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The use of near-Earth space is currently complicated by the presence of space
debris objects in Earth’s orbit, which include spent stages of launch vehicles, in-
operative spacecraft, and other large and small objects associated with human
activity in space. One of the elements of solving the problem of space debris is
the docking and capture of an uncontrolled non-cooperative space object or
spacecraft by a so-called on-orbit servicing spacecraft to carry out further ac-
tions to repair it, refuel or change its orbit. The situation is complicated by the
fact that, under the influence of various factors, uncontrolled space objects are in
a state of rotation. The parameters of the orbital motion of such objects are
known quite accurately from measurements from the Earth. To carry out safe
approach and docking, knowledge of the parameters of rotational motion, as
well as the parameters of relative motion, is also required. The most general case
of motion of a non-cooperative tumbling spacecraft located in an elliptical orbit
is considered. It is assumed that the three-dimensional graphic model of such
spacecraft is known. The servicing spacecraft (SSC) is equipped with a mono
camera that takes pictures of the non-cooperative spacecraft (NSC). Based on a
comparison of the characteristic features of photographs and images obtained us-
ing the graphical model, the computer vision system (CVS) determines the dis-
tance vector to the so-called graphical coordinate system, rigidly fixed on the
NSC and the quaternion of its relative attitude. The specific type of CVS is not
considered. It is assumed that the SSC carries out some maneuvers near the sat-
ellite. All parameters of the SSC angular motion are assumed to be known. This
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work considers the most general case of the relative motion of SSC and NSC.
Using quaternion calculus, all basic kinematic and dynamic equations are ob-
tained. The measured parameters are not enough to ensure safe rendezvous and
docking with the NSC. The stochastic characteristics of errors of the CVS meas-
urement are not assumed to be known and, accordingly, are not used. Only their
maximum values are specified for them. We consider the use of new dynamic
set-membership filter using ellipsoids to solve the problem of determining the
parameters of the relative motion of the NSC which is in free uncontrolled mo-
tion. The filter can be implemented under conditions of the limited computation-
al capability available on onboard processors. The relative motion parameters
include the distance vector between the centers of mass (c.m.) of the NSC and
the SSC, the relative velocity vector, the quaternion of the orientation of the
main axes of inertia of the satellite relative to the inertial coordinate system, the
ratio of the moments of inertia of the satellite, the vector of the position of the
NSC c.m. in the graphical coordinate system. The properties of the proposed al-
gorithm are demonstrated using numerical simulation. The results obtained are
expected to be used in the development, creation and testing of a navigation sys-
tem for the rendezvous and docking of the SSC, developed by a group of
Ukrainian space industry enterprises under the leadership of the LLC «Kurs-
orbital» (https://kursorbital.com/).

Keywords: relative motion parameters, spacecraft, estimation, video image.
Introduction

The presence of space objects related to space debris in near-Earth space poses a
serious threat during the launch of spacecraft (SC), as well as for those spacecraft that
are already in orbit. Some of these objects are inoperative spacecraft, which, with minor
repairs or after refueling, can continue to operate. Therefore, work is currently under-
way all over the world to create so-called servicing spacecraft (SSC) or on-orbit servic-
ing spacecraft capable of docking with a non-cooperating spacecraft (NSC) or object
and performing maintenance or removing the object from orbit. The development and
current state of this problem can be found in the reviews [1-4].

Success in docking significantly depends on the accuracy of determining the rela-
tive navigation of the NSC and SSC [5-7]. It is assumed that the navigation and attitude
control systems of the NSC does not work for some reason. In this case, radar and opti-
cal systems are used to determine the relative position and attitude of the NSC. The lat-
ter include laser [8-12] and optical systems [13-30], which use cameras operating in the
optical range. Optical systems are capable of providing more accurate measurements of
the parameters of the relative position and attitude of the NSC at close distances (no
more than 100 m) and are used at the final stage of docking. These devices allow to ob-
tain values of the distance vector and the attitude of a certain reference frame rigidly
fixed to the NSC. This information is not enough for trajectory planning and docking
with the NSC. It was established [31] that the NSC eventually begins to rotate around
the center of mass. This occurs due to the action of the gravitational moment, cosmic
radiation and the flow of solar wind particles [32, 33]. For docking, it is necessary to
know the position time evolution of the docking surface, which requires knowledge of
the angular velocity of rotation of the NSC, the speed of approach, as well as the posi-
tion of the main axes of inertia, the position of the center of mass. Currently, there are a
large number of works devoted to solving the problem of estimating these parameters
[8-17, 20-29, 34-36]. These works rely on the use of various versions of the Kalman
filter [37—39] to estimate these parameters.

The Kalman filter and its many modifications use the assumption that the uncertain
quantities are normally distributed random quantities. The distribution parameters are
assumed to be known. However, determining these parameters is a separate, rather la-
bor-intensive task. For more than half a century, a different approach [40-46] has been
developing to the problem of estimating unknown quantities, in particular, estimating
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the state vector of dynamic systems, which is based on the use of minimal information
about uncertain quantities, namely, only the sets of their possible values are assumed to
be known. As a result, the estimation process is reduced to procedures for calculating
the evolution of sets and set-theoretic operations on them, i.e. to the construction of re-
fined sets or, as they are commonly called, information sets that are guaranteed to con-
tain the estimated values. This approach is accordingly called guaranteed or set-
theoretic. In most cases, the construction of information sets is associated with serious
computational difficulties, which is an obstacle to their practical implementation, in par-
ticular, with the help of on-board computer systems. The use of the ellipsoidal estima-
tion method [40, 42-46] seems to be quite effective in terms of functionality and mini-
mization of computational costs, including state estimation of nonlinear dynamic sys-
tems [47-51]. In accordance with this method, information sets are approximated by
multidimensional ellipsoids. The ellipsoidal estimation method is sensitive to violations
of a priori assumptions about the values of uncertain quantities. To overcome this dis-
advantage, i.e. to ensure the robustness property, several modifications of this method
have been proposed [52-55].

The purpose of the work is to study and develop an algorithm for solving the esti-
mation problem of parameters of the angular motion of the NSC (attitude quaternion,
angular velocity vector, ratio of moments of inertia, position of the main axes of inertia,
position of the center of mass), vectors of the relative distance and speed between the
SSC and the NSC based on a modification of the ellipsoidal estimation method [54, 55].
Any of the optical relative navigation devices mentioned above can be considered as an
CVS device. The authors of this work focused on the use of CVS using a monocamera,
which operating principle and algorithms are described in [26, 30]. The proposed esti-
mation algorithms use the multiplicative form of quaternion increments [56, 57], which
not only simplifies the quaternion normalization procedure compared to using the addi-
tive form of the increment, but also leads to simpler equations describing the dynamics
of changes in quaternion increments. This work is a development of [58], and in terms
of the formulation of the problem it is very close to [35].

1. Estimation problem statement
1.1. Coordinate systems. The position of SSC and NSC in space will be specified
in the inertial geocentric equatorial coordinate system Ogl =Ogkji,iz, the origin of
which is in the Earth center of mass (c.m.), the basis vector i3 is directed along the
Earth rotation axis, the vector i is orthogonal to the vector i; and directed to the infi-
nitely distant point of the vernal equinox. The direction i, is chosen in such a way that
the triple of vectors i, i, and iz to be right-handed [59, p. 448]. Here and below, only

orthonormal right-handed systems of basis vectors are considered. We will call this sys-
tem in short the inertial reference frame (IRF).

The position of the SSC c¢.m. will be specified relative to the NSC ¢.m. The choice
of the NSC as a reference object is due to the fact that the satellite’s orbit is assumed to
be known, the satellite does not perform any maneuvers, and the position of the satellite
in orbit is known. The position of the NSC orbital plane relative to the IRF is character-
ized by the orbit inclination angle i, and the longitude angle Q of the orbit ascending

node relative to the axis Ogi; (see Fig. 1). The position of the NSC orbit in its plane is

characterized by the angle @ measured from the ascending node direction to the orbit
perigee direction [59].

MidcHapoOHUTl HAYKOBO-MEXHIUHUTL HCYPHAT
Ilpobremu xepysanns ma ingpopmamuxu, 2023, Ne 6 37



"o 1The SSC position relative to the NSC will be characterized in the orbital reference
frame (ORF) [59, p. 675] O;T =Or 11573, the beginning of which Or is placed in the
NSC c.m., the basis vector T is directed along the radius vector from the Earth c.m. to
the NSC c.m., the vector 13 is perpendicular to the orbital plane and directed along the
angular momentum vector of the NSC orbital motion, the direction of the vector t, is
chosen in such a way the triple of vectors t;, t, and t3 to be right-handed (at circular
orbit, the direction of t, will coincide with the satellite’s velocity direction).

Two more reference frames are associated with the NSC. Coordinate system
Oree,e3=07E, the center of which is located in the NSC c.m., and the unit vectors
are oriented along the main axes of the NSC inertia tensor. This reference frame O; E

will be further denoted by target reference frame (TRF). The so-called graphical coordi-
nate system Ogejese3=0OgE’ is also associated with the NSC, which we will briefly
denote as Graphic reference frame (GRF). The satellite graphical model is specified in
this coordinate system, and the coordinates of all elements of the satellite are specified,
in particular, the position of the docking surface. The position of this coordinate system
is determined by the computer vision system (CVS).

Coordinate system O¢s;5,83=0cS, which center O is located in the SSC c.m.,

and which unit vectors are oriented along the main axes of the SSC inertia tensor, char-
acterizes the SSC attitude. This reference frame will be denoted as chaser reference
frame (CRF). The coordinate system O s;s3s3 =0, S’ is associated with the CVS cam-

era installed on the SSC. In this definition, O, is the origin of the coordinate system,
and sj, j=1:3 are the vectors of the orthonormal basis. Vectors s; and s; are parallel
to the sides of the camera photosensitive matrix, the vector s3 is perpendicular to the

plane of this matrix and directed towards the subject of shooting along optical axes.
Hereinafter we will briefly denote this reference frame by video reference frame (VRF).
The reference frames associated with the satellites are shown in Fig. 2.

NSC SSC

Fig. 2
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The relative position of two arbitrary coordinate systems can be characterized us-
ing a vector pointed from the origin of one coordinate system to the origin of another,
and a quaternion characterizing the attitude of the basis of one coordinate system rela-
tive to the basis of the other.

1.2. Quaternions. Let us consider some properties of quaternions and operations
with them, using [6, 60]. CVS measures quaternion

3 '
N="mg+2j4MjSj =Mo"y

of attitude of reference frame OgE' relative to O, S’. The scalar part of the quaternion
is determined by the real number ng, the vector part r, is characterized by the vector

Ny = Zsj:lnjs}. The numbers nj, j=0:3, are the coordinates of the quaternion in

the basis Oy s{s5S3. A quaternion r is said to be normalized if its norm

[n[=n§ +nf +n3 +nj =1. (1)

A normalized quaternion n defines a rotation of three-dimensional Euclidean space RS
as a whole around an axis defined by a vector e=mn, /||n, | by an angle ¢. In this case
Mg =cos(p/2) and n, =sin(e/2)e. When performing two successive rotations, de-
termined first by the quaternion ¢, then by quaternion p, the resulting rotation will be
determined by the quaternion

n=ueq,

where quaternion multiplication poq is determined in the following way:

tod = polo — (Ky,Gy) +HoGy + Aoty + Ky X0y - (2)

Here (u,, q,) is ascalar product of vectors p, and q,, p, xq, is their vector product.

The quaternion coordinates depend on the choice of coordinate system. Therefore, to
calculate the quaternion coordinates of n using (2), the quaternion coordinates of q

and p must be expressed in the same coordinate system.

A vector n = (Mg, N1, M2, n3)T e R* can be formed from the quaternion coordi-
nates of 1. We will denote the quaternion and the vector of its coordinates by the same

symbol. The same applies to vectors. By virtue of the definition of a normalized quater-
nion, the vector of its coordinates

cos(p/2) j _ 3)

_ T_
n = Mo, M1, N2, M3) (Sin((plz)e

If quaternions q=(qo,ql.Q2,q3)T and u=(uo.H1,Hz,u3)T are represented in the

same coordinate system, then using (2), it is easy to obtain the following vector-matrix
relations for the quaternion coordinates [6]

n=poq=Q()a=Q(a)u, (4)
where 4x4-matrices

T T
Qu=|fo T ]@(q){% W ]
3 [uv (ol3 + [ty x]) 6 (dol3 ~[6,])
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In this expressions I3 is unit 3x3-matrix,

0 -03 O
[ayx]=| a3 0 -q
- ¢ O

is matrix of vector cross product, [g,x]w, =qy x L.
Let x be some vector. Then, with the rotation determined by the quaternion n,
the vector x will turn into a vector

y=meoXen,

where the vector x should be considered as quaternion with zero scalar part,
=1 —ny IS quaternion conjugate to n, mon=rnon=1. Conjugate quaternion 7,
as it follows from its definition and representation (3), determines the rotation around
vector e at the angle —¢, i.e. in the opposite direction. If vector x = Z3j:1xjs'j is giv-

en in the basis s’j, j=1:3, by coordinate vector x = (X, X, x3)T, then the coordinates

of vector y= Z‘j-’zlyjs’j are determined with the use of (4) by the following vector-

matrix equality
y=R(n)x ()

where coordinate vector y = (yy, Yo, y3)T and rotation matrix
2 T T
R(M) = (Mg —my )13 +2ng[nyx]+2nyny . (6)
Expression (5) is obtained using the identity

sy [ Il ®1x3j
QM) QM) [GM R() )

Here ®,,,, iszero mxn-matrix. It is easy to verify that

RRT M) =1, RT(n)=R(@.

Quaternion n determines the attitude of OgE’ relative to O, S’ means that the basis
vectors e’j, j=1:3, are determined by the following expressions:

ej =nesjen, j=1:3

i.e. every basis vector €] is obtained by rotation of vector sj, and is a linear combina-
tion of vectors s, j=1:3. Obviously, using (5), this can be written as the following
formal expression:

(1. €3, €3) = (51, 52, S3)R(n),

i.e. j-th column of matrix R(n) contains coordinates of the vector e} in basis

s’j, j=1:3. Itis easy to obtain from here the inverse relation

(s1, 52, 83) = (61, €2, €3)R(M)-

We will often use similar relations in what follows to transform the coordinates of vec-
tors and quaternions. Let us consider quaternions that specify the relative position of the
used reference frames.
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The attitude of the TRF relative to the IRF is determined by unknown quaternion
d=00+X 1 djij =Go + 0,
i.e. the following expression holds for the basis vectors
(&1, &2, 83) = (iy, iz, i3)R(0). (7
The attitude of the GRF is determined in the TRF by a constant but unknown quaternion

w=po+ Y3 1jej = o +hy.
In this case, the basis

(e, &3, €3) = (&1, €7, €3)R(R). 8

The CREF attitude relative to IRF is determined by the known quaternion
3 .
Oc =4c,0 +Zj=1 Gc,j'j =9c,0 +dcv:

which is measured with high accuracy, for example, by star trackers. The CRF basis

(S]_! SZ! S3)Z(ilv i21 |3)R(qC) (9)

The attitude of the VRF of the video camera relative to the CRF is specified also by the
known quaternion

3
Hc =Hco +Zj=1HC,jsj =Hc, o0 tHcyv:
The VRF basis is determined by the following expression:
(51,52, 53) = (51, 52, 53)R(kc ). (10)

The position of the ORF can be obtained using two rotations of the IRF basis i,

j =1:3. Let us denote the vector directed from the point Og (the beginning of the IRF)

to the point of the ascending node by a symbol n (see Fig. 1). Obviously, this vector in
the IRF is determined by the following expression:

n = cos Qi +sinQi, +0-i3.

Let us make first rotation around this vector by the orbital inclination angle i, deter-
mined by the quaternion

i iT)
to = (cosz, smzn j .
As a result of the rotation, the basis i;, j=1:3, will turn into the basis
(i, i3, i3) = (ig, Iy, i3)R(Ay,0)-
According to definition of the ORF we obtain that
i3 =13 =sin (i)sin () i; —sin (i) cos () i, +cos (i) i3.
The second rotation is determined by the quaternion
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cos [Q+®+3(1)]

G0 = 2 _cosl2FOTION g g5 4 gin 2O SOT;,
’ . [Q+o+3(1)].,
SIN——— I3
2
which is given by coordinates in the basis i%, j=1:3. Here 3(t) is true anomaly angle

at the time instant t, measured in the positive direction in the orbital plane from the or-
bit perigee direction to the direction to the satellite current position. As a result we get

(7, 12, 73) = (i, i2, i3)R(02.0) = (i, iz, i3)R(ty,0)R(G2,0) = (iy, Iz, i3)R(dp ). (11)
where o =00 °% - Comparing the expression for go and (11), it may seem that
the matrices R(qy o) and R(dp ) should be multiplied in the reverse order. Note that
in the expression for qq the quaternion ¢, o is specified by coordinates in the basis i,

j=1:3, and the quaternion g, o is specified in the basis i, j=1:3. To use vector-

matrix representations for operations on quaternions, they must be represented by coor-
dinates in the same coordinate system. By definition, the basis vectors i%, j=1:3, are

determined by the following expressions:
|] = q1’o Oij Oq_l,O’ J =1:3.

Therefore, in the basis ij, j=1:3, quaternion

G2,0 =U2,0(0) + 23}21 U2,0(j)lj =%0° q;,o °0i0;

where q;,o =02,0(0) +Z?:1QZ,o(j)ij. Therefore, the expression for the quaternion gg

in the basis i;, j=1:3, has the following form:

Jo =92,0 °%,0 = %0 °U20°%0 °%ho =%ho ° U0

which fully corresponds to expression (11). From here for coordinates of the quaternion
go We obtain

do =Q(a,0)42,0-
Note that the coordinates of the quaternions g, o and d, o coincide.
Diagram of the relative attitude of the used coordinate systems is shown in Fig. 3.

GRF -l VRF

e

TRF CRF

o\ /e

IRF
lffa
ORF

Fig. 3

1.3. Measurement equations. Using the diagram shown in Fig. 3, we can write the
following equality

Nepc °fc =peq (12)
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In this expression, the quaternions qc and pc are known, the quaternions q and p
are unknown and must be determined, the quaternion n is measured by the CVS with
some limited error. From (12) we obtained

n=peqgefc o pc- (13)

To obtain vector-matrix relations corresponding to (13), it is necessary to express the
coordinates of all quaternions in VRF, i.e. in the basis sj, j=1:3, and apply equali-

ty (4). The quaternion p in the basis ij, j =1:3, is defined by the following expression:
— 3 _ 3 o= 3 ) = x
H=Ho+2 g Hjej =Ho+ 2 g Hjdeijeo] —Q°(Mo +Zj=1Mj|j)°q =qgop o7, (14)

where p* =y, +Z3j:1Hjij- In what follows, we will not put an asterisk over this and
similar quaternions, because the coordinates u;, j=0:3, during this and similar basis
transformations will be preserved. Substituting (14) into (13), we get
n=qeopuefe °Hc-

The first three factors here are expressed in the basis ij, j =1:3. Let us transform each
of them into a basis s;, j =1:3, using the identity i; =Tc osjoqc, j=1:3. Asaresult
we obtain

N=0c °d°dc °qc °mefc °fc °Tc °dc °Hc =Tc °demepc.
In the resulting equality, we proceed to the basis s}, j=1:3, in a similar way, using the
identity s; =pc ° s’j opc, j=1:3. Finally we obtain the following equality:

N=Hc °fc °qop. (15)
Using Fig. 2, for the vectors characterizing the relative position of the coordinate
systems associated with the NSC and the SSC, we can write the following equality:

rc +pc +I = P.
From here
r=p-rc—pc- (16)

!

In this equation r=0g -0y =Z3j:1rjsj is the measured distance vector from the

camera to the GRF, pc =0, -O¢ = Zszlpc,jsj is known position of the beginning
of the VRF in the CRF, p=0g —O = Z3j:1pjej is unknown position of the begin-

ning of the GRF in the TRF, 1 =O¢ -0y = Z?:Nc,jTj = X1y + YT, + 273 IS unknown

distance vector from the NSC c.m. to the SSC c¢.m. in the ORF.
To obtain vector-matrix relations, we express the coordinates of all the vectors in
the VRF using equalities (7)—(11). In particular, for the vector p- we obtain

Pc1

Z3j=1pC,jsj = (81,52, 83)| pc2 | = (51,52, 83) pc = (51, 52, S3)R(Kc) e

Pc3
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where pc = (pc 1, Pc 25 pc,3)T. The elements of a vector R(uc)pc are the coordinates

of the vector pe in the basis s’j, j=1:3. Proceeding in a similar way for the remaining

vectors of equality (16), it is easy to obtain the following equality for the coordinates:
r=R(pc)[R(@Ac)IR(@ p—R(do) rc1-pc ]

We consider the measurements of vector r and quaternion n are made with additive

limited errors at discrete times t, =ty +A-k, k=0,1 2,..., i.e. as a result of the meas-
urement we obtain the following measurement vectors:

i = r(t) + &k =k +& = R(EC)R@c k)IR(A) P~ R(do ) fe k1-pcl+Ek, (A7)

Mk =n(t)+EQ =ny +E) =Tic o Tc k 2k o bk +Ef = Qe ) Q(Ac k) Qluk ) i +Ey- (18)

For measurement errors, only their maximum values are known, i.e. such numbers
¢ >0 and ¢, >0 for which the following inequalities hold:

lek ], <cr &k 1l <cq

From here, (17) and (18) it follows that the unknown parameters of the NSC motion sat-
isfy the following inequalities:

| i = R )R@c ¢ )R(A) p + R(Ec )R(@Gc kR0 k) .k + R ) pe |, <¢r.

| ik —Q(ic) Q (@c k) Q (i) ik ||, <y (19)

1.4. Dynamical equations. The change in time of the quaternion coordinates
q=(t, 9y, U3. q4)T is described by the following equation [6, 60]:

o1 1
q=§qm=EQV(Q)m, (20)

where the NSC angular velocity o = (o, ®,, m3)T is given in the TRF and 4 x 3-matrix

_ T
QV(Q)={ q“ J
dols +[va]

Vector o satisfies the following equation [60, 6]:
do

The inertia tensor matrix J in this equation has a diagonal form
J =diag (J1, Jo, J3).

The main inertia moments J;, i=1:3, are considered to be unknown. The moment M

in equation (21) may include gravitational moment, aerodynamic and other moments
caused by the action of the environment on the NSC [32]. We will assume that the in-
fluence of these moments on the NSC angular position during the observation time can
be neglected, i.e. in equation (21) we assume

M =0.
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It is easy to verify that in the absence of a moment of external forces, the solutions of
equation (21) depend only on the ratios of the inertia moments. Let us introduce the fol-
lowing notation [35]:

| _do-J3 | _ 3 | _d1-Jdp
L = o= 3= :
3, 3, 33

Then equations (21) can be written in the following component form:

@ = hoyws;
(bz = |2(,01(,03; (22)
i3 = oo,

We assume that over the considered period of time the inertia moments are constant.
Therefore, for the vector | = (I, I,, I3)T it holds

I=0. (23)
The coordinates of the vector p and quaternion p in the corresponding coordinate sys-
tems are also constant. Therefore we assume

p=(Pr P2, P3)" =0; 1= (1, f1p, Big, f1g) " =0. (24)

Let the SSC be located at a short distance from the NSC, i.e. for coordinates of the
vector
fc =XT1 + Y1 + 113
the following condition holds:

X2+y2-i-Z2 <<r-|—2,

where rr = (t) is the distance from the Earth c.m. to the NSC c.m. Then the change
in coordinates of vector r- can be described by the following linear equation [59, p. 679]:

X‘—xa)% [1+2%j—2mo(y—y:lJ=ax;
T

y+2m¢0 ()’(—xrlj—ymé (1—rl] =ay;
T p

4, F
7+ 0fz=a,.

Here og =g (t) = 9(t) is the absolute angular velocity of rotation of the ORF,
p=2rpry /(ry +1,) is the orbit focal parameter [61], r, is the orbit apogee, r, is the
orbit perigee, a,,a, and a, are the acceleration projections on the axes of the ORF,

created by external forces acting on the SSC, which are assumed to be known. Let’s
write these equations in the following form:

{rc =Vc,
(25)

Ve =A(og, i, P)Ic + A (o) Ve +a.
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Here rc =(x, Y, z)T is the vector of the SSC relative position, ve = (X, Y, z')T is the

vector of relative velocities, a = (ay, ay, az)T is acceleration vector, matrices

oo% (1+2r p ) -2t rT‘l 0
Awo, fr, P)=| 200K wdl-rp) 0 :
0 0 —co%rT p‘1
0 2w 0
A(og)=|-200 0 0].
0 0 0

To integrate equation (25), it is necessary to know g =9(t), rr(t) and k().
We will assume that the value of the true anomaly Sq = 9(ty) for the initial time ty, is

known. Then 9(t) is determined by integrating the following equation [61]:

§(t) =Cr2 =C(1+ecos(t)* p2

Values of 17 (t) and F; (t) are determined by the formulas

i (t) = p(L+ecos9(t)) L, F (t) =Cp~lesin 9(t),
and considered to be known. In these equations e = (ry —ry)/(ry +1,) is the orbit ec-

centricity, C =\/ug p, ug is the Earth gravitational constant [61].

1.5. Problem statement. Differential equations (20)-(25) can be considered as
equations of a nonlinear dynamic system in continuous time with the following state
vector:

T T.T T T T T\\T

x=@, o, c,ve,lpp). (26)
The initial conditions for these equations are unknown. At discrete moments of time,
some components of this vector x, = X(t) = (q[, (DI, rCTYk,vgyk, IkT, p{, uE)T must

satisfy inequalities (19) associated with measurements. In addition, normalization con-
ditions (1) must be satisfied for the components ¢q and p.

Let X, be some estimate of the state vector x,_; obtained at the moment of dis-
crete time (k —1). Using this value as the initial value for differential equations (20)—(25),
we can calculate the estimate Xy, for the moment k. If this estimate satisfies ine-
qualities (19), then, obviously, there is no need to refine it and we can put X, = )”(k“(,l.
If the estimate )“(k“(_l does not satisfy at least one of the inequalities (19), then its clari-

fication is required.
The problem is to find a method for refining estimates X in which inequali-

ties (19) will be satisfied for estimates X,y starting from some finite moment K and,

therefore, from this moment the refinement is not required. Ideally, this method should
provide existence of the limit

lim " Sik — Xk " =0.

k—o0
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Its existence is associated with the absence of uncontrollable disturbances in the system
under consideration, and with realization of certain properties of measurement noise,
which is difficult to verify and ensure in practice.

2. Method for solving the estimation problem

In this work we use a minimum of information about uncertain quantities, which is
almost always available in practice. Thus, for measurement noise, only its maximum
possible value is assumed to be known. The state vector is unknown, but it must satisfy
inequalities associated with measurement equations and noise magnitude constraints. In
fact, the unknown state vector belongs to the set defined by these inequalities. There-
fore, the estimation procedure comes down to constructing so-called information sets
that are guaranteed to contain true estimated values.

In this work, we use one of the modifications [54, 55] of the guaranteed estimation
algorithm using ellipsoids. The main advantages of this method are the high speed of
convergence, applicability to nonlinear systems, and resistance to possible violations of
a priori hypotheses.

2.1. Guaranteed approach to state vector estimation of dynamic systems.
Equations (20)—(25), using definition (26) of the state vector, can be written in the form

X = f(x(t), u(t), (), t =1y, (27)
where x(t) e R" is the state vector at a moment of continuous time t (R" is n-dimen-
sional real Euclidean space), u(t)eR™ is the vector of measured input variables,
C(t) e RY s the vector of uncontrolled disturbances. In this case, this may be the mo-
ment vector M in equation (21) acting on the NSC. We assume that the functions f (-),
u(-) and £(-) in (27), satisfy the standard conditions of existence and uniqueness of so-
lution of ordinary differential equations [62]. The vector

L(t)eZz<=RY v, (28)

where Z is some bounded closed set.
The measurement inequalities (19) can be written in the following form:;

|ijk_gj(xk)|ﬁcj| j=1:N, (29)

where yj, ¢j and g;j(x) are the measurement values of the j-th output variable, the

value of the maximum measurement noise of this variable and the continuously differ-
entiable measurement function, respectively, j=1:N, N =7. In addition, for quater-

nions included in the state vector, the normalization condition (1) must be satisfied.

Let us describe the procedure for updating information on the state vector in ac-
cordance with the guaranteed (set-theoretic) approach to estimation using ellipsoids. Let
us assume that at the moment t, it is known that the state vector

Xk = X(tk) € Ek’ (30)
where the ellipsoid
B = EGi Hi) =0 (x=R) TH (k=% <,

characterized by a center vector X, and a positive definite symmetric matrix

H, = H[ >0. The ellipsoid E, in (30) is usually called the set or ellipsoidal estimate
of the vector x,. The center of the ellipsoid, the vector X, is taken as a point estimate.
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Considering equation (27) on a time interval [t , t, 1] for all possible initial conditions
satisfying (30), and for all possible implementations of disturbances (-) satisfying
condition (28) on this interval, we can obtain the set

X ={%=X(ty1, %, (), §0)), VX € By V(1) e Z VT e[ty ty ]}

of possible values of the vector x,,; = X(t,1) at a discrete moment k+1. The set
Xy4qk 1s not in general an ellipsoid. The construction of this set can be carried out, for

example, by integrating the system equation (27) over the interval [t,, t,,4] under vari-

ous initial conditions satisfying (30) and for all possible implementations of disturb-
ances (1) € Z Vt e[ty t,1]. Obviously, this is a very labor-intensive process that re-

quires a large number of calculations.
On the other hand, the state vector X, satisfies inequalities (29) at the time mo-

ment t,,4, which can be written in the form

_ N =
X1 € Xiqr =V X j kst
where the set
X =06 Vjkar =900 ] <cj} (31)

The set X4 contains state vectors that are compatible with measurements under given
a priori bounds on the measurement noise. As a result, we can conclude that

Xia1 € Xiar = Xigr N X

Despite the obvious simplicity and logical rigor of the presented approach for updating
the set of possible values of the state vector, its practical implementation in general en-
counters insurmountable computational difficulties associated with the construction and

description of the sets Xy, Xi+10 Xis1o as well as the implementation of set-
theoretic operations, in the considered case, the set intersection operation.

One of the approaches aimed at reducing the computational complexity of solving
estimation problems is to use the ellipsoid method [42-53]. In accordance with this
method, approximations are constructed for the sets X, and X, in the form of
containing them ellipsoids Eyqy = E(Xqai, Hisa) and Eyyq = E(Xciq, Hyaa), and
the solution to the estimation problem is reduced to constructing a sequence of ellipsoi-
dal estimates {E, }x_o, X € Ex, for the vector x, in accordance with the following
recurrent procedure:

Xea1 € Eyar =X NXaapJele =X N Eiele - (32)

Here [X]g denotes the operation of covering a bounded set X < R" by minimal in
a certain sense ellipsoid E, i.e. X < E. The criterion for choosing such an ellipsoid
is usually its volume, diameter, or other function characterizing the ellipsoid size.
The described method for constructing ellipsoidal estimates is called ellipsoidal es-
timation. The advantage of scheme (32) compared to the initial scheme is that set-
theoretic operations are performed on sets of a fixed structure, but the disadvantage
is that the covering ellipsoids have a larger size than the covered sets, i.e. ellipsoids
contain extra areas.
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For linear systems, many standard operations [X]g have been developed, optimal

and suboptimal in some sense [42, 43]. In the case of nonlinear systems, the operation
[X]g can, in general, be implemented only numerically and requires a large amount of
calculations. In particular, this applies to the analogue of the unscented Kalman filter
[49, 50], in which the image of the ellipsoid under nonlinear transformation is obtained
as a minimal in some sense ellipsoid, containing images of specially selected points in
the initial ellipsoid E,. There are methods for constructing an ellipsoid E, . based

on the use of the Taylor series expansion of a nonlinear function f(-) up to second or-
der [47, 48]. The ellipsoidal estimates obtained in this case are very rough, i.e. their siz-
es can significantly exceed the sizes of the set X, gy that can negatively affect the

convergence of an estimation method based on such approximations. The work [51]
proposes a method for constructing a sequence of volume-optimal ellipsoidal estimates
for the case of nonlinear polynomial systems. However, even with dimension two, the
computational costs of implementing this method are very high.

In [54, 55], a modification of the ellipsoidal estimation method was considered,
which makes it possible to reduce the amount of calculations when constructing a se-
quence of ellipsoidal estimates, and at the same time significantly increase the speed of
convergence, and also give the estimation algorithm the property of robustness with re-
spect to violations of a priori assumptions about the properties of uncertain quantities of
the estimation problem. A similar approach was previously proposed and studied in [52, 53].
In accordance with [55], the ellipsoid Eyy is constructed, as in the extended Kalman

filter, with the use of the linear part of the expansion of the function in (27) in the vi-
cinity of the point %,. The center vector X,y of the ellipsoid Eyy is found by nu-

merically integrating the following equation:
dg/dt = f(R(t), u(t), S), K(t) = K. te [t e,

taking Xj,q = X(t11). Here £(t) is some estimate of unknown vector ¢(t), chosen

from some considerations. Usually people takes &(t) =0.
The condition (30) can be written in the form

AXk :Xk—f(k EAEk,

where ellipsoid AE, = E(0, H,) ={Ax: AxTHk’le <1}. Let us consider construction of
approximate ellipsoidal estimate for AX.q = Xi41 — Xiiq- At the interval [ty ty 4]
for the value

AX(t) = x(t) - X(t),

we can obtain with the use of the Taylor series expansion of function f (x(t), u(t), {(t))

at vicinity of %(t) and ¢(t) the following equation:

S 0,1 (R(0),u(D), GO+, (X, U0, EOIAL(O) +

0, (x| + 0. (| AL, t e[ ) 3)
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Here the functions o, (|Ax||) and o ([|A¢|) denote the terms of the expansion of the

second order of smallness. This equation, using various estimates, in principle allows to
calculate the matrix Hy_qy of the ellipsoid AEy ,qy =E(0, Hi k), AXyyq € AB -

However, the computational costs can be quite large. Therefore, it is proposed [55] to
use instead of (33) the following approximate, but simple stationary linear equation:

dAx
T = AkAX, te [tk , tk+1]! (34)

where nxn-matrix

A = 0y F (Ress25 Uksar2 Crrar2)-
Here

R o o 1, P 1tz
X2 = 0,5 (Keya + %), Uks2 =thkk fu(r)dt, Gy :ZL: Ho(r)dr.
Since Ax, € E(0, Hy), then by virtue of equation (34) we can obtain [52] that

Ay yak = AX (1) € E(O, Hyyqe ),
where
Hik = A H AR, (39)

and nxn-matrix A, =exp (A -A). Finally we get

. o T -1 o
Exigk = ECg Hicr) ={ 0 (X=X )™ Hicrge (X=X ) < I
Due to the use of approximate equation (34) Ey .y # Xy,q, i.e. some ends of the tra-
jectories of system (27), coming out of the set E,, will not belong to this By

Instead of a set X4 in (32), its estimate is also considered

Xis =M T o,
where the sets
I =€% ] Yjen = 9 Gra) = VO] o) (X Rsq ) < €53 (36)
are obtained by replacing the function 9j (x) in (31) with its linear approximation in the
vicinity of the point %.y. From (36) it follows that if %, € Xjysq, then
Xe+ak €TTj 41, and vice versa. However, the set )Zk+1 # X,,1- Due to this and the

fact that By q # Xyqu, it may turn out that By, qy N )Zkﬂ =, and it is impossible
then to implement an analogue of scheme (32) for constructing an ellipsoid E, 4 in the
form Ey.q =[Eyak N X,4]g. Therefore, in this case S N X,y =@, it is pro-
posed to take instead of an ellipsoid Ey .y, the ellipsoid of increased size
By =0 (X= Riaqp) " Flicie (K= Repa) < T (37)

where matrix

5 2

Hicak = o Hicaie
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The number o >1 is chosen in such a way that the set Ek+]4k N )Zkﬂ # O is the body.
Formulas for selection of o and necessary explanations are given in [54, 55]. The ellip-
soid E,, covering the intersection Ek+uk N >Zk+1 can be obtained using standard itera-

tive procedures [42, 52, 53]. In this work, the construction of the ellipsoid E, 4 is car-
ried out iteratively [54] in accordance with the scheme

Esi1 =[Es Nsmognsakeale $=0.12,...
The ellipsoid Ey_q is taken as the initial ellipsoid Es_q, i.e. Es_g =Ey g In this
case, the operation [-]Jg of constructing an ellipsoid of minimal volume containing

the intersection Eg NTIgpmogn41k OF the ellipsoid Eg and a multidimensional layer

Mg mod N+, 18 used. If it turns out that Eg NTTgmeq N1k =<, then the ellipsoid ma-

trix Hg is multiplied by a factor as that ensures deepening the ellipsoid Es into a
multidimensional layer TTgy0qn-1k t0 @ depth of 6. The process of constructing el-

lipsoids Eg will stop [54] at some finite s=S. In this case, the inclusion xg €
€ ﬂ'j\':ll‘ljlkﬂ is true for the center x5 of the resulting ellipsoid Eg = E(Xg, Hg). Fi-

nally we assume Ey; = Eg.
Note that in notations (36) and (37) the quantity Ax =Xx— 11k appearsasa varia-

ble. Therefore, the above algorithm can be considered as search of an increment
A1 = Kt — Ktk

2.2. Linearization of the equations. We use the multiplicative form of quaternion
increment [56, 57], so quaternion q is written as

q=0q-Aq, (38)

where § is an estimate and Aq is the estimate error. This representation allows us to
avoid the need for forced normalization of product if both its factors § and Aq are
normalized. Moreover, if we assume that the quaternion Aq is small, i.e. determines a
rotation at a small angle ¢ (¢ ~0) around some unknown axis e, || =1 then, in ac-
cordance with the quaternion representation in the form (3), the following estimates will
be valid

Adg ~1, |Aq|~0. (39)

Knowing the vector part Ag,, we can determine from the normalization condition the
scalar part in accordance with the expression

Adg =+1-| Ag, | (40)

i.e. a quaternion Aq is completely characterized by its vector part.
In expression (15) for the quaternion m, we will use representation (38) for the
quaternion q and the representation

p=Apop
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for the quaternion p [34, 35]. The sense of choosing such a representation will be clear
from what follows. The use of the vector part of quaternions Aq and Ap allows to re-

duce the dimension of the state vector at estimation, and to normalize them using for-
mula (40).

When using the vector part Ag, and Ap, to specify quaternion increments, the
state vector increment

Ax=(Aq", Ao", Ard, AV, AIT, ApT, ApT)T e RZ
is uniquely characterized by the following vector of lower dimension:
Sx=(Aqy, Ao, Ard, AvE, AlT, ApT, Ap)T e RZL

Therefore, knowledge of &x,_4 is sufficient to calculate in accordance with the
measurement results the increment Ax,,, for updating the estimate X,y at the mo-
ment (k +1).

We obtain a linear differential equations that approximately describe the evolution
of the vector &x. For equations (22), assuming o(t) = d(t) + Aa(t), 1(t) =1(t)+Al(t),
we obtain

A(Dl = |~1(A(J)2(I)3 + (I)2A(x)3) + AI16)26)3;
A(,'Oz = |~2 (A(016)3 + 6)1A0)3) + Alz(bl(bs,
A0)3 = |~3 (A(A)ld)z + 6)1A0)2) + A|36)1632 )

which we write in matrix notations

Ad = A, (@, NAo+ A (®)AL (41)
Here the matrices
0 |1(03 Il(J)z 0)2(03 0 0
Ay(o, )= oz 0 Lo | A@=| 0 ow; 0
lzo, Iz O 0 0 oo

Using the equation (20), we obtain differential equation for Ag,. Considering ¢

as estimate of ¢ from (38) we get Aq = § - q. Differentiating this expression, we have
AG=qoq+qod. (42)

Let us differentiate the identity Go§ =1, then we get §og +God =0. From here

G=-3°G°0. (43)
On definition

G =0,5G .
Substituting this expression into (43), and then the resulting equality into (42), taking
into account (2), we obtain

AG=Goq-Gofodoq=0,500G0Age(@+A0)~0,50oGodogoqoAq =

=0,5(Aqo®d—®oAQ)+0,5A0 0 Ao = —[@x]Aqy, +0,5Q(Am)Aq. (44)
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Let’s evaluate the right side of this equation. Neglecting terms of smallness order higher
than the first, using the expression for the matrix Q(q) and estimate (39), we get

_ —Aw' (A 0
O(Aw)Aq = 0 -Aow ( Qsz[ j
Ao —[Aox] )\ Aly Aw®
Taking into account the last equality, from (44) we obtain
A, = —[@x]Aq, +0,5A®, Ady ~ 0. (45)

Equations (25) are linear. Therefore, for them we can immediately write

{AQ:A%,
AV = A (wg, T, P)AIC + A (0p)Avc.

For constant parameters I, p and u, the following equations are obviously valid:
Al =0, Ap=0, Afi, =0. (46)

Combining equations (41), (45) and (46), we obtain an equation that describes the
change in time of the vector 8x in the linear approximation

[ AX) Opsee
8% = 38X, (47)
Opa5 Opxe
where 15x15-matrix

—[owx] 0,513 3,3 033 033
B33 Ay, 1) B33 O35 A(w)
A(X)=| O3,3 B33 O3,3 I3 Ozg
O3.3 O35 Al(og, r, p) Al(wg) Ozg
033 O33 B33 O33 0O33

Let us assume that at the moment t, for the vector 5x the following inclusion

holds:
6X(tk)= 8Xk € SEk = E(O, Hk)

In accordance with the approach outlined in subsection 2.1, for the matrix A ,; used in
calculating the matrix Hyq of ellipsoid 8Eyq = E(0, Hyq), by virtue of (47) we
take the following expression:

Aciarzh

e (C)

Ayt =( 15*6]. (48)

Ogas o
Here Ay, is the value of the matrix A(x) at the following values of its argu-
ments dy,yp =0.5(@k g + &), o 7 kw2 =0.5(F kg + k) and g kyp =
=0,5(mg k41 +®o k)- The ellipsoid 5E, (3Ey R?1) contains the possible values of

the vector 8x, and the ellipsoid SE, .y contains the possible values of the vector

Xk
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Let us linearize the functions g;(x) appearing in measurement equations (17) and
(18) in the point )A(k+14k with respect to 8x. To do this, substitute an expression for the

state vector expressed in terms of estimates and their increments, into these function ex-
pressions. The terms which are linear with respect to 5x, will contain the desired gradi-

ents of functions g (x).

For equation (17), considered for the moment (k +1), we have
M = R(Be)R(Tc k) R(Gak © AQ) P +Ap) = R(Ee )R(Tc k1) R(do k1) %
x(fo kaak +Arc) = R(Eic) pe + &k = R )R k1) R(Grsa )R(AD) Pra +Ap) —
—R(\c)R(Tc k+1)R(o k+1)(fe ksak +ATc) — R ) pe + &kt ~
~ R(ic )R(Tc k+1) R )13 + 2[A0y XD (P +AP) — R(He )R(Tc k+1)R(do k41)
*(fe kagk +ATC) ~ R(Hc) pe + &k = R(EC)R@c k1) R(Gyic) Prsage —
—R(pc)R(Tc k+1)R(Go k1) kex —R(EC) pc —
=2R(c )R(Tc k+1) R (G )Pisa 1A, — R(E)R(Tc k1) R(do k1) Ale +
+ R\ )R(Tc k+1) Rk )AP + Ei1 = fiss + GiaadX + Eaa (49)
where the vector
fiesr = R(BC)IR(Ac k)[R @) P — R(do k1) e ka1 —Pc]
and 3x21-matrix
Gt = (G 103,316y 105,61 G 1 O35).
In the last expression, the 3x 3-matrices have the following form:

Gyt = —2R(fic )R(Tc 1) R Gk ) [Prcs e <T:

Gyy" = R({Hc)R@c k+1)R(o ks1);

Gy = R(Ic )R(Tc ks1)R (G-

An expression (6) for the matrix R(g) and assumption (39) were used to obtain equali-

ty (49).
For equation (18) we obtain

k1 = e ©TC k1 © Ok+1 © Mkt + &g = B ©Tc ke © Gk © Ad o Ape fy g +

+ §E+1 =Hc °0c ka1 OdkHJk oAkoﬁkﬂik +‘t'-']k1+1’ (50)

where AL =AqgoAp. Using formula (2) for multiplying quaternions, assumption (39)
and similar assumptions for Apg and Ap,,, we obtain

Alg =A0y-Apg—(Ady, Apy) = Adg-Apg =1,
Ahy =Adg-Apy +Apg-AQy +AQy xAp, = Apy +AQ,.
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From here

Adg 1 1 0
A% = ~ _ N ,
Ady Aqy +Apy O34 Aqy +Apy

Substituting this expression into (50), we get
B R . . R _ 0
k1 & Nkt + QR )Q(Tc k+1)Q Ak 41k )Q (445 ) +&0,, =
Agy +Apy

= 1’ik+l + Q(EC )Q(q_C,k+1)Q(dk+JJk )Qv (l:lk+:uk )(AQV + AHv) + érk‘ﬂ, (51)

where quaternion
M1 = Qe )Q(Tc k+1) QG+ ) i

T
GV(H):{ Hv J
tolz —[uyx]

The equality (51) can be written in the form

and 4 x 3-matrix

Mkl * TA]k+1 + G;I]+15X + aE+l’ (52)
: Aq . . AnA A A — Ny
where matrices Gy, = (G119 10445 :G7M), Gty =G " = Q(ic )Q(Tc k+1) ¥

x QG+ 1 )Qu (k1)

From expressions (49), (52) and restrictions on measurement noise, we obtain
that the components of the increment vector must satisfy the following 7 linear in-
equalities:

" a1 — Fk+1 _GI£+16X "oo < cr, (53)

[ A1 =i — Gyl [, <™. (54)
Note that (54) contains 4 inequalities that have to be satisfied using only three variables,
namely, a vector Aq, +Ap, of dimension 3. In the general case, these inequalities may

turn out to be inconsistent, i.e. the solution area may be empty. Therefore, when solving
numerically, when finding the intersection with an ellipsoid, three of these four inequal-
ities should be chosen, but in such a way that the discrepancy in the fourth inequality is
minimal.

2.3. Problem solution algorithm. We assume that at the moment t, the estimate

X, of the state vector is known, and the parameters of the ellipsoid are also known, the

matrix H, = HkT > 0. Let us describe the procedure for calculating the estimate X ;.

1. We numerically integrate equations (20), (21) and (25) in real time over the in-
terval [ty tc,1] under the initial condition % to calculate estimates G i, Ok,

ic k+ak and Ve y.q- For the rest constant components of the state vector, we assume
gk =l Pragk =Pk and fyk = Py -
2. At the moment t,; we calculate according to expression (48) the matrix Ay

and according to (35) the matrix Hy_q of the ellipsoid SEy .
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3. An ellipsoid 8E, (8% 1, Hyq) is constructed containing the intersection of
the ellipsoid SE,,q and layers corresponding to inequalities (53) and (54) using the

algorithm of subsection 2.2. The center of the ellipsoid 8E, 4, vector 8%, (in the
general case 8%,,q = 0) will satisfy the linearized inequalities (53) and (54).

4. Using the increment vector 8% 4 = (A®yp., ch\IkJrl, APy, Af{kw APR.1,

AQ\I K +1)T, we calculate the vector

)A(k+1 = (CO-IE+1! ﬁkT+1' ﬁ;ﬂ' f‘\TT,kﬁ—ll FA)-I[+1’ }’lL_l)T
in accordance with the following formulas:
Dest = Opag T ADa1 Tt =l +Allgt o = To ke + AT ke
Ve k1 = Ve katik +AVC ki1r Piat = Pisaik + A Pt

The quaternion ¢4 is calculated as follows:

Ok+1 = Gk © Akt = Q(k+ak ) AGk41,

~ ~ ~T T ~ ~ 2 . ~
where Aby,q = (Ao k.1, Alyki1) '+ Aloksr =y1-] Aby ks |°- The quaternion fiy

is calculated similarly:

Akt = Al © B = QUlksap) At

~ - ST \T A [ ~ 2
where Ay, = (Aflg 1 Aftyken) s Al ke =41 Ay ||

5. For the moment t,_;, we take as the initial ellipsoid E(0, H,_ 1), where Hy 4
is the matrix of the ellipsoid 8E; 4.

The process of estimation will stop when 8%, =0, i.e. when the calculated esti-
mates, i.e. the vector >A<k+uk will satisfy inequalities (19) related to measurements.

The properties of the presented algorithm were studied using numerical simulation.
3. Numerical simulation

Numerical simulation was carried out to test the performance of the proposed algo-
rithms for estimating the parameters of the relative motion of the NSC and the SSC, in-
cluding influence of the choice of a priori values of the estimated parameters, the quali-
ty of the algorithm at different levels of measurement noise. The hovering mode was
considered, in which the SSC is at a safe distance from the NSC in the working area of
the CVS. The SSC does not perform any maneuvers and carries out measurements of
the distance vector and attitude quaternion of the NSC in order to determine the remain-
ing parameters of the relative motion necessary for planning a safe trajectory of ap-
proach and capture of the NSC. It is assumed that the SSC is in free orbital flight and is
oriented in space in such a way that the NSC is located approximately in the center of
the CV'S camera frame.

To obtain the «measured values» of the CVS, differential equations (20) and (21)
were used, describing the free rotation of the NSC, as well as equation (25) of the rela-
tive orbital motion. Various initial values for these equations were considered and ran-
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domly selected from a given set of values. In particular, the components o;(to),

j =1:3, of the angular velocity vector o(ty) were chosen randomly from the inter-
val [-0,1,0,1] rad/sec. The initial attitude quaternion q(ty) was chosen in a similar
way. Its components q;(tp), j=0:3, were selected from the interval [-1,1] and

then were normalized. The main moments of inertia of the NSC are J; = 3616 kgm?,
J, =7618 kgmz, J3 =8098 kgmz. The position of the GRF in the TRF was chara-

cterized by vector p=1(0,2,0,3, 0,4)T and by nominal known quaternion (=

= (0,95, 0,16, — 0,045, 0, 25)T, which value was slightly changed by small unknown
increment. The position of the CVS in the CRF was specified by the vector
pc =12,0,4, O,O)T and unit quaternion pe =(1,0,0, O)T. Initial position of the SSC

c.m. relative to the NSC c.m. was characterized by a vector rc = (5, —15, 2)T and a zero

vector of relative velocity vc (tg) = (0, 0, O)T in the ORF. The SSC attitude quaternion
qc (t) was calculated at each time moment from the condition that the NSC was in the

center of the CVS frame. These values were used to integrate equations (20), (21) and
(25) to calculate the so-called true values of these parameters in time and to form the
measured values of distance vector f, and quaternion 1y in accordance with expres-

sions (17) and (18). Sequences of measurement noise &; and g{j were generated as a
white noise process, their values are uniformly distributed in intervals [-c", ¢'] and
[-c" ¢"] respectively. The maximum measurement noise values ¢’ =0,004 m and

¢ =0,003 were taken from [63], which corresponds to a position accuracy of 4 mm

and an attitude within 0,16° in Euler angles. During the simulation, various values of the
discrete time period A from 0,1 to 1 second, were considered.

The initial values of the estimates for unknown quantities were chosen arbitrarily,
including zero, with the exception of estimates for the initial values of r-(ty) and

q(tp). which estimates can be obtained using the first measured values of ry and 7.
Various values were considered for the matrix Hy, ranging from Hg =0,0001-1 and
to Hg=4-1. The first case corresponded to the situation in which the initial ellipsoid
E, does not contain the true initial vector. In the case Hy =4-1, the ellipsoid E; was

guaranteed to contain such a vector. During the simulation, it was found that the process
of estimating all parameters of relative motion was highly dependent on the choice of
the initial approximation and was unstable in most cases. However, with a known or in-
accurately known, but given value of the quaternion p, the estimation algorithm con-

verged for any initial data. Therefore, the simulation results are presented for the case of
using a given constant estimate 1= Apou for the quaternion p in the estimation algo-

rithm formulas, where the error A was chosen to be small. Plots of changes in time of
true values (dashed line) and their estimates (solid line) are presented in Fig. 4-8 for
case Hy =0,0001-1 and A=0,4 sec. In Fig. 4 elements of angular velocity «, and
their estimates d j are shown, plot of change of estimation error || @ — @ |, is pre-

sented in Fig. 5.
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Similar values for the parameter vector | and its estimate fk are shown in Fig. 6. The

plot of change of estimation error || -1y | is shown in Fig. 7.
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Components of the vector p and its estimate p, are presented in Fig. 8.
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Fig. 9-11 contain plots of estimates p, fk and @ for the case of a greater
error in measuring the position and attitude of the NSC, namely, for ¢" =0,02 m

and c¢" =0,06. These values correspond to the CVS based at the approach [30].

As it can be seen from Fig. 9-11, with a higher intensity of measurement er-
rors the transition process becomes longer and the evaluation plots contain noticea-
ble fluctuations.
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Conclusion

The need to solve the considered estimation problem is associated with the possi-
bility of implementing safe approach and docking with the NSC, including the case
when it is in a state of free rotation. We obtained general functional relation between
measured and estimated quantities when the CVS measures the position and attitude of
the graphical reference frame relative to the CVS reference frame. An ellipsoidal esti-
mation method is proposed, which does not require knowledge of the stochastic parame-
ters of uncertain quantities, i.e. measurement noise, parameters and initial values of dif-
ferential equations. Moreover, these quantities are not assumed to be random variables
or to have stable stochastic properties.

The results of the numerical simulation showed that the estimation problem under
consideration is likely to be ill-conditioned or, in other words, the considered dynamical
system for a given set of measurements is close to unobservable. The accuracy of a so-
lution of the simplified estimation problem, in which the quaternion p is not estimated

and instead the algorithm uses some estimate [ of it, degrades as the accuracy of that
estimate [ deteriorates. Exact knowledge of p is crucial to the accuracy of estimation
of almost all other quantities. Therefore, it is necessary to ensure an accurate estimation
of this value, possibly by involving measurements of additional variables. In the intro-
duction to this work, it is noted that this parameter and other variables can be deter-
mined quite accurately, in particular, by introducing coordinates of characteristic points
on the NSC surface into the state vector.

The direction of further investigation may be related to further improvement of the
estimation algorithm to increase its regularizing properties. It is also of interest to con-
duct a quantitative comparison of the proposed estimation algorithm, for example, with
estimation methods that use various versions of the Kalman filter, namely, to compare
the accuracy, convergence speed and computational costs during full scale experiments,
i.e. in conditions of real error properties inherent to a particular type of CVS.
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BukopucTaHHs HABKOJIO36MHOTO KOCMIYHOTO IIPOCTOPY B IAHUIT 9ac yCKIIaJHIO-
€ThCsl HASBHICTIO Ha OpOiTi 3eMiti 00’ €KTIB KOCMIYHOTO CMITTSI, IO SKUX BiJIHO-
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KOCMIi4HI 00’€KTH 3HaxOoiAThCs B cTaHi obepranus. [lapamerpu opbitaabHO-
ro pyxy Takux 00’€KTIB JIOCUTh TOYHO BiZIOMi 3 BUMiproBaHb i3 3emui. s
31ifiCHeHHs1 Oe3MeYHOro 30JIMDKeHHS 1 CTUKYBaHHS TaKOXK HEOOXiTHO 3HATH Na-
pamMeTpu 00epTanpHOro pyxy, a TAKOXK IapaMeTpH BiJHOCHOTO pyXy. Po3rmsimy-
TO HAMOUIBII 3araJibHUK BHUIAJOK PyXy PO3TALIOBAHOTO Ha ENINTHYHINH OpOiTi
HEKOOTIEPATUBHOTO KOCMIYHOTO amapata, SIKHA 3HaXOIAWTHCS Y CTaHi BUIBHOTO
obepranns. [lepenbauaerscs, mo TpuBMMipHA TpadidyHa MOAENH TAKOTO KOpad-
st Bioma. Cepgicuuii kocmiunumii amapar (CKA) ocHalieHo MOHOKaMeporo, sika
pPOOUTH 3HIMKH HEKoomepaTuBHOro kocMiyHoro arnapara (HKA). Ha ocHosi mo-
PIBHSIHHS XapaKTepHHX ocoOimBocTell (otorpadiit Ta 300paxeHsp, 0 OTPUMY-
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BH3HAYAE BEKTOP BIJICTaHI O Tak 3BaHOI rpadiqHOi CHCTEMH KOOPAHMHAT, KOPC-
TKO 3akpimieHoi Ha HKA, ta kBarepHioH ii BimHOCHOT opieHTalii. KoHkpeTHuit
tun CK3 He posrnspaerscs. [lepenbagaerses, mo CKA Mosxe 3milicCHIOBaTH Ma-
HeBpu nobmm3y HKA. VYci mapamerpu kyroBoro pyxy CKA BBaxaroThCs Bizo-
MUMH. Y naHiii poOOTi po3risiaeThesl HAHOUIBII 3aralIbHUI BUIAI0K BiJIHOCHO-
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TEMH KOOpJAWHAT, BiTHOMIEHHS MOMeHTIB iHeplii HKA, BeKTOp MOIOKEHHS .M.
HKA B rpadiuniii cucremi koopauHat. BracTHBOCTI 3aIpOIIOHOBAHOTO alTOpH-
TMY TPOAEMOHCTPOBAHO 32 JOIOMOTOI0 YHCEIBHOT0 MopaemoBaHHs. OTpuMani
pe3yIbTaTH IJIAHYETHCS BUKOPHUCTATU IPHU PO3pOOIi, CTBOPEHHI Ta BHIIPOOyY-
BaHHI HaBiramiitHoi cucremu 30mmkeHHs ta ctukyBanHs CKA, sxuii po3po0-
JSIETHCSI TPYIOIO MiANPUEMCTB KOCMIYHOI ramy3i YkpalHu Hif KepiBHHLTBOM
TOB «Kypc-op6itan» (https://kursorbital.com/).
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