device. The authors of this work focused on the use of CVS using a monocamera, 
which operating principle and algorithms are described in [26, 30]. The proposed esti-
mation algorithms use the multiplicative form of quaternion increments [56, 57], which 
not only simplifies the quaternion normalization procedure compared to using the addi-
tive form of the increment, but also leads to simpler equations describing the dynamics 
of changes in quaternion increments. This work is a development of [58], and in terms 
of the formulation of the problem it is very close to [35]. 

1. Estimation problem statement 

1.1. Coordinate systems. The position of SSC and NSC in space will be specified 
in the inertial geocentric equatorial coordinate system EO I = 1 2 3,EO i i i  the origin of 
which is in the Earth center of mass (c.m.), the basis vector 3i  is directed along the 

Earth rotation axis, the vector 1i  is orthogonal to the vector 3i  and directed to the infi-
nitely distant point of the vernal equinox. The direction 2i  is chosen in such a way that 
the triple of vectors 1,i  2i  and 3i  to be right-handed [59, p. 448]. Here and below, only 
orthonormal right-handed systems of basis vectors are considered. We will call this sys-
tem in short the inertial reference frame (IRF). 

The position of the SSC c.m. will be specified relative to the NSC c.m. The choice 
of the NSC as a reference object is due to the fact that the satelliteʼs orbit is assumed to 
be known, the satellite does not perform any maneuvers, and the position of the satellite 
in orbit is known. The position of the NSC orbital plane relative to the IRF is character-
ized by the orbit inclination angle ,i  and the longitude angle Ω  of the orbit ascending 
node relative to the axis 1EO i  (see Fig. 1). The position of the NSC orbit in its plane is 
characterized by the angle ω  measured from the ascending node direction to the orbit 
perigee direction [59]. 
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Fig. 1 

The SSC position relative to the NSC will be characterized in the orbital reference 
frame (ORF) [59, p. 675] TO T = 1 2 3,TO τ τ τ  the beginning of which TO  is placed in the 
NSC c.m., the basis vector 1τ  is directed along the radius vector from the Earth c.m. to 
the NSC c.m., the vector 3τ  is perpendicular to the orbital plane and directed along the 
angular momentum vector of the NSC orbital motion, the direction of the vector 2τ  is 
chosen in such a way the triple of vectors 1,τ 2τ  and 3τ  to be right-handed (at circular 
orbit, the direction of 2τ  will coincide with the satelliteʼs velocity direction). 

Two more reference frames are associated with the NSC. Coordinate system 
1 2 3TO e e e = ,TO E  the center of which is located in the NSC c.m., and the unit vectors 

are oriented along the main axes of the NSC inertia tensor. This reference frame TO E  
will be further denoted by target reference frame (TRF). The so-called graphical coordi-
nate system 1 2 3GO e e e′ ′ ′ = GO E′  is also associated with the NSC, which we will briefly 
denote as Graphic reference frame (GRF). The satellite graphical model is specified in 
this coordinate system, and the coordinates of all elements of the satellite are specified, 
in particular, the position of the docking surface. The position of this coordinate system 
is determined by the computer vision system (CVS). 

Coordinate system 1 2 3CO s s s = ,CO S  which center CO  is located in the SSC c.m., 
and which unit vectors are oriented along the main axes of the SSC inertia tensor, char-
acterizes the SSC attitude. This reference frame will be denoted as chaser reference 
frame (CRF). The coordinate system 1 2 3VO s s s′ ′ ′ = VO S ′  is associated with the CVS cam-
era installed on the SSC. In this definition, VO  is the origin of the coordinate system, 
and , 1: 3js j′ =  are the vectors of the orthonormal basis. Vectors 1s′  and 2s′  are parallel 

to the sides of the camera photosensitive matrix, the vector 3s′  is perpendicular to the 
plane of this matrix and directed towards the subject of shooting along optical axes. 
Hereinafter we will briefly denote this reference frame by video reference frame (VRF). 

The reference frames associated with the satellites are shown in Fig. 2. 

 
Fig. 2 
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The relative position of two arbitrary coordinate systems can be characterized us-
ing a vector pointed from the origin of one coordinate system to the origin of another, 
and a quaternion characterizing the attitude of the basis of one coordinate system rela-
tive to the basis of the other. 

1.2. Quaternions. Let us consider some properties of quaternions and operations 
with them, using [6, 60]. CVS measures quaternion 

 3
0 01 j j vj s= ′η = η + η = η + η∑  

of attitude of reference frame GO E′  relative to .VO S ′  The scalar part of the quaternion 
is determined by the real number 0 ,η  the vector part vη  is characterized by the vector 

3
1 .v j jj s= ′η = η∑  The numbers ,jη  0 : 3,j =  are the coordinates of the quaternion in 

the basis 1 2 3.VO s s s′ ′ ′  A quaternion η  is said to be normalized if its norm 

 2 2 2 2
0 1 2 3 1.η = η + η + η + η =  (1) 

A normalized quaternion η  defines a rotation of three-dimensional Euclidean space 3R  

as a whole around an axis defined by a vector /v ve = η η  by an angle .ϕ  In this case 

0 cos ( / 2)η = ϕ  and sin( / 2) .v eη = ϕ  When performing two successive rotations, de-
termined first by the quaternion ,q  then by quaternion ,µ  the resulting rotation will be 
determined by the quaternion 
 ,qη = µ   

where quaternion multiplication qµ   is determined in the following way: 

 0 0 0 0( , ) .v v v v v vq q q q q qµ = µ − µ + µ + µ + µ ×  (2) 

Here ( , )v vqµ  is a scalar product of vectors vµ  and ,vq  v vqµ ×  is their vector product. 
The quaternion coordinates depend on the choice of coordinate system. Therefore, to 
calculate the quaternion coordinates of η  using (2), the quaternion coordinates of q  
and µ  must be expressed in the same coordinate system.  

A vector T 4
0 1 2 3( , , , ) Rη = η η η η ∈  can be formed from the quaternion coordi-

nates of .η  We will denote the quaternion and the vector of its coordinates by the same 
symbol. The same applies to vectors. By virtue of the definition of a normalized quater-
nion, the vector of its coordinates 

 T
0 1 2 3

cos ( / 2)
( , , , )

sin ( / 2) e
ϕ 

η = η η η η =  ϕ 
. (3) 

If quaternions T
0 1 2 3( , , , )q q q q q=  and T

0 1 2 3( , , , )µ = µ µ µ µ  are represented in the 
same coordinate system, then using (2), it is easy to obtain the following vector-matrix 
relations for the quaternion coordinates [6] 

 ( ) ( ) ,q Q q Q qη = µ = µ = µ  (4) 
where 4×4-matrices  

 
T

0

0 3
( )

( [ ])
v

v v
Q

I

 µ −µµ =   µ µ + µ × 
, 

T
0

0 3
( )

( [ ])
v

v v

q qQ q
q q I q

 −=   − × 
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In this expressions 3I  is unit 3×3-matrix,  

 
3 2

3 1

2 1

0
[ ] 0

0
v

q q
q q q

q q

− 
 × = − 
 − 

 

is matrix of vector cross product, [ ] .v v v vq q× µ = ×µ  
Let x  be some vector. Then, with the rotation determined by the quaternion ,η  

the vector x  will turn into a vector  

 ,y x= η η   

where the vector x  should be considered as quaternion with zero scalar part, 
0 vη = η − η  is quaternion conjugate to ,η  1.η η = η η =   Conjugate quaternion ,η  

as it follows from its definition and representation (3), determines the rotation around 
vector e  at the angle ,−ϕ  i.e. in the opposite direction. If vector 3

1 j jjx x s= ′= ∑  is giv-

en in the basis , 1: 3,js j′ =  by coordinate vector T
1 2 3( , , ) ,x x x x=  then the coordinates 

of vector 3
1 j jjy y s= ′= ∑  are determined with the use of (4) by the following vector-

matrix equality 
 ( )y R x= η  (5) 

where coordinate vector T
1 2 3( , , )y y y y=  and rotation matrix 

 2 T T
0 3 0( ) ( ) 2 [ ] 2 .v v v v vR Iη = η − η η + η η × + η η  (6) 

Expression (5) is obtained using the identity 

 1 3

3 1
( ) ( )

( )
Q Q

R
×

×

 η Θ 
η η =  Θ η 

. 

Here m n×Θ  is zero m n× -matrix. It is easy to verify that 

 T( ) ( ) ,R R Iη η =  T ( ) ( ).R Rη = η  

Quaternion η  determines the attitude of GO E′  relative to VO S ′  means that the basis 
vectors , 1: 3,je j′ =  are determined by the following expressions: 

 ,j je s′ ′= η η   1: 3,j =  

i.e. every basis vector je′  is obtained by rotation of vector ,js′  and is a linear combina-

tion of vectors , 1: 3.js j′ =  Obviously, using (5), this can be written as the following 
formal expression: 
 1 2 3 1 2 3( , , ) ( , , ) ( ),e e e s s s R′ ′ ′ ′ ′ ′= η  

i.e. j-th column of matrix ( )R η  contains coordinates of the vector je′  in basis 

, 1: 3.js j′ =  It is easy to obtain from here the inverse relation 

 1 2 3 1 2 3( , , ) ( , , ) ( ).s s s e e e R′ ′ ′ ′ ′ ′= η  

We will often use similar relations in what follows to transform the coordinates of vec-
tors and quaternions. Let us consider quaternions that specify the relative position of the 
used reference frames. 
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The attitude of the TRF relative to the IRF is determined by unknown quaternion 

 3
0 01 ,j j vjq q q i q q== + = +∑  

i.e. the following expression holds for the basis vectors 

 1 2 3 1 2 3( , , ) ( , , ) ( ).e e e i i i R q=  (7) 

The attitude of the GRF is determined in the TRF by a constant but unknown quaternion 

 3
0 01 .j j vj e=µ = µ + µ = µ + µ∑  

In this case, the basis 
 1 2 3 1 2 3( , , ) ( , , ) ( ).e e e e e e R′ ′ ′ = µ  (8) 

The CRF attitude relative to IRF is determined by the known quaternion 

 3
,0 , ,0 ,1 ,C C C j j C C vjq q q i q q== + = +∑  

which is measured with high accuracy, for example, by star trackers. The CRF basis 

 1 2 3 1 2 3( , , ) ( , , ) ( ).Cs s s i i i R q=  (9) 

The attitude of the VRF of the video camera relative to the CRF is specified also by the 
known quaternion 

 3
,0 , ,0 ,1 .C C C j j C C vj s=µ = µ + µ = µ + µ∑  

The VRF basis is determined by the following expression: 

 1 2 3 1 2 3( , , ) ( , , ) ( ).Cs s s s s s R′ ′ ′ = µ  (10) 

The position of the ORF can be obtained using two rotations of the IRF basis ,ji  

1: 3.j =  Let us denote the vector directed from the point EO  (the beginning of the IRF) 
to the point of the ascending node by a symbol n  (see Fig. 1). Obviously, this vector in 
the IRF is determined by the following expression: 

 1 2 3cos sin 0 .n i i i= Ω + Ω + ⋅  

Let us make first rotation around this vector by the orbital inclination angle ,i  deter-
mined by the quaternion 

 
T

T
1, cos , sin .

2 2O
i iq n =  

 
 

As a result of the rotation, the basis ,ji  1: 3,j =  will turn into the basis 

 1 2 3 1 2 3 1,( , , ) ( , , ) ( ).Oi i i i i i R q′ ′ ′ =  

According to definition of the ORF we obtain that 

 3 3 1 2 3sin ( )sin ( ) sin ( ) cos ( ) cos ( ) .i i i i i i i′ = τ = Ω − Ω +  

The second rotation is determined by the quaternion 
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 2, 1 2 3

3

[ ( )]cos [ ( )] [ ( )]2 cos 0 0 sin ,
[ ( )] 2 2sin

2

O

t
t tq i i i

t i

Ω + ω + ϑ 
  Ω + ω + ϑ Ω + ω + ϑ′ ′ ′= = + ⋅ + ⋅ + 

Ω + ω + ϑ ′ 
 

 

which is given by coordinates in the basis ,ji′  1: 3.j =  Here ( )tϑ  is true anomaly angle 

at the time instant ,t  measured in the positive direction in the orbital plane from the or-
bit perigee direction to the direction to the satellite current position. As a result we get 

 1 2 3 1 2 3 2, 1 2 3 1, 2, 1 2 3( , , ) ( , , ) ( ) ( , , ) ( ) ( ) ( , , ) ( ).O O O Oi i i R q i i i R q R q i i i R q′ ′ ′τ τ τ = = =  (11) 

where 2, 1, .O O Oq q q=   Comparing the expression for Oq  and (11), it may seem that 
the matrices 1,( )OR q  and 2,( )OR q  should be multiplied in the reverse order. Note that 
in the expression for Oq  the quaternion 1,Oq  is specified by coordinates in the basis ,ji  

1: 3,j =  and the quaternion 2,Oq  is specified in the basis ,ji′  1: 3.j =  To use vector-
matrix representations for operations on quaternions, they must be represented by coor-
dinates in the same coordinate system. By definition, the basis vectors ,ji′  1: 3,j =  are 
determined by the following expressions: 

 1, 1, ,j O j Oi q i q′ =    1: 3.j =  

Therefore, in the basis ,ji  1: 3,j =  quaternion 

 3
2, 2, (0) 2, ( ) 1, 2, 1,1 ,O O O j j O O Ojq q q i q q q∗

= ′= + =∑    

where 3
2, 2, (0) 2, ( )1 .O O O j jjq q q i∗

== + ∑  Therefore, the expression for the quaternion Oq  

in the basis ,ji  1: 3,j =  has the following form: 

 2, 1, 1, 2, 1, 1, 1, 2, ,O O O O O O O O Oq q q q q q q q q∗ ∗= = =      

which fully corresponds to expression (11). From here for coordinates of the quaternion 
Oq  we obtain  

 1, 2,( ) .O O Oq Q q q=  

Note that the coordinates of the quaternions 2,Oq∗  and 2,Oq  coincide. 

Diagram of the relative attitude of the used coordinate systems is shown in Fig. 3. 

 
Fig. 3 

1.3. Measurement equations. Using the diagram shown in Fig. 3, we can write the 
following equality 
 C Cq qη µ = µ    (12) 

µ µC 
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In this expression, the quaternions Cq  and Cµ  are known, the quaternions q  and µ  
are unknown and must be determined, the quaternion η  is measured by the CVS with 
some limited error. From (12) we obtained 

 .C Cq qη = µ µ    (13) 

To obtain vector-matrix relations corresponding to (13), it is necessary to express the 
coordinates of all quaternions in VRF, i.e. in the basis , 1: 3,js j′ =  and apply equali-

ty (4). The quaternion µ  in the basis , 1: 3,ji j =  is defined by the following expression: 

 ( )3 3 3
0 0 01 1 1 ,j j j j j jj j je q i q q i q q q∗

= = =µ = µ + µ = µ + µ = µ + µ = µ∑ ∑ ∑       (14) 

where 3
0 1 .j jj i∗

=µ = µ + µ∑  In what follows, we will not put an asterisk over this and 

similar quaternions, because the coordinates , 0 : 3,j jµ =  during this and similar basis 

transformations will be preserved. Substituting (14) into (13), we get  

 .C Cq qη = µ µ    

The first three factors here are expressed in the basis , 1: 3.ji j =  Let us transform each 

of them into a basis , 1: 3,js j =  using the identity , 1: 3.j C j Ci q s q j= =   As a result 
we obtain 

 .C C C C C C C C C Cq q q q q q q q q qη = µ µ = µ µ             

In the resulting equality, we proceed to the basis , 1: 3,js j′ =  in a similar way, using the 

identity , 1: 3.j C j Cs s j′= µ µ =   Finally we obtain the following equality: 

 .C Cq qη = µ µ    (15) 

Using Fig. 2, for the vectors characterizing the relative position of the coordinate 
systems associated with the NSC and the SSC, we can write the following equality: 

 .C Cr r+ ρ + = ρ  
From here 
 .C Cr r= ρ − − ρ  (16) 

In this equation 3
1G V j jjr O O r s= ′= − = ∑  is the measured distance vector from the 

camera to the GRF, 3
,1C V C C j jjO O s=ρ = − = ρ∑  is known position of the beginning 

of the VRF in the CRF, 3
1G T j jjO O e=ρ = − = ρ∑  is unknown position of the begin-

ning of the GRF in the TRF, 3
, 1 2 31C C T C j jjr O O r x y z== − = τ = τ + τ + τ∑  is unknown 

distance vector from the NSC c.m. to the SSC c.m. in the ORF.  
To obtain vector-matrix relations, we express the coordinates of all the vectors in 

the VRF using equalities (7)–(11). In particular, for the vector Cρ  we obtain 

 

,1
3

, 1 2 3 ,2 1 2 3 1 2 31

,3

( , , ) ( , , ) ( , , ) ( ) ,

C

C j j C C C Cj

C

s s s s s s s s s s R=

 ρ
 
  ′ ′ ′ρ = ρ = ρ = µ ρ
 
 ρ 

∑  
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where T
,1 ,2 ,3( , , ) .C C C Cρ = ρ ρ ρ  The elements of a vector ( )C CR µ ρ  are the coordinates 

of the vector Cρ  in the basis , 1: 3.js j′ =  Proceeding in a similar way for the remaining 

vectors of equality (16), it is easy to obtain the following equality for the coordinates: 

 ( )[ ( )[ ( ) ( ) ] ].C C O C Cr R R q R q R q r= µ ρ − − ρ  

We consider the measurements of vector r  and quaternion η  are made with additive 
limited errors at discrete times 0 ,kt t k= + ∆ ⋅  0, 1, 2,k =  , i.e. as a result of the meas-
urement we obtain the following measurement vectors: 

 , , ,( ) ( )[ ( )[ ( ) ( ) ] ] ,r r r
k k k k k C C k k O k C k C kr r t r R R q R q R q r= + ξ = + ξ = µ ρ − − ρ + ξ  (17) 

 , ,( ) ( ) ( ) ( ) .k k k C C k k k C C k k kk k k kt q q Q Q q Q qη η η ηη = η + ξ = η + ξ = µ µ + ξ = µ µ + ξ

    (18) 

For measurement errors, only their maximum values are known, i.e. such numbers 
0rc >  and 0cη >  for which the following inequalities hold: 

 ,r
k rc∞ξ ≤  .k cη

η∞ξ ≤  

From here, (17) and (18) it follows that the unknown parameters of the NSC motion sat-
isfy the following inequalities: 

 , , , ,( ) ( ) ( ) ( ) ( ) ( ) ( ) ,k C C k k C C k O k C k C C rr R R q R q R R q R q r R c∞− µ ρ + µ + µ ρ ≤  

 ,( ) ( ) ( ) .k C C k k kQ Q q Q q cη∞η − µ µ ≤  (19) 

1.4. Dynamical equations. The change in time of the quaternion coordinates 
T

1 2 3 4( , , , )q q q q q=  is described by the following equation [6, 60]: 

 1 1 ( ) ,
2 2 vq q Q q= ω = ω
  (20) 

where the NSC angular velocity T
1 2 3( , , )ω = ω ω ω is given in the TRF and 4 3× -matrix  

 
T

0 3

( )
[ ]

v
v

v

q
Q q

q I q

 −
 =
 + × 

. 

Vector ω  satisfies the following equation [60, 6]: 

 [ ] .dJ J M
dt
ω

+ ω× ω =  (21) 

The inertia tensor matrix J  in this equation has a diagonal form 

 1 2 3diag ( , , ).J J J J=  

The main inertia moments ,iJ  1: 3,i =  are considered to be unknown. The moment M  
in equation (21) may include gravitational moment, aerodynamic and other moments 
caused by the action of the environment on the NSC [32]. We will assume that the in-
fluence of these moments on the NSC angular position during the observation time can 
be neglected, i.e. in equation (21) we assume 

 0.M =  



 
 

Міжнародний науково-технічний журнал 
Проблеми керування та інформатики, 2023, № 6 45 
 

It is easy to verify that in the absence of a moment of external forces, the solutions of 
equation (21) depend only on the ratios of the inertia moments. Let us introduce the fol-
lowing notation [35]: 

 2 3 3 1 1 2
1 2 3

1 2 3
, , .

J J J J J J
l l l

J J J
− − −

= = =  

Then equations (21) can be written in the following component form: 

 

1 1 2 3

2 2 1 3

3 3 1 2

;

;

.

l

l

l

ω = ω ω
ω = ω ω


ω = ω ω







 (22) 

We assume that over the considered period of time the inertia moments are constant. 
Therefore, for the vector T

1 2 3( , , )l l l l=  it holds 

 0.l =  (23) 

The coordinates of the vector ρ  and quaternion µ  in the corresponding coordinate sys-
tems are also constant. Therefore we assume  

 T
1 2 3( , , ) 0;ρ = ρ ρ ρ =     T

1 2 3 4( , , , ) 0.µ = µ µ µ µ =      (24) 

Let the SSC be located at a short distance from the NSC, i.e. for coordinates of the 
vector  
 1 2 3Cr x y z= τ + τ + τ  
the following condition holds: 
 2 2 2 2 ,Tx y z r+ + <<  

where ( )T Tr r t=  is the distance from the Earth c.m. to the NSC c.m. Then the change 
in coordinates of vector Cr  can be described by the following linear equation [59, p. 679]: 

 

2

2

2

1 2 2 ;

2 1 ;

.

T T
O O x

T

T T
O O y

T

T
O z

r rx x y y a
p r

r ry x x y a
r p

r
z z a

p

   
− ω + − ω − =   

   

    

+ ω − − ω − =    
  


 + ω =




 



 



 

Here ( ) ( )O O t tω = ω = ϑ  is the absolute angular velocity of rotation of the ORF, 
2 / ( )p a p ap r r r r= +  is the orbit focal parameter [61], ar  is the orbit apogee, pr  is the 

orbit perigee, ,x ya a  and za  are the acceleration projections on the axes of the ORF, 

created by external forces acting on the SSC, which are assumed to be known. Letʼs 
write these equations in the following form: 

 
,

( , , ) ( ) .

C C

C r O T C v O C

r v

v A r p r A v a

=


= ω + ω +





 (25) 
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Here T( , , )Cr x y z=  is the vector of the SSC relative position, T( , , )Cv x y z=     is the 

vector of relative velocities, T( , , )x y za a a a=  is acceleration vector, matrices 

 

2 1 1

1 2 1

2 1

(1 2 ) 2 0

( , , ) 2 (1 ) 0 ,

0 0

0 2 0

( ) 2 0 0 .

0 0 0

O T O T T

r O T O T T O T

O T

O

v O O

r p r r

A r p r r r p

r p

A

− −

− −

−

 ω + − ω
 
 ω = ω ω − 
  −ω 

ω 
 
 ω = − ω
 
 
 





 

To integrate equation (25), it is necessary to know ( ),O tω = ϑ  ( )Tr t  and ( ).Tr t  
We will assume that the value of the true anomaly 0 0( )tϑ = ϑ  for the initial time 0 ,t  is 

known. Then ( )tϑ  is determined by integrating the following equation [61]: 

 2 2 2( ) (1 cos ( )) .Tt Cr C e t p− −ϑ = = + ϑ  

Values of ( )Tr t  and ( )Tr t  are determined by the formulas 

 1( ) (1 cos ( )) ,Tr t p e t −= + ϑ  1( ) sin ( ),Tr t Cp e t−= ϑ  

and considered to be known. In these equations ( ) / ( )a p a pe r r r r= − +  is the orbit ec-

centricity, ,EC p= µ  Eµ  is the Earth gravitational constant [61]. 

1.5. Problem statement. Differential equations (20)–(25) can be considered as 
equations of a nonlinear dynamic system in continuous time with the following state 
vector: 
 T T T T T T T T( , , , , , , ) .C Cx q r v l= ω ρ µ  (26) 

The initial conditions for these equations are unknown. At discrete moments of time, 
some components of this vector T T T T T T T T

, ,( ) ( , , , , , , )k k k k C k C k k k kx x t q r v l= = ω ρ µ  must 

satisfy inequalities (19) associated with measurements. In addition, normalization con-
ditions (1) must be satisfied for the components q  and .µ  

Let 1ˆkx −  be some estimate of the state vector 1kx −  obtained at the moment of dis-
crete time ( 1).k −  Using this value as the initial value for differential equations (20)–(25), 
we can calculate the estimate | 1ˆk kx −  for the moment .k  If this estimate satisfies ine-

qualities (19), then, obviously, there is no need to refine it and we can put | 1ˆ ˆ .k k kx x −=  

If the estimate | 1ˆk kx −  does not satisfy at least one of the inequalities (19), then its clari-

fication is required. 
The problem is to find a method for refining estimates | 1ˆk kx −  in which inequali-

ties (19) will be satisfied for estimates | 1ˆk kx −  starting from some finite moment K  and, 

therefore, from this moment the refinement is not required. Ideally, this method should 
provide existence of the limit 

 ˆlim 0.k k
k

x x
→∞

− =  
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Its existence is associated with the absence of uncontrollable disturbances in the system 
under consideration, and with realization of certain properties of measurement noise, 
which is difficult to verify and ensure in practice.  

2. Method for solving the estimation problem 

In this work we use a minimum of information about uncertain quantities, which is 
almost always available in practice. Thus, for measurement noise, only its maximum 
possible value is assumed to be known. The state vector is unknown, but it must satisfy 
inequalities associated with measurement equations and noise magnitude constraints. In 
fact, the unknown state vector belongs to the set defined by these inequalities. There-
fore, the estimation procedure comes down to constructing so-called information sets 
that are guaranteed to contain true estimated values. 

In this work, we use one of the modifications [54, 55] of the guaranteed estimation 
algorithm using ellipsoids. The main advantages of this method are the high speed of 
convergence, applicability to nonlinear systems, and resistance to possible violations of 
a priori hypotheses. 

2.1. Guaranteed approach to state vector estimation of dynamic systems. 
Equations (20)–(25), using definition (26) of the state vector, can be written in the form 

 0( ( ), ( ), ( )), ,x f x t u t t t t= ζ ≥  (27) 

where ( ) nx t R∈  is the state vector at a moment of continuous time t  ( nR  is n-dimen-

sional real Euclidean space), ( ) mu t R∈  is the vector of measured input variables, 

( ) dt Rζ ∈  is the vector of uncontrolled disturbances. In this case, this may be the mo-
ment vector M  in equation (21) acting on the NSC. We assume that the functions ( ),f ⋅  

( )u ⋅  and ( )ζ ⋅  in (27), satisfy the standard conditions of existence and uniqueness of so-
lution of ordinary differential equations [62]. The vector 

 ( ) dt Rζ ∈ Ζ ⊂  ,t∀  (28) 

where Ζ  is some bounded closed set.  
The measurement inequalities (19) can be written in the following form: 

 , ( ) ,j k j k jy g x c− ≤  1: ,j N=  (29) 

where , ,j ky  jc  and ( )jg x  are the measurement values of the j -th output variable, the 

value of the maximum measurement noise of this variable and the continuously differ-
entiable measurement function, respectively, 1: ,j N=  7.N =  In addition, for quater-
nions included in the state vector, the normalization condition (1) must be satisfied. 

Let us describe the procedure for updating information on the state vector in ac-
cordance with the guaranteed (set-theoretic) approach to estimation using ellipsoids. Let 
us assume that at the moment kt  it is known that the state vector 

 ( ) ,k k kx x t E= ∈  (30) 
where the ellipsoid 
 T 1ˆ ˆ ˆ( , ) { : ( ) ( ) 1},k k k k k kE E x H x x x H x x−= = − − ≤  

characterized by a center vector ˆkx  and a positive definite symmetric matrix 

0.T
k kH H= >  The ellipsoid kE  in (30) is usually called the set or ellipsoidal estimate 

of the vector .kx  The center of the ellipsoid, the vector ˆkx  is taken as a point estimate. 
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Considering equation (27) on a time interval 1[ , ]k kt t +  for all possible initial conditions 
satisfying (30), and for all possible implementations of disturbances ( )ζ ⋅  satisfying 
condition (28) on this interval, we can obtain the set 

 1| 1 1{ ( , , ( ), ( )), ( ) [ , ]}k k k k k k k kX x x t x u x E t t+ + += = ⋅ ξ ⋅ ∀ ∈ ∀ζ τ ∈ Ζ ∀τ ∈  

of possible values of the vector 1 1( )k kx x t+ +=  at a discrete moment 1.k +  The set 

1|k kX +  is not in general an ellipsoid. The construction of this set can be carried out, for 

example, by integrating the system equation (27) over the interval 1[ , ]k kt t +  under vari-
ous initial conditions satisfying (30) and for all possible implementations of disturb-
ances 1( ) [ , ].k kt t +ζ τ ∈ Ζ ∀τ ∈  Obviously, this is a very labor-intensive process that re-
quires a large number of calculations. 

On the other hand, the state vector 1kx +  satisfies inequalities (29) at the time mo-
ment 1,kt +  which can be written in the form 

 1 1 , 11 .N
k k j kjx X X+ + +=∈ =



 

where the set  
 , 1 , 1{ : ( ) }.j k j k j jX x y g x c+ += − ≤  (31) 

The set 1kX +  contains state vectors that are compatible with measurements under given 
a priori bounds on the measurement noise. As a result, we can conclude that 

 1 1 1 1| .k k k k kx X X X+ + + +∈ =   

Despite the obvious simplicity and logical rigor of the presented approach for updating 
the set of possible values of the state vector, its practical implementation in general en-
counters insurmountable computational difficulties associated with the construction and 
description of the sets 1| ,k kX +  1,kX +  1,kX +  as well as the implementation of set-

theoretic operations, in the considered case, the set intersection operation. 
One of the approaches aimed at reducing the computational complexity of solving 

estimation problems is to use the ellipsoid method [42–53]. In accordance with this 
method, approximations are constructed for the sets 1|k kX +  and 1kX +  in the form of 

containing them ellipsoids 1| 1| 1|ˆ( , )k k k k k kE E x H+ + +=  and 1 1 1ˆ( , ),k k kE E x H+ + +=  and 

the solution to the estimation problem is reduced to constructing a sequence of ellipsoi-
dal estimates 0{ } ,k kE ∞

=  ,k kx E∈  for the vector kx  in accordance with the following 
recurrent procedure: 

 1 1 1 1| 1 1|[ [ ] ] [ ] .k k k k k E E k k k Ex E X X X E+ + + + + +∈ = =   (32) 

Here [ ]EX  denotes the operation of covering a bounded set nX R⊂  by minimal in 
a certain sense ellipsoid ,E  i.e. .X E⊂  The criterion for choosing such an ellipsoid 
is usually its volume, diameter, or other function characterizing the ellipsoid size. 
The described method for constructing ellipsoidal estimates is called ellipsoidal es-
timation. The advantage of scheme (32) compared to the initial scheme is that set-
theoretic operations are performed on sets of a fixed structure, but the disadvantage 
is that the covering ellipsoids have a larger size than the covered sets, i.e. ellipsoids 
contain extra areas. 
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For linear systems, many standard operations [ ]EX  have been developed, optimal 
and suboptimal in some sense [42, 43]. In the case of nonlinear systems, the operation 
[ ]EX  can, in general, be implemented only numerically and requires a large amount of 
calculations. In particular, this applies to the analogue of the unscented Kalman filter 
[49, 50], in which the image of the ellipsoid under nonlinear transformation is obtained 
as a minimal in some sense ellipsoid, containing images of specially selected points in 
the initial ellipsoid .kE  There are methods for constructing an ellipsoid 1|k kE +  based 

on the use of the Taylor series expansion of a nonlinear function ( )f ⋅  up to second or-
der [47, 48]. The ellipsoidal estimates obtained in this case are very rough, i.e. their siz-
es can significantly exceed the sizes of the set 1|k kX +  that can negatively affect the 

convergence of an estimation method based on such approximations. The work [51] 
proposes a method for constructing a sequence of volume-optimal ellipsoidal estimates 
for the case of nonlinear polynomial systems. However, even with dimension two, the 
computational costs of implementing this method are very high. 

In [54, 55], a modification of the ellipsoidal estimation method was considered, 
which makes it possible to reduce the amount of calculations when constructing a se-
quence of ellipsoidal estimates, and at the same time significantly increase the speed of 
convergence, and also give the estimation algorithm the property of robustness with re-
spect to violations of a priori assumptions about the properties of uncertain quantities of 
the estimation problem. A similar approach was previously proposed and studied in [52, 53]. 
In accordance with [55], the ellipsoid 1|k kE +  is constructed, as in the extended Kalman 

filter, with the use of the linear part of the expansion of the function in (27) in the vi-
cinity of the point ˆ .kx  The center vector 1|ˆk kx +  of the ellipsoid 1|k kE +  is found by nu-

merically integrating the following equation:  

 1
ˆ ˆ/ ( ( ), ( ), ( )), ( ) , [ , ],k k k kdx dt f x t u t t x t x t t t += ζ = ∈    

taking 1| 1ˆ ( ).k k kx x t+ +=   Here ˆ ( )tζ  is some estimate of unknown vector ( ),tζ  chosen 

from some considerations. Usually people takes ˆ ( ) 0.tζ =  
The condition (30) can be written in the form 

 ˆ ,k k k kx x x E∆ = − ∈ ∆  

where ellipsoid T 1(0, ) { : 1}.k k kE E H x x H x−∆ = = ∆ ∆ ∆ ≤  Let us consider construction of 
approximate ellipsoidal estimate for 1| 1 1|ˆ .k k k k kx x x+ + +∆ = −  At the interval 1[ , ]k kt t +  

for the value  
 ( ) ( ) ( ),x t x t x t∆ = −   

we can obtain with the use of the Taylor series expansion of function ( ( ), ( ), ( ))f x t u t tζ  

at vicinity of ( )x t  and ˆ ( )tζ  the following equation: 

ˆ ˆ( ( ), ( ), ( )) ( ( ), ( ), ( )) ( )x
d x f x t u t t x f x t u t t t
dt ζ
∆

= ∂ ζ ∆ + ∂ ζ ∆ζ +   

 1( ) ( ), [ , ].x k ko x o t t tζ ++ ∆ + ∆ζ ∈  (33) 
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Here the functions ( )xo x∆  and ( )oζ ∆ζ  denote the terms of the expansion of the 

second order of smallness. This equation, using various estimates, in principle allows to 
calculate the matrix 1|k kH +  of the ellipsoid 1| 1|(0, ),k k k kE E H+ +∆ =  1| 1| .k k k kx E+ +∆ ∈ ∆  

However, the computational costs can be quite large. Therefore, it is proposed [55] to 
use instead of (33) the following approximate, but simple stationary linear equation: 

 ,k
d x A x
dt
∆

= ∆  1[ , ],k kt t t +∈  (34) 

where n n× -matrix 
 1/2 1/2 1/2

ˆˆ( , , ).k x k k kA f x u+ + += ∂ ζ  
Here  

 1/2 1|ˆ ˆ ˆ0,5 ( ),k k k kx x x+ += ⋅ +  1
1/2

1 ( ) ,k

k

t
k tu u d+

+ = τ τ
∆ ∫  1

1/2
1ˆ ˆ ( ) .k

k

t
k t d+

+ζ = ζ τ τ
∆ ∫  

Since (0, ),k kx E H∆ ∈  then by virtue of equation (34) we can obtain [52] that 

 1| 1 1|( ) (0, ),k k k k kx x t E H+ + +∆ = ∆ ∈  
where 
 T

1| ,k k k k kH H+ = Α Α  (35) 

and n n× -matrix exp ( ).k kAΑ = ⋅ ∆  Finally we get 

 T 1
1| 1| 1| 1| 1| 1|ˆ ˆ( , ) { : ( ) ( ) 1}.k k k k k k k k k k k kE E x H x x x H x x−

+ + + + + += = − − ≤  

Due to the use of approximate equation (34) 1| 1| ,k k k kE X+ +≠  i.e. some ends of the tra-

jectories of system (27), coming out of the set ,kE  will not belong to this 1| .k kE +  

Instead of a set 1kX +  in (32), its estimate is also considered 

 1 , 11
ˆ ,N

k j kjX + +== Π


 

where the sets 

 T
, 1 , 1 1| 1| 1|ˆ ˆ ˆ{ :| ( ) ( )( )| }j k j k j k k j k k k k jx y g x g x x x c+ + + + +Π = − − ∇ − ≤  (36) 

are obtained by replacing the function ( )jg x  in (31) with its linear approximation in the 

vicinity of the point 1|ˆ .k kx +  From (36) it follows that if 1| , 1ˆ ,k k j kx X+ +∈  then 

1| , 1ˆ ,k k j kx + +∈ Π  and vice versa. However, the set 1 1ˆ .k kX X+ +≠  Due to this and the 

fact that 1| 1| ,k k k kE X+ +≠  it may turn out that 1| 1ˆ ,k k kE X+ + = ∅  and it is impossible 

then to implement an analogue of scheme (32) for constructing an ellipsoid 1kE +  in the 

form 1 1| 1ˆ[ ] .k k k k EE E X+ + +=   Therefore, in this case 1| 1ˆ ,k k kE X+ + = ∅  it is pro-

posed to take instead of an ellipsoid 1| ,k kE +  the ellipsoid of increased size 

 T 1
1| 1| 1| 1|ˆ ˆ{ : ( ) ( ) 1},k k k k k k k kE x x x H x x−

+ + + += − − ≤   (37) 

where matrix  

 2
1| 1| .k k k kH H+ += α  
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The number 1α >  is chosen in such a way that the set 1| 1ˆk k kE X+ + ≠ ∅

  is the body. 

Formulas for selection of α  and necessary explanations are given in [54, 55]. The ellip-
soid 1kE +  covering the intersection 1| 1ˆk k kE X+ +



  can be obtained using standard itera-

tive procedures [42, 52, 53]. In this work, the construction of the ellipsoid 1kE +  is car-
ried out iteratively [54] in accordance with the scheme 

 1 mod 1, 1[ ]s s s N k EE E+ + += Π  0, 1, 2,s =   

The ellipsoid 1|k kE +  is taken as the initial ellipsoid 0 ,sE =  i.e. 0 1| .s k kE E= +=  In this 

case, the operation [ ]E⋅  of constructing an ellipsoid of minimal volume containing 
the intersection mod 1,s s N kE +Π  of the ellipsoid sE  and a multidimensional layer 

mod 1, ,s N k+Π  is used. If it turns out that mod 1, ,s s N kE +Π = ∅  then the ellipsoid ma-

trix sH  is multiplied by a factor 2
sα  that ensures deepening the ellipsoid sE  into a 

multidimensional layer mod 1,s N k+Π  to a depth of .δ  The process of constructing el-

lipsoids sE  will stop [54] at some finite .s S=  In this case, the inclusion Sx ∈  

, 11
N

j kj +=∈ Π


 is true for the center Sx  of the resulting ellipsoid ( , ).S S SE E x H=  Fi-

nally we assume 1 .k SE E+ =  
Note that in notations (36) and (37) the quantity 1|ˆk kx x x +∆ = −  appears as a varia-

ble. Therefore, the above algorithm can be considered as search of an increment 
1 1 1|ˆ ˆ .k k k kx x x+ + +∆ = −  

2.2. Linearization of the equations. We use the multiplicative form of quaternion 
increment [56, 57], so quaternion q  is written as 
 ˆ ,q q q= ∆  (38) 

where q̂  is an estimate and q∆  is the estimate error. This representation allows us to 
avoid the need for forced normalization of product if both its factors q̂  and q∆  are 
normalized. Moreover, if we assume that the quaternion q∆  is small, i.e. determines a 
rotation at a small angle ϕ  ( 0)ϕ ≈  around some unknown axis ,e  1,e =  then, in ac-
cordance with the quaternion representation in the form (3), the following estimates will 
be valid 

 0 1,q∆ ≈  0.vq∆ ≈  (39) 

Knowing the vector part ,vq∆  we can determine from the normalization condition the 
scalar part in accordance with the expression 

 2
0 1 ,vq q∆ = − ∆  (40) 

i.e. a quaternion q∆  is completely characterized by its vector part.  
In expression (15) for the quaternion ,η  we will use representation (38) for the 

quaternion q  and the representation 

 ˆµ = ∆µ µ  
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for the quaternion µ  [34, 35]. The sense of choosing such a representation will be clear 
from what follows. The use of the vector part of quaternions q∆  and ∆µ  allows to re-
duce the dimension of the state vector at estimation, and to normalize them using for-
mula (40). 

When using the vector part vq∆  and v∆µ  to specify quaternion increments, the 
state vector increment  

 T T T T T T T T 23( , , , , , , )C Cx q r v l R∆ = ∆ ∆ω ∆ ∆ ∆ ∆ρ ∆µ ∈  

is uniquely characterized by the following vector of lower dimension: 

 T T T T T T T T 21( , , , , , , ) .v C C vx q r v l Rδ = ∆ ∆ω ∆ ∆ ∆ ∆ρ ∆µ ∈  

Therefore, knowledge of 1kx +δ  is sufficient to calculate in accordance with the 
measurement results the increment 1kx +∆  for updating the estimate 1|ˆk kx +  at the mo-

ment ( 1).k +   
We obtain a linear differential equations that approximately describe the evolution 

of the vector .xδ  For equations (22), assuming ( ) ( ) ( ),t t tω = ω + ∆ω  ( ) ( ) ( ),l t l t l t= + ∆  
we obtain 

 
1 1 2 3 2 3 1 2 3

2 2 1 3 1 3 2 1 3

3 3 1 2 1 2 3 1 2

( ) ;

( ) ;

( ) ;

l l

l l

l l

∆ω = ∆ω ω + ω ∆ω + ∆ ω ω
∆ω = ∆ω ω + ω ∆ω + ∆ ω ω
∆ω = ∆ω ω + ω ∆ω + ∆ ω ω



    



    



    

 

which we write in matrix notations 

 ( , ) ( ) .lA l A lω∆ω = ω ∆ω + ω ∆

    (41) 
Here the matrices 

 
1 3 1 2

2 3 2 1

3 2 3 1

0
( , ) 0 ,

0

l l
A l l l

l l
ω

ω ω 
 ω = ω ω 
 ω ω 

2 3

1 3

1 2

0 0
( ) 0 0 .

0 0
lA

ω ω 
 ω = ω ω 
 ω ω 

 

Using the equation (20), we obtain differential equation for .vq∆  Considering q  

as estimate of q  from (38) we get .q q q∆ =    Differentiating this expression, we have 

 .q q q q q∆ = +

   
   (42) 

Let us differentiate the identity 1,q q = 
  then we get 0.q q q q+ =

   
   From here 

 .q q q q= −



   
   (43) 

On definition  
 0,5 .q q= ω

 
  

Substituting this expression into (43), and then the resulting equality into (42), taking 
into account (2), we obtain 

 0,5 ( ) 0,5q q q q q q q q q q q q q q q∆ = − = ∆ ω + ∆ω − ω ∆ =

            
             

 0,5( ) 0,5 [ ] 0,5 ( ) .vq q q q Q q= ∆ ω − ω ∆ + ∆ ∆ω = − ω× ∆ + ∆ω ∆  
    (44) 
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Letʼs evaluate the right side of this equation. Neglecting terms of smallness order higher 
than the first, using the expression for the matrix ( )Q q  and estimate (39), we get 

 
T

0 00( )
[ ] v

q
Q q

q
  ∆   − ∆ω∆ω ∆ = ≈      ∆ ∆ω∆ω − ∆ω×    

. 

Taking into account the last equality, from (44) we obtain 

 0[ ] 0,5 , 0.v vq q q∆ ≈ − ω× ∆ + ∆ω ∆ ≈   (45) 

Equations (25) are linear. Therefore, for them we can immediately write 

 
,

( , , ) ( ) .
C C

C r O T C v O C

r v
v A r p r A v

∆ = ∆
∆ = ω ∆ + ω ∆





 

For constant parameters ,l ρ  and ,µ  the following equations are obviously valid: 

 0, 0, 0.vl∆ = ∆ρ = ∆µ =

   (46) 

Combining equations (41), (45) and (46), we obtain an equation that describes the 
change in time of the vector xδ  in the linear approximation 

 
15 6

6 15 6 6

( )
,

A x
x x

×

× ×

Θ 
 δ = δ
 Θ Θ 



  (47) 

where 15×15-matrix 

 

3 3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

[ ] 0,5

( , ) ( )

( )

( , , ) ( )

l

r O T v O

I

A l A

IA x

A r p A

× × ×

× ω × ×

× × × ×

× × ×

× × × × ×

− ω× Θ Θ Θ 
 
 Θ ω Θ Θ ω
 
 Θ Θ Θ Θ=
 
 Θ Θ ω ω Θ
 
 Θ Θ Θ Θ Θ 

. 

Let us assume that at the moment kt  for the vector xδ  the following inclusion 
holds:  
 ( ) (0, ).k k k kx t x E E Hδ = δ ∈ δ =  

In accordance with the approach outlined in subsection 2.1, for the matrix 1k+Α  used in 
calculating the matrix 1|k kH +  of ellipsoid 1| 1|(0, ),k k k kE E H+ +δ =  by virtue of (47) we 

take the following expression: 

 
1/2 15 6

1
6 15 6

kA

k
e

I

+ ∆
×

+
×

 ΘΑ =   Θ 
, (48) 

Here 1/2kA +  is the value of the matrix ( )A x  at the following values of its argu-

ments 1/2 1|ˆ ˆ ˆ0,5( ),k k k k+ +ω = ω + ω  ˆ ,kl  , 1/2 , 1 ,0,5( ),T k T k T kr r r+ += +  and , 1/2O k+ω =  

, 1 ,0,5( ).O k O k+= ω + ω  The ellipsoid kEδ  21( )kE Rδ ⊂  contains the possible values of 

the vector ,kxδ  and the ellipsoid 1|k kE +δ  contains the possible values of the vector 

1| .k kx +δ  
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Let us linearize the functions ( )jg x  appearing in measurement equations (17) and 

(18) in the point 1|ˆk kx +  with respect to .xδ  To do this, substitute an expression for the 

state vector expressed in terms of estimates and their increments, into these function ex-
pressions. The terms which are linear with respect to ,xδ  will contain the desired gradi-
ents of functions ( ).jg x  

For equation (17), considered for the moment ( 1),k +  we have 

1 , 1 1| 1| , 1 , 1

, 1| 1 , 1 1| 1|

, 1 , 1 , 1| 1

ˆˆ( ) ( ) ( )( ) ( ) ( ) ( )

ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )( )

ˆ( ) ( ) ( )( ) ( )

(

k C C k k k k k C C k O k

r
C k k C C C k C C k k k k k

r
C C k O k C k k C C C k

r R R q R q q R R q R q

r r R R R q R q R q

R R q R q r r R

R

+ + + + + +

+ + + + +

+ + + +

= µ ∆ ρ + ∆ρ − µ ×

× + ∆ − µ ρ + ξ = µ ∆ ρ + ∆ρ −

− µ + ∆ − µ ρ + ξ ≈

≈





, 1 1| 3 1| , 1 , 1

, 1| 1 , 1 1| 1|

, 1 , 1 , 1|

, 1 1|

ˆˆ) ( ) ( )( 2[ ])( ) ( ) ( ) ( )

ˆˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )

ˆ2 ( ) ( ) (

C C k k k v k k C C k O k

r
C k k C C C k C C k k k k k

C C k O k C k k C C

C C k k

R q R q I q R R q R q

r r R R R q R q

R R q R q r R

R R q R q

+ + + + +

+ + + + +

+ + +

+ +

µ + ∆ × ρ + ∆ρ − µ ×

× + ∆ − µ ρ + ξ ≈ µ ρ −

− µ − µ ρ −

− µ 1| , 1 , 1ˆ)[ ] ( ) ( ) ( )k k k v C C k O k Cq R R q R q r+ + +ρ × ∆ − µ ∆ +

 

 , 1 1| 1 1 1 1ˆ ˆ( ) ( ) ( ) ,r r r
C C k k k k k k kR R q R q r G x+ + + + + ++ µ ∆ρ + ξ = + δ + ξ  (49) 

where the vector 

 1 , 1 1| 1| , 1 , 1|ˆˆ ˆ ˆ( )[ ( )[ ( ) ( ) ] ]k C C k k k k k O k C k k Cr R R q R q R q r+ + + + + += µ ρ − − ρ  

and 3 21× -matrix 

 , ,,
1 3 3 3 6 3 31 1 1( : : : : : ).r q rr r r

k k k kG G G G∆ ∆ρ∆
+ × × ×+ + += Θ Θ Θ  

In the last expression, the 3 3× -matrices have the following form: 

 

,
, 1 1| 1|1

,
, 1 , 11

,
, 1 1|1

ˆˆ2 ( ) ( ) ( )[ ];

( ) ( ) ( );

ˆ( ) ( ) ( ).

r q
C C k k k k kk

r r
C C k O kk

r
C C k k kk

G R R q R q

G R R q R q

G R R q R q

∆
+ + ++

∆
+ ++

∆ρ
+ ++

= − µ ρ ×

= − µ

= µ

 

An expression (6) for the matrix ( )R q  and assumption (39) were used to obtain equali-
ty (49). 

For equation (18) we obtain 

 1 , 1 1 1 , 1 1| 1|1 ˆ ˆk C C k k k C C k k k k kkq q q q qη
+ + + + + + ++η = µ µ + ξ = µ ∆ ∆µ µ +

         

 , 1 1| 1|1 1ˆ ˆ ,C C k k k k kk kq qη η
+ + ++ ++ ξ = µ ∆λ µ + ξ     (50) 

where .q∆λ = ∆ ∆µ  Using formula (2) for multiplying quaternions, assumption (39) 
and similar assumptions for 0∆ µ  and ,v∆ µ  we obtain 

 0 0 0 0 0( , ) 1,v vq q q∆ λ = ∆ ⋅ ∆ µ − ∆ ∆ µ ≈ ∆ ⋅ ∆ µ ≈  

 0 0 .v v v v v v vq q q q∆ λ = ∆ ⋅ ∆ µ + ∆ µ ⋅ ∆ + ∆ × ∆ µ ≈ ∆ µ + ∆  
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From here 

 0

3 1

1 1 0

v v v v vq q×

∆ λ       
∆ λ = ≈ = +              ∆ λ ∆ + ∆ µ Θ ∆ + ∆ µ       

. 

Substituting this expression into (50), we get 

 1 1 , 1 1| 1| 1
0

ˆ ˆ ˆ( ) ( ) ( ) ( )k k C C k k k k k k
v v

Q Q q Q q Q
q

η
+ + + + + +

 
η ≈ η + µ µ + ξ =  ∆ + ∆µ 

  

 1 , 1 1| 1| 1ˆ ˆ ˆ( ) ( ) ( ) ( )( ) ,k C C k k k v k k v v kQ Q q Q q Q q η
+ + + + += η + µ µ ∆ + ∆µ + ξ  (51) 

where quaternion 
 1 , 1 1| 1|ˆ ˆ ˆ( ) ( ) ( )k C C k k k k kQ Q q Q q+ + + +η = µ µ  
and 4× 3-matrix 

 
T

0 3
( )

[ ]
v

v
v

Q
I

 −µ
 µ =
 µ − µ × 

. 

The equality (51) can be written in the form 

 1 1 1 1ˆ ,k k k kG xη η
+ + + +η ≈ η + δ + ξ   (52) 

where matrices , ,
4 151 1 1( : : ),q

k k kG G Gη ∆η η ∆µ
×+ + += Θ  , ,

, 11 1 ( ) ( )q
C C kk kG G Q Q qη ∆ η ∆µ

++ += = µ ×  

1| 1|ˆ ˆ( ) ( ).k k v k kQ q Q+ +× µ  

From expressions (49), (52) and restrictions on measurement noise, we obtain 
that the components of the increment vector must satisfy the following 7 linear in-
equalities: 

 1 1 1ˆ ,r r
k k kr r G x c+ + + ∞− − δ ≤  (53) 

 1 1 1ˆ .k k kG x cη η
+ + + ∞η − η − δ ≤  (54) 

Note that (54) contains 4 inequalities that have to be satisfied using only three variables, 
namely, a vector v vq∆ + ∆µ  of dimension 3. In the general case, these inequalities may 
turn out to be inconsistent, i.e. the solution area may be empty. Therefore, when solving 
numerically, when finding the intersection with an ellipsoid, three of these four inequal-
ities should be chosen, but in such a way that the discrepancy in the fourth inequality is 
minimal. 

2.3. Problem solution algorithm. We assume that at the moment kt  the estimate 
ˆkx  of the state vector is known, and the parameters of the ellipsoid are also known, the 

matrix T 0.k kH H= >  Let us describe the procedure for calculating the estimate 1ˆ .kx +  
1. We numerically integrate equations (20), (21) and (25) in real time over the in-

terval 1[ , ]k kt t +  under the initial condition ˆkx  to calculate estimates 1|ˆ ,k kq +  1|ˆ ,k k+ω  

, 1|Ĉ k kr +  and , 1|ˆ .C k kv +  For the rest constant components of the state vector, we assume 

1| 1|
ˆ ˆ ˆ ˆ,k k k k k kl l+ += ρ = ρ  and 1|ˆ ˆ .k k k+µ = µ  

2. At the moment 1kt +  we calculate according to expression (48) the matrix 1k+Α  
and according to (35) the matrix 1|k kH +  of the ellipsoid 1| .k kE +δ  
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3. An ellipsoid 1 1 1ˆ( , )k k kE x H+ + +δ δ  is constructed containing the intersection of 
the ellipsoid 1|k kE +δ  and layers corresponding to inequalities (53) and (54) using the 

algorithm of subsection 2.2. The center of the ellipsoid 1,kE +δ  vector 1ˆkx +δ  (in the 
general case 1ˆ 0)kx +δ ≠  will satisfy the linearized inequalities (53) and (54).  

4. Using the increment vector T T T T T
1 1 , 1 1 , 1 1ˆ ˆˆ ˆ ˆ ˆ( , , , , ,k k v k k T k kx q p r+ + + + + +δ = ∆ω ∆ ∆ ∆ ∆ ρ  

T T
, 1ˆ ) ,v k+∆µ  we calculate the vector 

 T T T T T T T
1 1 1 1 , 1 1 1ˆ ˆˆ ˆ ˆ ˆ ˆ( , , , , , )k k k k T k k kx q p r+ + + + + + += ω ρ µ  

in accordance with the following formulas: 

 1 1| 1ˆ ˆ ˆ ,k k k k+ + +ω = ω + ∆ω  1 1| 1
ˆ ˆ ˆ ,k k k kl l l+ + += + ∆  , 1 , 1| , 1ˆ ˆ ˆ ,C k C k k C kr r r+ + += + ∆  

 , 1 , 1| , 1ˆ ˆ ˆ ,C k C k k C kv v v+ + += + ∆  1 1| 1ˆ ˆ ˆ .k k k k+ + +ρ = ρ + ∆ ρ  

The quaternion 1ˆkq +  is calculated as follows: 

 1 1| 1 1| 1ˆ ˆ ˆ ˆ ˆ( ) ,k k k k k k kq q q Q q q+ + + + += ∆ = ∆  

where T T
1 0, 1 , 1ˆ ˆ ˆ( , ) ,k k v kq q q+ + +∆ = ∆ ∆  2

0, 1 , 1ˆ ˆ1 .k v kq q+ +∆ = − ∆  The quaternion 1ˆ k+µ  

is calculated similarly: 

 1 1 1| 1| 1ˆ ˆ ˆ ˆ ˆ( ) ,k k k k k k kQ+ + + + +µ = ∆µ µ = µ ∆µ  

where T T
1 0, 1 , 1ˆ ˆ ˆ( , ) ,k k v k+ + +∆µ = ∆µ ∆µ  2

0, 1 , 1ˆ ˆ1 .k v k+ +∆µ = − ∆µ  

5. For the moment 1,kt +  we take as the initial ellipsoid 1(0, ),kE H +  where 1kH +  
is the matrix of the ellipsoid 1.kE +δ  

The process of estimation will stop when 1ˆ 0,kx +δ =  i.e. when the calculated esti-
mates, i.e. the vector 1|ˆk kx +  will satisfy inequalities (19) related to measurements. 

The properties of the presented algorithm were studied using numerical simulation. 

3. Numerical simulation 

Numerical simulation was carried out to test the performance of the proposed algo-
rithms for estimating the parameters of the relative motion of the NSC and the SSC, in-
cluding influence of the choice of a priori values of the estimated parameters, the quali-
ty of the algorithm at different levels of measurement noise. The hovering mode was 
considered, in which the SSC is at a safe distance from the NSC in the working area of 
the CVS. The SSC does not perform any maneuvers and carries out measurements of 
the distance vector and attitude quaternion of the NSC in order to determine the remain-
ing parameters of the relative motion necessary for planning a safe trajectory of ap-
proach and capture of the NSC. It is assumed that the SSC is in free orbital flight and is 
oriented in space in such a way that the NSC is located approximately in the center of 
the CVS camera frame.  

To obtain the «measured values» of the CVS, differential equations (20) and (21) 
were used, describing the free rotation of the NSC, as well as equation (25) of the rela-
tive orbital motion. Various initial values for these equations were considered and ran-
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domly selected from a given set of values. In particular, the components 0( ),j tω  

1: 3,j =  of the angular velocity vector 0( )tω  were chosen randomly from the inter-
val [ 0,1, 0,1]−  rad/sec. The initial attitude quaternion 0( )q t  was chosen in a similar 
way. Its components 0( ),jq t  0 : 3,j =  were selected from the interval [ 1, 1]−  and 

then were normalized. The main moments of inertia of the NSC are 1 3616J =  kgm2, 

2 7618J =  kgm2, 3 8098J =  kgm2. The position of the GRF in the TRF was chara-

cterized by vector T(0, 2, 0,3, 0, 4)ρ =  and by nominal known quaternion µ̂ =  
T(0,95, 0,16, 0,045, 0,25) ,= −  which value was slightly changed by small unknown 

increment. The position of the CVS in the CRF was specified by the vector 
T(1,2, 0,4, 0,0)Cρ =  and unit quaternion T(1, 0, 0, 0) .Cµ =  Initial position of the SSC 

c.m. relative to the NSC c.m. was characterized by a vector T(5, 15, 2)Cr = − and a zero 

vector of relative velocity T
0( ) (0, 0, 0)Cv t = in the ORF. The SSC attitude quaternion 

( )Cq t  was calculated at each time moment from the condition that the NSC was in the 
center of the CVS frame. These values were used to integrate equations (20), (21) and 
(25) to calculate the so-called true values of these parameters in time and to form the 
measured values of distance vector kr

  and quaternion kη  in accordance with expres-

sions (17) and (18). Sequences of measurement noise r
kξ  and k

ηξ  were generated as a 

white noise process, their values are uniformly distributed in intervals [ , ]r rc c−  and 

[ , ]c cη η−  respectively. The maximum measurement noise values 0,004rc =  m and 

0,003cη =  were taken from [63], which corresponds to a position accuracy of 4 mm 
and an attitude within 0,16° in Euler angles. During the simulation, various values of the 
discrete time period ∆  from 0,1 to 1 second, were considered.  

The initial values of the estimates for unknown quantities were chosen arbitrarily, 
including zero, with the exception of estimates for the initial values of 0( )Cr t  and 

0( ),q t  which estimates can be obtained using the first measured values of 0r
  and 0.η  

Various values were considered for the matrix 0 ,H  ranging from 0 0,0001H I= ⋅  and 

to 0 4 .H I= ⋅  The first case corresponded to the situation in which the initial ellipsoid 

0E  does not contain the true initial vector. In the case 0 4 ,H I= ⋅  the ellipsoid 0E  was 
guaranteed to contain such a vector. During the simulation, it was found that the process 
of estimating all parameters of relative motion was highly dependent on the choice of 
the initial approximation and was unstable in most cases. However, with a known or in-
accurately known, but given value of the quaternion ,µ  the estimation algorithm con-
verged for any initial data. Therefore, the simulation results are presented for the case of 
using a given constant estimate µ = ∆µ µ

  for the quaternion µ  in the estimation algo-
rithm formulas, where the error ∆µ  was chosen to be small. Plots of changes in time of 
true values (dashed line) and their estimates (solid line) are presented in Fig. 4–8 for 
case 0 0,0001H I= ⋅  and ∆ = 0,4 sec. In Fig. 4 elements of angular velocity kω  and 

their estimates ,ˆ k jω  are shown, plot of change of estimation error ˆk k ∞ω − ω  is pre-

sented in Fig. 5.  
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Fig. 5 
 

Similar values for the parameter vector l  and its estimate k̂l  are shown in Fig. 6. The 

plot of change of estimation error k̂l l ∞−  is shown in Fig. 7. 

 
Fig. 7 

 
Components of the vector ρ  and its estimate ˆ kρ  are presented in Fig. 8. 

 
Fig. 9 

 

Fig. 9–11 contain plots of estimates ˆ ,kρ  k̂l  and ˆ kω  for the case of a greater 

error in measuring the position and attitude of the NSC, namely, for 0,02rc =  m 

and 0,06.cη =  These values correspond to the CVS based at the approach [30]. 
As it can be seen from Fig. 9–11, with a higher intensity of measurement er-

rors the transition process becomes longer and the evaluation plots contain noticea-
ble fluctuations. 

 
Fig. 6 

 
Fig. 8 

 
Fig. 4 
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Fig. 11 

 

Conclusion 

The need to solve the considered estimation problem is associated with the possi-
bility of implementing safe approach and docking with the NSC, including the case 
when it is in a state of free rotation. We obtained general functional relation between 
measured and estimated quantities when the CVS measures the position and attitude of 
the graphical reference frame relative to the CVS reference frame. An ellipsoidal esti-
mation method is proposed, which does not require knowledge of the stochastic parame-
ters of uncertain quantities, i.e. measurement noise, parameters and initial values of dif-
ferential equations. Moreover, these quantities are not assumed to be random variables 
or to have stable stochastic properties. 

The results of the numerical simulation showed that the estimation problem under 
consideration is likely to be ill-conditioned or, in other words, the considered dynamical 
system for a given set of measurements is close to unobservable. The accuracy of a so-
lution of the simplified estimation problem, in which the quaternion µ  is not estimated 
and instead the algorithm uses some estimate µ  of it, degrades as the accuracy of that 
estimate µ  deteriorates. Exact knowledge of µ  is crucial to the accuracy of estimation 
of almost all other quantities. Therefore, it is necessary to ensure an accurate estimation 
of this value, possibly by involving measurements of additional variables. In the intro-
duction to this work, it is noted that this parameter and other variables can be deter-
mined quite accurately, in particular, by introducing coordinates of characteristic points 
on the NSC surface into the state vector. 

The direction of further investigation may be related to further improvement of the 
estimation algorithm to increase its regularizing properties. It is also of interest to con-
duct a quantitative comparison of the proposed estimation algorithm, for example, with 
estimation methods that use various versions of the Kalman filter, namely, to compare 
the accuracy, convergence speed and computational costs during full scale experiments, 
i.e. in conditions of real error properties inherent to a particular type of CVS.  
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Використання навколоземного космічного простору в даний час ускладню-
ється наявністю на орбіті Землі обʼєктів космічного сміття, до яких відно-
сяться відпрацьовані ступені ракет-носіїв, недіючі космічні апарати та інші 
великі і малі обʼєкти, повʼязані з діяльністю людини в космосі. Одним з 
елементів вирішення проблеми космічного сміття є стикування та захоп-
лення некерованого некооперативного космічного обʼєкта або космічного 
апарата так званим орбітальним сервісним космічним апаратом для прове-
дення подальших дій щодо його ремонту, дозаправки або зміни орбіти. Си-
туація ускладнюється тим, що під впливом різних факторів некеровані 
космічні обʼєкти знаходяться в стані обертання. Параметри орбітально-
го руху таких обʼєктів досить точно відомі з вимірювань із Землі. Для 
здійснення безпечного зближення і стикування також необхідно знати па-
раметри обертального руху, а також параметри відносного руху. Розгляну-
то найбільш загальний випадок руху розташованого на еліптичній орбіті 
некооперативного космічного апарата, який знаходиться у стані вільного 
обертання. Передбачається, що тривимірна графічна модель такого кораб-
ля відома. Сервісний космічний апарат (СКА) оснащено монокамерою, яка 
робить знімки некооперативного космічного апарата (НКА). На основі по-
рівняння характерних особливостей фотографій та зображень, що отриму-
ються за допомогою графічної моделі, система компʼютерного зору (СКЗ) 
визначає вектор відстані до так званої графічної системи координат, жорс-
тко закріпленої на НКА, та кватерніон її відносної орієнтації. Конкретний 
тип СКЗ не розглядається. Передбачається, що СКА може здійснювати ма-
неври поблизу НКА. Усі параметри кутового руху СКА вважаються відо-
мими. У даній роботі розглядається найбільш загальний випадок відносно-
го руху СКА і НКА. За допомогою кватерніонного числення отримано всі 
основні кінематичні та динамічні рівняння. Параметрів, що вимірюються, 
недостатньо для безпечного зближення та стикування з НКА. Стохастичні 
характеристики похибок вимірювання СКЗ не вважаються відомими і, від-
повідно, не використовуються. Для похибок вказані лише їх максимальні 
значення. Розглядається новий динамічний множинний фільтр з викорис-
танням еліпсоїдів для вирішення задачі визначення параметрів відносного 
руху НКА, що перебуває у вільному некерованому русі. Фільтр можна реа-
лізувати в умовах обмежених обчислювальних можливостей, доступних на 
бортових процесорах. До параметрів відносного руху відносяться вектор 
відстані між центрами маси (ц.м.) НКА і СКА, вектор відносної швидкості, 
кватерніон орієнтації головних осей інерції НКА відносно інерційної сис-
теми координат, відношення моментів інерції НКА, вектор положення ц.м. 
НКА в графічній системі координат. Властивості запропонованого алгори-
тму продемонстровано за допомогою чисельного моделювання. Отримані 
результати планується використати при розробці, створенні та випробу-
ванні навігаційної системи зближення та стикування СКА, який розроб-
ляється групою підприємств космічної галузі України під керівництвом 
ТОВ «Курс-орбітал» (https://kursorbital.com/). 

Ключові слова: відносні параметри руху, космічний апарат, оцінювання, 
відеозображення. 
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